

27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer

Abstract

General Description The MAX9218 digital video serial-to-parallel converter deserializes a total of 27 bits during data and control phases. In the data phase, the LVDS serial input is converted to 18 bits of parallel video data and in the control phase, the input is converted to 9 bits of parallel control data. The separate video and control phases take advantage of video timing to reduce the serial data rate. The MAX9218 pairs with the MAX9217 serializer to form a complete digital video transmission system. Proprietary data decoding reduces EMI and provides DC balance. The DC balance allows AC-coupling, providing isolation between the transmitting and receiving ends of the interface. The MAX9218 features a selectable rising or falling output latch edge.

ESD tolerance is specified for ISO 10605 with $\pm 10 \mathrm{kV}$ contact discharge and $\pm 30 \mathrm{kV}$ air discharge

The MAX9218 operates from a +3.3 V core supply and features a separate output supply for interfacing to 1.8 V to 3.3 V logic-level inputs. This device is available in 48lead Thin QFN and LQFP packages and is specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

\qquad Applications
Navigation System Display
In-Vehicle Entertainment System
Video Camera
LCD Displays

Prome_ Bat

- Proprietary Data Decoding for DC Balance and Reduced EMI
- Control Data Deserialized During Video Blanking
- Five Control Data Inputs Are Single Bit-Error Tolerant
- Output Transition Time Is Scaled to Operating Frequency for Reduced EMI
- Staggered Output Switching Reduces EMI
- Output Enable Allows Busing of Outputs
- Clock Pulse Stretch on Lock
- Wide $\pm 2 \%$ Reference Clock Tolerance
- Synchronizes to MAX9217 Serializer Without External Control
- ISO 10605 ESD Protection
- Separate Output Supply Allows Interface to 1.8V to 3.3V Logic
- +3.3V Core Power Supply
- Space-Saving Thin QFN and LQFP Packages
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9218ECM +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 LQFP
MAX9218ECM $/ \mathrm{V}+$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 LQFP
MAX9218ETM +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 Thin QFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. N denotes an automotive qualified part.
*EP = Exposed pad.
Pin Configurations

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

27-Bit, 3MHz-to-35MHz
 DC-Balanced LVDS Deserializer

ABSOLUTE MAXIMUM RATINGS

VCC_ to _GND..-0.5V to +4.0V Any Ground to Any Ground-0.5V to +0.5 V IN+, IN- to LVDS GND... $-0.5 \mathrm{~V} \text { to }+4.0 \mathrm{~V}$ IN+, IN- Short Circuit to LVDS GND or VccLVDS .Continuous $\mathrm{IN}+$, IN- Short Through $0.125 \mu \mathrm{~F}$ (or smaller), 25 V Series Capacitor. (R/F, OUTEN, RNG_, REFCLK, PWRDWN) to GND-0.5V to (VCC +0.5 V) (RGB_OUT[17:0], CNTL_OUT[8:0], DE_OUT, PCLK_OUT, LOCK) to V cco $\mathrm{GND} .-0.5 \mathrm{~V}$ to ($\mathrm{VCCO}+0.5 \mathrm{~V}$) Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 48-Lead LQFP (derate $21.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1739 mW 48 -Lead Thin QFN (derate $37 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .2963 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \overline{\mathrm{PWRDWN}}=$ high, differential input voltage $\left|\mathrm{V}_{\text {ID }}\right|=0.05 \mathrm{~V}$ to 1.2 V , input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=\left|\mathrm{V}_{\text {ID }} / 2\right|$ to $\mathrm{V}_{C C}-\left|\mathrm{V}_{\mathrm{ID}} / 2\right|, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C_{-}}=+3.3 \mathrm{~V},\left|\mathrm{~V}_{\mathrm{ID}}\right|=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
SINGLE-ENDED INPUTS (R/F/, OUTEN, RNG0, RNG1, REFCLK, $\overline{\text { PWRDWN) }}$					
High-Level Input Voltage	V_{IH}		2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$		-0.3	+0.8	V
Input Current	IIN	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-0.3 \mathrm{~V} \text { to }(\mathrm{VCC}+0.3 \mathrm{~V}), \\ & \mathrm{PWRDWN}=\text { high or low } \end{aligned}$	-70	+70	$\mu \mathrm{A}$
Input Clamp Voltage	$V_{C L}$	ICL $=-18 \mathrm{~mA}$		-1.5	V
SINGLE-ENDED OUTPUTS (RGB_OUT[17:0], CNTL_OUT[8:0], DE_OUT, PCLK_OUT, $\overline{\text { LOCK }}$)					
High-Level Output Voltage	VOH	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	VCCO -		V
		$\begin{aligned} & \mathrm{IOH}=-2 \mathrm{~mA}, \\ & \text { RNG1, RNG0 }=\text { high } \end{aligned}$	V ${ }_{\text {cco }}$		
		$\mathrm{IOH}=-2 \mathrm{~mA}$, RNG1, RNG0 both not high simultaneously	V Cco -		
Low-Level Output Voltage	VOL	$\mathrm{IOL}=100 \mu \mathrm{~A}$		0.1	V
		$\begin{array}{\|l} \text { IOL }=2 \mathrm{~mA}, \\ \text { RNG1, RNGO }=\text { high } \end{array}$		0.3	
		$\mathrm{IOL}=2 \mathrm{~mA}$, RNG1, RNG0 both not high simultaneously		0.35	
High-Impedance Output Current	Ioz	$\begin{aligned} & \overline{\text { PWRDWN }}=\text { low or OUTEN }=\text { low, } \\ & V_{O}=-0.3 V \text { to } V_{C C O}+0.3 V \end{aligned}$	-10	+10	$\mu \mathrm{A}$

