I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

General Description

The MAX7324 2-wire serial-interfaced peripheral features 16 I/O ports that are divided into eight push-pull outputs and eight inputs. Each input features selectable internal pullups, overvoltage protection to +6 V , and transition detection with an interrupt output.
All input ports are continuously monitored for state changes (transition detection). The interrupt is latched, allowing detection of transient changes. Any combination of inputs can be selected using the interrupt mask to assert the INT output. When the MAX7324 is subsequently accessed through the serial interface, any pending interrupt is cleared.
The push-pull outputs are rated to sink 20 mA and are capable of driving LEDs. The RST input clears the serial interface, terminating any ${ }^{12} \mathrm{C}$ communication to or from the MAX7324.

The MAX7324 uses two address inputs with four-level logic to allow $16 \mathrm{I}^{2} \mathrm{C}$ slave addresses. The slave address also enables or disables internal $40 \mathrm{k} \Omega$ pullups in groups of four ports.
The MAX7324 is one device in a family of pin-compatible port expanders with a choice of input ports, open-drain I/O ports, and push-pull output ports (see Table 1).
The MAX7324 is available in 24 -pin QSOP and TQFN packages, and is specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.

	Applications
Cell Phones	Notebooks
SAN/NAS	Automotive
Servers	Satellite Radio

Pin Configurations

Pin Configurations continued at end of data sheet
Features

- 400kHz, +6 V -Tolerant ${ }^{2} \mathrm{C}$ Serial Interface
- +1.71V to +5.5V Operating Voltage
- Eight Push-Pull Outputs
- Eight Input Ports with Maskable, Latching Transition Detection
- Input Ports are Overvoltage Protected to +6V
- Transient Changes are Latched, Allowing Detection Between Read Operations
- INT Output Alerts Change on Any Selection of Inputs
- ADO and AD2 Inputs Select from 16 Slave Addresses
- Low $0.6 \mu \mathrm{~A}$ Standby Current
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Temperature Range

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX7324AEG+	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 QSOP	E24-1
MAX7324ATG+	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$24 \mathrm{TQFN}-\mathrm{EP}^{*}$ $(4 \mathrm{~mm} \times 4 \mathrm{~mm})$	T2444-3

+Denotes lead-free package. *EP = Exposed paddle.

Typical Application Circuit and Functional Diagram appear at end of data sheet.

I2C Port Expander with Eight Push-PuII Outputs and Eight Inputs

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)	
Supply Voltage V+	-0.3V to +6V
SCL, SDA, ADO, AD2, RST, INT, IO-I7.	-0.3V to +6V
O8-015.	.-0.3V to (V+ + 0.3V)
O8-015 Output Current.	$\pm 25 \mathrm{~mA}$
SDA Sink Current	10 mA
INT Sink Current.	. 10 mA
Total V+ Current.	50 mA
Total GND Current	100 mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+1.71 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage	V+	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.71		5.50	V
Power-On Reset Voltage	VPOR	V+ falling			1.6	V
Standby Current (Interface Idle)	IStB	SCL and SDA and other digital inputs at V+		0.6	1.9	$\mu \mathrm{A}$
Supply Current (Interface Running)	I+	fSCL $=400 \mathrm{kHz}$; other digital inputs at $\mathrm{V}+$		23	55	$\mu \mathrm{A}$
Input High-Voltage SDA, SCL, ADO, AD2, $\overline{R S T}$, IO-I7	V_{IH}	$\mathrm{V}+<1.8 \mathrm{~V}$	$0.8 \times \mathrm{V}+$			V
		$V+\geq 1.8$	$0.7 \times \mathrm{V}+$			
Input Low-Voltage SDA, SCL, ADO, AD2, $\overline{R S T}$, IO-I7	VIL	$\mathrm{V}+<1.8 \mathrm{~V}$	$0.2 \times \mathrm{V}+$			V
		$V+\geq 1.8$	$0.3 \times \mathrm{V}+$			
Input Leakage Current SDA, SCL, ADO, AD2, $\overline{R S T}, 10-17$	IIH, IIL	SDA, SCL, ADO, AD2, $\overline{\operatorname{RST}}, 10-17$ at $\mathrm{V}+$ or GND	-0.2		+0.2	$\mu \mathrm{A}$
Input Capacitance SDA, SCL, ADO, AD2, $\overline{R S T}, 10-17$				10		pF
Output Low Voltage O8-015	Vol	$\mathrm{V}+=+1.71 \mathrm{~V}, \mathrm{ISINK}=5 \mathrm{~mA}$ (QSOP)		90	180	mV
		$\mathrm{V}+=+1.71 \mathrm{~V}, \mathrm{ISINK}=5 \mathrm{~mA}$ (TQFN)		90	230	
		$\mathrm{V}+=+2.5 \mathrm{~V}, \mathrm{ISINK}=10 \mathrm{~mA}$ (QSOP)		110	210	
		$\mathrm{V}+=+2.5 \mathrm{~V}, \mathrm{IS}$ INK $=10 \mathrm{~mA}$ (TQFN)		110	260	
		$\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{ISINK}=15 \mathrm{~mA}$ (QSOP)		130	230	
		$\mathrm{V}+=+3.3 \mathrm{~V}$, $\mathrm{ISINK}=15 \mathrm{~mA}$ (TQFN)		130	280	
		$\mathrm{V}+=+5 \mathrm{~V}, \mathrm{ISINK}=20 \mathrm{~mA}$ (QSOP)		140	250	
		$\mathrm{V}+=+5 \mathrm{~V}, \mathrm{ISINK}=20 \mathrm{~mA}$ (TQFN)		140	300	
Output High Voltage O8-015	VOH	$\mathrm{V}+=+1.71 \mathrm{~V}$, ISOURCE $=2 \mathrm{~mA}$	$V+-250$	V+-30		mV
		$\mathrm{V}+=+2.5 \mathrm{~V}$, ISOURCE $=5 \mathrm{~mA}$	V+-360 V+-70			
		$\mathrm{V}+=+3.3 \mathrm{~V}$, ISOURCE $=5 \mathrm{~mA}$				
		$\mathrm{V}+=+5 \mathrm{~V}$, ISOURCE $=10 \mathrm{~mA}$	$\mathrm{V}+\mathrm{-} 360$	V+-120		
Output Low-Voltage SDA	VolsDa	$\mathrm{ISINK}=6 \mathrm{~mA}$			250	mV
Output Low-Voltage INT	Volint	ISINK $=5 \mathrm{~mA}$		130	250	mV
Port Input Pullup Resistor	RPU		25	40	55	k Ω

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

PORT AND INTERRUPT INT TIMING CHARACTERISTICS

$\left(\mathrm{V}+=+1.71 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Port-Output Data Valid	tppV	$C_{L} \leq 100 \mathrm{pF}$			4	$\mu \mathrm{S}$
Port-Input Setup Time	tpSU	$C_{L} \leq 100 \mathrm{pF}$	0			$\mu \mathrm{s}$
Port-Input Hold Time	tpH	$C_{L} \leq 100 \mathrm{pF}$	4			$\mu \mathrm{s}$
$\overline{\text { INT }}$ Input Data Valid Time	tiv	$C_{L} \leq 100 \mathrm{pF}$			4	$\mu \mathrm{s}$
$\overline{\text { INT Reset Delay Time from STOP }}$	tIP	$C_{L} \leq 100 \mathrm{pF}$			4	$\mu \mathrm{s}$
$\overline{\text { INT Reset Delay Time from }}$ Acknowledge	tIR	$C \mathrm{~L} \leq 100 \mathrm{pF}$			4	$\mu \mathrm{s}$

TIMING CHARACTERISTICS
$\left(\mathrm{V}+=+1.71 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Serial-Clock Frequency	fSCL				400	kHz
Bus Free Time Between a STOP and a START Condition	tBUF		1.3			$\mu \mathrm{S}$
Hold Time (Repeated) START Condition	thD, STA		0.6			$\mu \mathrm{s}$
Repeated START Condition Setup Time	tSU,STA		0.6			$\mu \mathrm{S}$
STOP Condition Setup Time	tsu,STO		0.6			$\mu \mathrm{s}$
Data Hold Time	thD, DAT	(Note 2)			0.9	$\mu \mathrm{s}$
Data Setup Time	tSU,DAT		100			ns
SCL Clock Low Period	tıow		1.3			$\mu \mathrm{s}$
SCL Clock High Period	tHIGH		0.7			$\mu \mathrm{s}$
Rise Time of Both SDA and SCL Signals, Receiving	t_{R}	(Notes 3, 4)		$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$	300	ns
Fall Time of Both SDA and SCL Signals, Receiving	$\mathrm{tF}_{\text {F }}$	(Notes 3, 4)		$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$	300	ns
Fall Time of SDA Transmitting	tF,TX	(Notes 3, 4)		$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$	250	ns
Pulse Width of Spike Suppressed	tSP	(Note 5)		50		ns
Capacitive Load for Each Bus Line	Cb	(Note 3)			400	pF
$\overline{\text { RST Pulse Width }}$	tw		500			ns
$\overline{\text { RST }}$ Rising to START Condition Setup Time	tRST		1			$\mu \mathrm{S}$