27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \overline{\mathrm{PWRDWN}}=$ high, differential input voltage $\left|\mathrm{V}_{\text {ID }}\right|=0.05 \mathrm{~V}$ to 1.2 V , input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=\left|\mathrm{V}_{\mathrm{ID}} / 2\right|$ to $\mathrm{V}_{C C}-\left|\mathrm{V}_{I D} / 2\right|, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V},\left|\mathrm{~V}_{\mathrm{ID}}\right|=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
	Ios	RNG1, RNG0 = high, $\mathrm{V}_{\mathrm{O}}=0$			-10		-50	
Output Short-Circuit Current		RNG1, RNG0 both not high simultaneously, $\mathrm{V}_{\mathrm{O}}=0$			-7		-40	mA
LVDS INPUT (IN+, IN-)								
Differential Input High Threshold	$V_{\text {TH }}$						50	mV
Differential Input Low Threshold	$\mathrm{V}_{\text {TL }}$				-50			mV
Input Current	$\mathrm{l} \mathrm{N}_{+}$, IIN-	PWRDWN $=$ high or low			-20		+20	$\mu \mathrm{A}$
Input Bias Resistor	RIB	$\overline{\text { PWRDWN }}=$ high or low			35	50	65	$\mathrm{k} \Omega$
		$V_{C C_{-}}=0$ or open, $\overline{\text { PWRDWN }}=0$ or open, Figure 1			35	50	65	k Ω
Power-Off Input Current	IINO+, İNO-	$\begin{aligned} & \frac{V_{C C-}=0}{}=0 \text { or open, } \\ & \text { PWRDWN }=0 \text { or open } \end{aligned}$			-40		+40	$\mu \mathrm{A}$
POWER SUPPLY								
Worst-Case Supply Current	Iccw	$C_{L}=8 p F,$ worst-case pattern, Figure 2	RNG1 = low,	3 MHz			20	mA
			RNGO = low	7 MHz			35	
			RNG1 = high,	7MHz			25	
			RNG0 = low	15 MHz			47	
			$\begin{aligned} & \text { RNG1 = high, } \\ & \text { RNG0 }=\text { high } \end{aligned}$	15 MHz			37	
				35 MHz			70	
Power-Down Supply Current	Iccz	(Note 3)					50	$\mu \mathrm{A}$