Note 1: All parameters are tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: A master device must provide a hold time of at least 300ns for the SDA signal (referred to VIL of the SCL signal) to bridge the undefined region of SCL's falling edge.
Note 3: Guaranteed by design.
Note 4: $\mathrm{C}_{\mathrm{b}}=$ total capacitance of one bus line in pF . tR and tF_{F} measured between $0.3 \times \mathrm{V}+$ and $0.7 \times \mathrm{V}+$. ISINK $\leq 6 \mathrm{~mA}$.
Note 5: Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns .

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)
Typical Operating Characteristics

OUTPUT-VOLTAGE LOW vs. TEMPERATURE

OUTPUT-VOLTAGE HIGH vs. TEMPERATURE

Pin Description

PIN		NAME	FUNCTION
QSOP	TQFN		
1	22	$\overline{\text { INT }}$	Active-Low Interrupt Output. $\overline{\text { INT }}$ is an open-drain output.
2	23	$\overline{\mathrm{RST}}$	Active-Low Reset Input. Drive $\overline{\mathrm{RST}}$ low to clear the 2-wire interface.
3, 21	24, 18	AD2, AD0	Address Inputs. Select device slave address with AD0 and AD2. Connect AD0 and AD2 to either GND, V_{+}, SCL, or SDA to give four logic combinations (see Tables 2 and 3).
4-11	1-8	10-17	Input Ports. 10 to 17 are CMOS-logic inputs.
12	9	GND	Ground
13-20	10-17	08-015	Output Ports. O8-015 are push-pull outputs rated at 20 mA .
22	19	SCL	${ }^{2} \mathrm{C}$--Compatible Serial Clock Input
23	20	SDA	$1^{2} \mathrm{C}$-Compatible Serial Data I/O
24	21	V_{+}	Positive Supply Voltage. Bypass V+ to GND with a ceramic capacitor of at least $0.047 \mu \mathrm{~F}$.
-	EP	EP	Exposed Paddle. Connect exposed pad to GND.

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

Detailed Description

MAX7324-MAX7327 Family Comparison The MAX7324-MAX7327 family consists of four pincompatible, 16 -port expanders that integrate the function of the MAX7320 and one of either the MAX7319, MAX7321, MAX7322, or MAX7323.

Functional Overview
The MAX7324 is a general-purpose port expander operating from $\mathrm{a}+1.71 \mathrm{~V}$ to +5.5 V supply with eight push-pull outputs and eight CMOS input ports that are overvoltage protected to +6 V .

The MAX7324 is set to two of $32{ }^{1}{ }^{2} \mathrm{C}$ slave addresses (see Tables 2 and 3) using address select inputs AD0 and AD2, and is accessed over an $\mathrm{I}^{2} \mathrm{C}$ serial interface up to 400 kHz . The eight outputs and eight inputs have different slave addresses. The eight push-pull outputs have the 101xxxx addresses and the eight inputs have the adresses with 110xxxx. The RST input clears the serial interface in case of a bus lockup, terminating any serial transaction to or from the MAX7324.

The input ports offer latching transition detection feature. All input ports are continuously monitored for changes. An input change sets 1 of 8 flag bits that identify the changed input(s). All flags are cleared upon a subsequent read or write transaction to the MAX7324.

Table 1. MAX7319-MAX7329 Family Comparison

PART	$I^{2} C$ SLAVE ADDRESS	INPUTS	INPUT INTERRUPT MASK	OPENDRAIN OUTPUTS	PUSHPULL OUTPUTS	CONFIGURATION
16-PORT EXPANDERS						
MAX7324	$\begin{aligned} & \text { 101xxxx } \\ & \text { and } \\ & 110 x x x x \end{aligned}$	8	Yes		8	8 inputs and 8 push-pull outputs version:
						8 input ports with programmable latching transition detection interrupt and selectable pullups.
						8 push-pull outputs with selectable default logic levels.
						Offers maximum versatility for automatic input monitoring. An interrupt mask selects which inputs cause an interrupt on transitions, and transition flags identify which inputs have changed (even if only for a transient) since the ports were last read.
MAX7325						8 I/O and 8 push-pull outputs version: 8 open-drain I/O ports with latching transition detection interrupt and selectable pullups.
						8 push-pull outputs with selectable default logic levels.
		Up to 8	-	Up to 8	8	Open-drain outputs can level shift the logic-high state to a higher or lower voltage than $\mathrm{V}+$ using external pullup resistors, but pullups draw current when output is low. Any open-drain port can be used as an input by setting the open-drain output to logichigh. Transition flags identify which open-drain port inputs have changed (even if only for a transient) since the ports were last read.

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

Table 1. MAX7319-MAX7329 Family Comparison (continued)

PART	$\begin{gathered} \mathrm{I}^{2} \mathrm{C} \\ \text { SLAVE } \\ \text { ADDRESS } \end{gathered}$	INPUTS	INPUT INTERRUPT MASK	OPENDRAIN OUTPUTS	PUSHPULL OUTPUTS	CONFIGURATION
MAX7326		4	Yes	-	12	4 input-only, 12 push-pull output versions: 4 input ports with programmable latching transition detection interrupt and selectable pullups. 12 push-pull outputs with selectable default logic levels. Offers maximum versatility for automatic input monitoring. An interrupt mask selects which inputs cause an interrupt on transitions, and transition flags identify which inputs have changed (even if only for a transient) since the ports were last read.
MAX7327	101xxxx and 110xxxx	Up to 4	-	Up to 4	12	4 I/O, 12 push-pull output versions: 4 open-drain I/O ports with latching transition detection interrupt and selectable pullups. 12 push-pull outputs with selectable default logic levels. Open-drain outputs can level shift the logic-high state to a higher or lower voltage than $\mathrm{V}+$ using external pullup resistors, but pullups draw current when output is low. Any open-drain port can be used as an input by setting the open-drain output to logichigh. Transition flags identify which open-drain port inputs have changed (even if only for a transient) since the ports were last read.
8-PORT EXPANDERS						
MAX7319	110xxxx	8	Yes	-	-	Input-only versions: 8 input ports with programmable latching transition detection interrupt and selectable pullups.
MAX7320	101xxxx	-	-	-	8	Output-only versions: 8 push-pull outputs with selectable power-up default levels.
MAX7321	110xxxx	Up to 8	-	Up to 8	-	I/O versions: 8 open-drain I/O ports with latching transition detection interrupt and selectable pullups.
MAX7322	110xxxx	4	Yes	-	4	4 input-only, 4 output-only versions: 4 input ports with programmable latching transition detection interrupt and selectable pullups. 4 push-pull outputs with selectable power-up default levels.

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

Table 1. MAX7319-MAX7329 Family Comparison (continued)

| PART | $\begin{array}{c}\text { I²C } \\ \text { SLAVE } \\ \text { ADDRESS }\end{array}$ | INPUTS | $\begin{array}{c}\text { INPUT } \\ \text { INTERRUPT } \\ \text { MASK }\end{array}$ | $\begin{array}{c}\text { OPEN- } \\ \text { DRAIN } \\ \text { OUTPUTS }\end{array}$ | $\begin{array}{c}\text { PUSH- } \\ \text { PULL } \\ \text { OUTPUTS }\end{array}$ | CONFIGURATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |\(\left.| \begin{array}{l}4 I/O, 4 output-only versions:

4 open-drain I/O ports with latching transition

Metection interrupt and selectable pullups.

4 push-pull outputs with selectable power-up default

levels.\end{array}\right]\)

A latching interrupt output, $\overline{\mathbb{N T}}$, is programmed to flag input data changes on input ports through an interrupt mask register. By default, data changes on any input port force INT to a logic-low. The interrupt output INT and all transition flags are cleared when the MAX7324 is next accessed through the serial interface.
Internal pullup resistors to V^{+}are selected by the address select inputs, AD0 and AD2. Pullups are enabled on the input ports in groups of four (see Table 2).

Initial Power-Up

On power-up, the transition detection logic is reset, and INT is deasserted. The interrupt mask register is set to 0xFF, enabling the interrupt output for transitions on all eight input ports. The transition flags are cleared to indicate no data changes. The power-up default states of the eight push-pull outputs are set according to the ${ }^{12} \mathrm{C}$ slave address selection inputs, AD0 and AD1 (see Table 3).