27-Bit, 3MHz-to-35MHz
 DC-Balanced LVDS Deserializer

AC ELECTRICAL CHARACTERISTICS

($\mathrm{VCC}_{-}=+3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{CL}=8 \mathrm{pF}$, $\overline{\text { PWRDWN }}=$ high, differential input voltage $\left|\mathrm{V}_{\mathrm{ID}}\right|=0.1 \mathrm{~V}$ to 1.2 V , input common-mode voltage $\mathrm{V}_{C M}=\left|\mathrm{V}_{I D} / 2\right|$ to $\mathrm{V}_{\mathrm{CC}}-\left|\mathrm{V}_{I D} / 2\right|, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V},\left|\mathrm{~V}_{\mathrm{ID}}\right|=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=$ $1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 4,5$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
REFCLK TIMING REQUIREMENTS							
Period	tT			28.57		333.00	ns
Frequency	${ }_{\text {f CLK }}$			3		35	MHz
Frequency Variation	$\Delta \mathrm{f}$ CLK	REFCLK to serializer PCLK_IN		-2.0		+2.0	\%
Duty Cycle	DC			40	50	60	\%
Transition Time	ttran	20\% to 80\%				6	ns
SWITCHING CHARACTERISTICS							
Output Rise Time	tR	Figure 3	RNG1, RNG0 = high	3.2		4.4	ns
			RNG1, RNGO both not high simultaneously	3.8		5.5	
Output Fall Time	tF_{F}	Figure 3	RNG1, RNG0 = high	2.7		4.5	ns
			RNG1, RNGO both not high simultaneously	3.6		5.3	
PCLK_OUT High Time	thigh	Figure 4		$\begin{gathered} 0.4 \times \\ t \\ \hline \end{gathered}$	$\begin{gathered} 0.45 \times \\ t T \\ \hline \end{gathered}$	$\begin{gathered} 0.6 x \\ t_{T} \end{gathered}$	ns
PCLK_OUT Low Time	tıow	Figure 4		$\begin{gathered} 0.4 \mathrm{x} \\ \mathrm{t} T \end{gathered}$	$\begin{gathered} 0.45 \times \\ \text { tT } \end{gathered}$	$\begin{gathered} 0.6 \mathrm{x} \\ \mathrm{t} T \end{gathered}$	ns
Data Valid Before PCLK_OUT	tDVB	Figure 5		$0.35 \times$ tT	$0.4 \times$ tT		ns
Data Valid After PCLK_OUT	tDVA	Figure 5		$0.35 \times$ tT	$0.4 \times$ t		ns
Input-to-Output Delay	tdelay	Figure 6		$2.575 x$ t ${ }^{+}$ 8.5		$\begin{gathered} 2.725 x \\ t \uparrow+ \\ 12.8 \end{gathered}$	ns
PLL Lock to REFCLK	tPLLREF	Figure 7				$16385 x$	ns
Power-Down Delay	tPDD	Figure 7				100	ns
Output Enable Time	toe	Figure 8				30	ns
Output Disable Time	toz	Figure 9				30	ns

Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground except VTH and VTL.
Note 2: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 3: All LVTTL/LVCMOS inputs, except $\overline{\text { PWRDWN }}$ at $\leq 0.3 \mathrm{~V}$ or $\geq \mathrm{V}_{C C}-0.3 \mathrm{~V}$. $\overline{\text { PWRDWN }}$ is $\leq 0.3 \mathrm{~V}$.
Note 4: AC parameters are guaranteed by design and characterization, and are not production tested. Limits are set at ± 6 sigma.
Note 5: CL includes probe and test jig capacitance.

27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer

Typical Operating Characteristics

$\left(\mathrm{V}_{C C}-=+3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

OUTPUT TRANSITION TIME
vs. OUTPUT SUPPLY VOLTAGE (Vcco)