Power-On Reset
The MAX7324 contains an integral power-on-reset (POR) circuit that ensures all registers are reset to a known state on power-up. When V+ rises above Vpor (1.6 V max), the POR circuit releases the registers and 2 -wire interface for normal operation. When $\mathrm{V}+\mathrm{drops}$ below VPOR, the MAX7324 resets all register contents to the POR defaults (Tables 2 and 3).
$\overline{\text { RST Input }}$
The $\overline{\text { RST }}$ input voids any ${ }^{12} \mathrm{C}$ transaction involving the MAX7324, forcing the MAX7324 into the I2C STOP condition. A reset does not affect the interrupt output (INT).

Standby Mode

When the serial interface is idle, the MAX7324 automatically enters standby mode, drawing minimal supply current.

Slave Address, Power-Up Default Logic Levels, and Input Pullup Selection

 Address inputs ADO and AD2 determine the MAX7324 slave address and select which inputs have pullup resistors. Pullups are enabled on the input ports in groups of four (see Table 2).The MAX7324 slave address is determined on each I2C transmission, regardless of whether the transmission is actually addressing the MAX7324. The MAX7324 distinguishes whether address inputs ADO and AD2 are connected to SDA or SCL instead of fixed logic levels $\mathrm{V}+$ or GND during this transmission. This means that the MAX7324 slave address can be configured dynamically in the application without cycling the device supply.
On initial power-up, the MAX7324 cannot decode the address inputs ADO and AD2 fully until the first I2C transmission. ADO and AD2 initially appear to be connected to $\mathrm{V}+$ or GND. This is important because the

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

Table 2. MAX7324 Address Map for Inputs IO-I7

PIN CONNECTION		DEVICE ADDRESS							40k Ω INPUT PULLUP ENABLED							
AD2	ADO	A6	A5	A4	A3	A2	A1	A0	17	16	15	14	13	12	11	10
SCL	GND	1	1	0	0	0	0	0	Y	Y	Y	Y	-	-	-	-
SCL	V+	1	1	0	0	0	0	1	Y	Y	Y	Y	Y	Y	Y	Y
SCL	SCL	1	1	0	0	0	1	0	Y	Y	Y	Y	Y	Y	Y	Y
SCL	SDA	1	1	0	0	0	1	1	Y	Y	Y	Y	Y	Y	Y	Y
SDA	GND	1	1	0	0	1	0	0	Y	Y	Y	Y	-	-	-	-
SDA	V+	1	1	0	0	1	0	1	Y	Y	Y	Y	Y	Y	Y	Y
SDA	SCL	1	1	0	0	1	1	0	Y	Y	Y	Y	Y	Y	Y	Y
SDA	SDA	1	1	0	0	1	1	1	Y	Y	Y	Y	Y	Y	Y	Y
GND	GND	1	1	0	1	0	0	0	-	-	-	-	-	-	-	-
GND	V+	1	1	0	1	0	0	1	-	-	-	-	Y	Y	Y	Y
GND	SCL	1	1	0	1	0	1	0	-	-	-	-	Y	Y	Y	Y
GND	SDA	1	1	0	1	0	1	1	-	-	-	-	Y	Y	Y	Y
V+	GND	1	1	0	1	1	0	0	Y	Y	Y	Y	-	-	-	-
V+	V+	1	1	0	1	1	0	1	Y	Y	Y	\mathbf{Y}	Y	Y	Y	\mathbf{Y}
V+	SCL	1	1	0	1	1	1	0	Y	Y	Y	Y	Y	Y	Y	Y
V+	SDA	1	1	0	1	1	1	1	Y	Y	Y	Y	Y	Y	Y	Y

address selection determines which inputs have pullups applied. However, at power-up, the I2C SDA and SCL bus interface lines are high impedance at the inputs of every device (master or slave) connected to the bus, including the MAX7324. This is guaranteed as part of the I2C specification. Therefore, address inputs AD0 and AD2 that are connected to SDA or SCL during power-up appear to be connected to $\mathrm{V}+$. The pullup selection logic uses ADO to select whether pullups are enabled for ports IO-I3, and uses AD2 to select whether pullups are enabled for ports $14-17$. The rule is that a logic-high SDA, or SCL connection selects the pullups, while a logic-low deselects the pullups (Table 2). The pullup configuration is correct on power-up for a standard ${ }^{2} \mathrm{C}$ configuration, where SDA and SCL are pulled up to $\mathrm{V}+$ by the external $\mathrm{I}^{2} \mathrm{C}$ pullups.
There are circumstances where the assumption that SDA $=\mathrm{SCL}=\mathrm{V}+$ on power-up is not true-for example, in applications in which there is legitimate bus activity during power-up. Also, if SDA and SCL are terminated with pullup resistors to a different supply voltage than the MAX7324's supply voltage, and if that pullup supply rises later than the MAX7324's supply, then SDA or SCL may appear at power-up to be connected to GND. In such applications, use the four address combinations that are selected by connecting address inputs AD0 and AD2 to $\mathrm{V}+$ or GND (shown in bold in Tables 2
and 3). These selections are guaranteed to be correct at power-up, independent of SDA and SCL behavior. If one of the other 12 address combinations is used, an unexpected combination of pullups might be asserted until the first ${ }^{2} \mathrm{C}$ transmission (to any device, not necessarily the MAX7324) is put on the bus.

Port Inputs
Port inputs switch at CMOS logic levels as determined by the expander's supply voltage, and are overvoltage tolerant to +6 V , independent of the device's supply voltage.

Port-Input Transition Detection All eight input ports are monitored for changes since the expander was last accessed through the serial interface. The state of the input ports is stored in an internal "snapshot" register for transition monitoring. The snapshot is continuously compared with the actual input conditions, and if a change is detected for any port input, then an internal transition flag is set for that port. The eight port inputs are sampled (internally latched into the snapshot register) and the old transition flags cleared during the $\mathrm{I}^{2} \mathrm{C}$ acknowledge of every MAX7324 read and write access. The previous port transition flags are read through the serial interface as the second byte of a 2-byte read sequence.

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

Table 3. MAX7324 Address Map for Outputs O8-O15

PIN CONNECTION		DEVICE ADDRESS							OUTPUTS POWER-UP DEFAULT							
AD2	ADO	A6	A5	A4	A3	A2	A1	A0	015	014	013	012	011	010	09	08
SCL	GND	1	0	1	0	0	0	0	1	1	1	1	0	0	0	0
SCL	V+	1	0	1	0	0	0	1	1	1	1	1	1	1	1	1
SCL	SCL	1	0	1	0	0	1	0	1	1	1	1	1	1	1	1
SCL	SDA	1	0	1	0	0	1	1	1	1	1	1	1	1	1	1
SDA	GND	1	0	1	0	1	0	0	1	1	1	1	0	0	0	0
SDA	V+	1	0	1	0	1	0	1	1	1	1	1	1	1	1	1
SDA	SCL	1	0	1	0	1	1	0	1	1	1	1	1	1	1	1
SDA	SDA	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1
GND	GND	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
GND	V+	1	0	1	1	0	0	1	0	0	0	0	1	1	1	1
GND	SCL	1	0	1	1	0	1	0	0	0	0	0	1	1	1	1
GND	SDA	1	0	1	1	0	1	1	0	0	0	0	1	1	1	1
V+	GND	1	0	1	1	1	0	0	1	1	1	1	0	0	0	0
V+	V+	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1
V+	SCL	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1
V+	SDA	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1

A long read sequence (more than 2 bytes) can be used to poll the expander continuously without the overhead of resending the slave address. If more than 2 bytes are read from the expander, the expander repeatedly returns the 2 bytes of input port data followed by the transition flags. The inputs are repeatedly resampled and the transition flags repeatedly reset for each pair of bytes read. All changes that occur during a long read sequence are detected and reported.
The MAX7324 includes an 8-bit interrupt mask register that selects which inputs generate an interrupt upon change. Each input's transition flag is set when its input changes, independent of the interrupt mask register settings. The interrupt mask register allows the processor to be interrupted for critical events, while the inputs and the transition flags can be polled periodically to detect less critical events.
The INT output is not reasserted during a read sequence to avoid recursive reentry into an interrupt service routine. Instead, if a data change occurs that would normally cause the INT output to be set, the INT assertion is delayed until the STOP condition. $\overline{I N T}$ is not
reasserted upon a STOP condition if the changed input data is read before the STOP occurs. The INT logic ensures that unnecessary interrupts are not asserted, yet data changes are detected and reported no matter when the change occurs.