27-Bit, 3MHz-to-35MHz
 DC-Balanced LVDS Deserializer

Pin Description

PIN	NAME	FUNCTION
1	$\mathrm{R} / \overline{\mathrm{F}}$	Rising or Falling Latch Edge Select. LVTTL/LVCMOS input. Selects the edge of PCLK_OUT for latching data into the next chip. Set $R / \bar{F}=$ high for a rising latch edge. Set $R / \bar{F}=$ low for a falling latch edge. Internally pulled down to GND.
2	RNG1	LVTTL/LVCMOS Range Select Input. Set to the range that includes the serializer parallel clock input frequency. Internally pulled down to GND.
3	VCCLVDS	LVDS Supply Voltage. Bypass to LVDS GND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.
4	$\mathrm{N}+$	Noninverting LVDS Serial Data Input
5	IN-	Inverting LVDS Serial Data Input
6	LVDS GND	LVDS Supply Ground
7	PLL GND	PLL Supply Ground
8	$V_{\text {CCPLL }}$	PLL Supply Voltage. Bypass to PLL GND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.
9	RNGO	LVTTL/LVCMOS Range Select Input. Set to the range that includes the serializer parallel clock input frequency. Internal pulldown to GND.
10	GND	Digital Supply Ground
11	VCC	Digital Supply Voltage. Supply for LVTTL/LVCMOS inputs and digital circuits. Bypass to GND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.
12	REFCLK	LVTTL/LVCMOS Reference Clock Input. Apply a reference clock that is within $\pm 2 \%$ of the serializer PCLK_IN frequency. Internally pulled down to GND.
13	PWRDWN	LVTTL/LVCMOS Power-Down Input. Internally pulled down to GND.
14	OUTEN	LVTTL/LVCMOS Output Enable Input. High activates the single-ended outputs. Driving low places the single-ended outputs in high impedance. Internally pulled down to GND.
15-23	CNTL_OUT [8:0]	LVTTL/LVCMOS Control Data Outputs. CNTL_OUT[8:0] are latched into the next chip on the rising or falling edge of PCLK_OUT as selected by R/F when DE_OUT is low, and are held at the last state when DE_OUT is high.
24	DE_OUT	LVTTL/LVCMOS Data Enable Output. High indicates RGB_OUT[17:0] are active. Low indicates CNTL_OUT[8:0] are active.
25,37	VCCO GND	Output Supply Ground
26, 38	Vcco	Output Supply Voltage. Bypass to GND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.
27	$\overline{\text { LOCK }}$	LVTTL/LVCMOS Lock Indicator Output. Outputs are valid when $\overline{\text { LOCK }}$ is low.
28	PCLK_OUT	LVTTL/LVCMOS Parallel Clock Output. Latches data into the next chip on the edge selected by R/F.
$\begin{aligned} & 29-36, \\ & 39-48 \end{aligned}$	RGB_OUT [17:0]	LVTTL/LVCMOS Red, Green, and Blue Digital Video Data Outputs. RGB_OUT[17:0] are latched into the next chip on the edge of PCLK_OUT selected by R/F when DE_OUT is high, and are held at the last state when DE_OUT is low.
-	EP	Exposed Pad for Thin QFN Package Only. Connect to GND.

27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer

Functional Diagram

Figure 1. LVDS Input Bias

Figure 2. Worst-Case Output Pattern

Figure 3. Output Rise and Fall Times

Figure 4. High and Low Times

27-Bit, 3MHz-to-35MHz
 DC-Balanced LVDS Deserializer

Figure 5. Synchronous Output Timing

Figure 6. Deserializer Delay
\qquad

27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer

Figure 7. PLL Lock to REFCLK and Power-Down Delay

Figure 8. Output Enable Time

Figure 9. Output Disable Time

27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer

Detailed Description

The MAX9218 DC-balanced deserializer operates at a parallel clock frequency of 3 MHz to 35 MHz , deserializing video data to the RGB_OUT[17:0] outputs when the data enable output DE_OUT is high, or control data to the CNTL_OUT[8:0] outputs when DE_OUT is low. The video phase words are decoded using 2 overhead bits, EN0 and EN1. Control phase words are decoded with 1 overhead bit, ENO. Encoding, performed by the MAX9217 serializer, reduces EMI and maintains DC balance across the serial cable. The serial input word formats are shown in Table 1 and Table 2.
Control data inputs C 0 to C 4 , each repeated over 3 serial bit times by the serializer, are decoded using majority voting. Two or three bits at the same state determine the state of the recovered bit, providing single bit-error tolerance for C0 to C4. The state of C5 to C8 is determined by the level of the bit itself (no voting is used).

AC-Coupling Benefits

AC-coupling increases the input voltage of the LVDS receiver to the voltage rating of the capacitor. Two capacitors are sufficient for isolation, but four capaci-tors-two at the serializer output and two at the deserializer input-provide protection if either end of the cable is shorted to a high voltage. AC-coupling blocks low-frequency ground shifts and common-mode noise. The MAX9217 serializer can also be DC-coupled to the MAX9218 deserializer. Figure 10 is the AC-coupled serializer and deserializer with two capacitors per link, and Figure 11 is the AC-coupled serializer and deserializer with four capacitors per link.

Applications Information

Selection of AC-Coupling Capacitors

See Figure 12 for calculating the capacitor values for AC-coupling, depending on the parallel clock frequency. The plot shows capacitor values for two- and four-capacitor-per-link systems. For applications using less than 18 MHz clock frequency, use $0.1 \mu \mathrm{~F}$ capacitors.

Termination and Input Bias
The IN+ and IN- LVDS inputs are internally connected to +1.2 V through $35 \mathrm{k} \Omega$ (min) to provide biasing for ACcoupling (Figure 1). Assuming 100Ω interconnect, the LVDS input can be terminated with a 100Ω resistor. Match the termination to the differential impedance of the interconnect.
Use a Thevenin termination, providing 1.2 V bias, on an AC-coupled link in noisy environments. For interconnect with 100Ω differential impedance, pull each LVDS line up to $V_{C C}$ with 130Ω and down to ground with 82Ω at the deserializer input (Figure 10 and Figure 11). This termination provides both differential and commonmode termination. The impedance of the Thevenin termination should be half the differential impedance of the interconnect and provide a bias voltage of 1.2 V .

Table 1. Serial Video Phase Word Format

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ENO	EN 1	S 0	S 1	S 2	S 3	S 4	S 5	S 6	S 7	S 8	S 9	S 10	S 11	S 12	S 13	S 14	S 15	S 16	S 17

Bit 0 is the LSB and is deserialized first. EN[1:0] are encoding bits. S[17:0] are encoded symbols.

Table 2. Serial Control Phase Word Format

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ENO	C 0	C 0	C 0	C 1	C 1	C 1	C 2	C 2	C 2	C 3	C 3	C 3	C 4	C 4	C 4	C 5	C 6	C 7	C 8

Bit 0 is the LSB and is deserialized first. C[8:0] are the mapped control inputs.

27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer

Figure 10. AC-Coupled Serializer and Deserializer with Two Capacitors per Link

Figure 11. AC-Coupled Serializer and Deserializer with Four Capacitors per Link

27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer

Abstract

Input Frequency Detection A frequency-detection circuit detects when the LVDS input is not switching. When not switching, all outputs except $\overline{\text { LOCK }}$ are low, $\overline{\text { LOCK }}$ is high, and PCLK_OUT follows REFCLK. This condition occurs, for example, if the serializer is not driving the interconnect or if the interconnect is open.

Frequency Range Setting (RNG[1:0])

The RNG[1:0] inputs select the operating frequency range of the MAX9218 and the transition time of the outputs. Select the frequency range that includes the MAX9217 serializer PCLK_IN frequency. Table 3 shows the selectable frequency ranges and the corresponding data rates and output transition times.

Power Down Driving $\overline{\text { PWRDWN }}$ low puts the outputs in high impedance and stops the PLL. With PWRDWN $\leq 0.3 \mathrm{~V}$ and all LVTTL/LVCMOS inputs $\leq 0.3 \mathrm{~V}$ or $\geq \mathrm{VCC}-0.3 \mathrm{~V}$, the supply current is reduced to less than $50 \mu \mathrm{~A}$. Driving PWRDWN high initiates lock to the local reference clock (REFCLK) and afterwards to the serial input.

Lock and Loss of Lock ($\overline{\text { LOCK }}$)

 When PWRDWN is driven high, the PLL begins locking to REFCLK, drives LOCK from high impedance to high and the other outputs from high impedance to low except PCLK_OUT. PCLK_OUT outputs REFCLK while the PLL is locking to REFCLK. Locking to REFCLK takes a maximum of 16,385 REFCLK cycles. When locking to REFCLK is complete, the serial input is monitored for a transition word. When a transition word is found, $\overline{\text { LOCK }}$ is driven low indicating valid output data, and the parallel rate clock recovered from the serial input is output on PCLK_OUT. PCLK_OUT is stretched on the change from REFCLK to recovered clock (or vice versa).Table 3. Frequency Range Programming

RNG1	RNGO	PARALLEL CLOCK (MHz)	SERIAL DATA RATE (Mbps)	OUTPUT TRANSITION TIME
0	0	3 to 7	60 to 140	Slow
0	1			
1	0	7 to 15	140 to 300	
1	1	15 to 35	300 to 700	Fast

Figure 12. AC-Coupling Capacitor Values vs. Clock Frequency of 18 MHz to 35 MHz
If a transition word is not detected within 2^{20} cycles of PCLK_OUT, LOCK is driven high and the other outputs except PCLK_OUT are driven low. REFCLK is output on PCLK_OUT and the deserializer continues monitoring the serial input for a transition word. See Figure 7 for the synchronization timing diagram.

Output Enable (OUTEN) and Busing Outputs

The outputs of two MAX9218s can be bused to form a 2:1 mux with the outputs controlled by the output enable. Wait 30 ns between disabling one deserializer (driving OUTEN low) and enabling the second one (driving OUTEN high) to avoid contention of the bused outputs. OUTEN controls all outputs.

Rising or Falling Output Latch Edge (R/F) The MAX9218 has a selectable rising or falling output latch edge through a logic setting on R / \bar{F}. Driving R / \bar{F} high selects the rising output latch edge, which latches the parallel output data into the next chip on the rising edge of PCLK_OUT. Driving R/F low selects the falling output latch edge, which latches the parallel output data into the next chip on the falling edge of PCLK_OUT. The MAX9218 output-latch-edge polarity does not need to match the MAX9217 serializer input-latch-edge polarity. Select the latch-edge polarity required by the chip being driven by the MAX9218.

27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer

Staggered and Transition Time Adjusted Outputs

RGB_OUT[17:0] are grouped into three groups of six, with each group switching about 1ns apart in the video phase to reduce EMI and ground bounce. CNTL_OUT[8:0] switch during the control phase. Output transition times are slower in the $3 \mathrm{MHz}-\mathrm{to}-7 \mathrm{MHz}$ and $7 \mathrm{MHz}-\mathrm{to}-15 \mathrm{MHz}$ ranges and faster in the 15 MHz -to35 MHz range.

Data Enable Output (DE_OUT)

The MAX9218 deserializes video and control data at different times. Control data is deserialized during the video blanking time. DE_OUT high indicates that video data is being deserialized and output on RGB_OUT[17:0]. DE_OUT low indicates that control data is being deserialized and output on CNTL_OUT[8:0]. When outputs are not being updated, the last data received is latched on the outputs. Figure 13 shows the DE_OUT timing.

Power-Supply Circuits and Bypassing

 There are separate on-chip power domains for digital circuits and LVTTL/LVCMOS inputs (VCC supply and GND), outputs (VCCO supply and VCCO GND), PLL (VCCPLL supply and VCCPLL GND), and the LVDS input(VCCLVDS supply and VCCLVDS GND). The grounds are isolated by diode connections. Bypass each VCC, VCCO, VCCPLL, and VCCLVDS pin with high-frequency, surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin. The outputs are powered from Vcco, which accepts a 1.71 V to 3.6 V supply, allowing direct interface to inputs with 1.8 V to 3.3 V logic levels.

Cables and Connectors
Interconnect for LVDS typically has a differential impedance of 100Ω. Use cables and connectors that have matched differential impedance to minimize impedance discontinuities.
Twisted-pair and shielded twisted-pair cables offer superior signal quality compared to ribbon cable and tend to generate less EMI due to magnetic field canceling effects. Balanced cables pick up noise as common mode, which is rejected by the LVDS receiver.

Board Layout
Separate the LVTTL/LVCMOS outputs and LVDS inputs to prevent crosstalk. A four-layer PCB with separate layers for power, ground, and signals is recommended.

Figure 13. Output Timing

27-Bit, 3MHz-to-35MHz
 DC-Balanced LVDS Deserializer

ESD Protection

The MAX9218 ESD tolerance is rated for the Human Body Model, Machine Model, and ISO 10605. ISO 10605 specifies ESD tolerance for electronic systems.

Figure 14. Human Body ESD Test Circuit

Figure 15. ISO 10605 Contact Discharge ESD Test Circuit

PROCESS: CMOS

The Human Body Model discharge components are Cs $=100 \mathrm{pF}$ and $\mathrm{RD}=1.5 \mathrm{k} \Omega$ (Figure 14). The ISO 10605 discharge components are $\mathrm{CS}=330 \mathrm{pF}$ and $\mathrm{RD}_{\mathrm{D}}=2 \mathrm{k} \Omega$ (Figure 15). The Machine Model discharge components are Cs $=200 \mathrm{pF}$ and $\mathrm{RD}=0 \Omega$ (Figure 16).

Figure 16. Machine Model ESD Test Circuit.

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
48 LQPF	$\mathrm{C} 48+5$	$\underline{\mathbf{2 1 - 0 0 5 4}}$
48 TQFN	$\mathrm{T} 4866+1$	$\underline{\mathbf{2 1 - 0 1 4 1}}$

27-Bit, 3MHz-to-35MHz DC-Balanced LVDS Deserializer

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
3	$2 / 08$	Corrected typo (REF_IN should be REFCLK) in Figure 11	11
4	$5 / 08$	Corrected LQFP package, added Machine Model ESD, and corrected diagrams	$1,2,6,7,10$, $11,14-18$
5	$8 / 09$	Added automotive qualified part to Ordering Information	1