Transition-Detection Masks

The transition detection logic incorporates a transition flag and an interrupt mask bit for each input port. The eight transition flags can be read through the serial interface, and the 8-bit interrupt mask is set through the serial interface.
Each port's transition flag is set when that port's input changes, and the change flag remains set even if the input returns to its original state. The port's interrupt mask determines whether a change on that input port generates an interrupt. Enable interrupts for high-priority inputs using the interrupt mask. The interrupt allows the system to respond quickly to changes on these inputs. Poll the MAX7324 periodically to monitor lessimportant inputs. The transition flags indicate whether a permanent or transient change has occurred on any input since the MAX7324 was last accessed.

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

Serial Interface
 Serial Addressing

The MAX7324 operates as a slave that sends and receives data through an $1^{2} \mathrm{C}$ interface. The interface uses a serial-data line (SDA) and a serial-clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). The master initiates all data transfers to and from the MAX7324 and generates the SCL clock that synchronizes the data transfer (Figure 1).
SDA operates as both an input and an open-drain output. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SDA. SCL operates only as an input. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SCL if there are multiple masters on the 2 -wire interface, or if the master in a sin-gle-master system has an open-drain SCL output.

Each transmission consists of a START condition sent by a master, followed by the MAX7324's 7-bit slave address plus R/W bit, 1 or more data bytes, and finally a STOP condition (Figure 2).

START and STOP Conditions

Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, the master issues a STOP (P) condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission (Figure 2).

Bit Transfer

One data bit is transferred during each clock pulse.
The data on SDA must remain stable while SCL is high (Figure 3)

Figure 1. 2-Wire Serial-Interface Timing Details

Figure 2. START and STOP Conditions

Figure 3. Bit Transfer

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

Acknowledge

The acknowledge bit is a clocked 9th bit the recipient uses to acknowledge receipt of each byte of data (Figure 4). Each byte transferred effectively requires 9 bits. The master generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, such that the SDA line is stable low during the high period of the clock pulse. When the master is transmitting to the MAX7324, the MAX7324 generates the acknowledge bit because the MAX7324 is the recipient. When the MAX7324 is transmitting to the master, the master generates the acknowledge bit because the master is the recipient. The master does not generate an acknowledge prior to issuing a stop condition.

Slave Address

The MAX7324 has two different 7-bit slave addresses (Tables 2 and 3). The addresses are different for communicating to either the eight push-pull outputs or the eight inputs. The eighth bit following the 7-bit slave address is the $\mathrm{R} / \overline{\mathrm{W}}$ bit. It is low for a write command and high for a read command.

Figure 4. Acknowledge

The first (A6), second (A5), and third (A4) bits of the MAX7324 slave address are always 1, 1, and 0 (I0-I7) or 1, 0, and 1 (O8-O15). Connect AD0 and AD2 to GND, V+, SDA, or SCL to select the slave address bits A3, A2, A1, and A0. The MAX7324 has 16 possible slave address pairs (Tables 2 and 3), allowing up to 16 MAX7324 devices on an $I^{2} \mathrm{C}$ bus.

Accessing the MAX7324
The MAX7324 is accessed though an ${ }^{2} \mathrm{C}$ interface. The MAX7324 provides two different 7-bit slave addresses for either the eight input ports (I0-I7) or the eight pushpull ports (O8-015). See Tables 2 and 3.
A single-byte read from the input ports of the MAX7324 returns the status of the eight ports and clears both the internal transition flags and the INT output. A single-byte read from the output ports of the MAX7324 returns the status of the eight output ports, read back as inputs.
A 2-byte read from the input ports of the MAX7324 returns the status of the eight ports (as for a single-byte read), followed by the transition flags. The internal transition flags and the INT output are cleared when the MAX7324 acknowledges the slave address byte, but the previous transition flag data is sent as the second byte. A 2 -byte read from the output ports of the MAX7324 repeatedly returns the status of the eight output ports, read back as inputs.
A multibyte read (more than 2 bytes before the ${ }^{2}{ }^{2} \mathrm{C}$ STOP bit) from the input ports of the MAX7324 repeatedly returns the port data, alternating with the transition flags. As the input data is resampled for each transmission, and the transition flags are reset each time, a multibyte read continuously returns the current data and identifies any changing input ports.

Figure 5. Slave Address

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

If a port input data change occurs during the read sequence, $\overline{\text { INT }}$ is reasserted during the ${ }^{2}{ }^{2} \mathrm{C}$ STOP bit. The MAX7324 does not generate another interrupt during a single-byte or multibyte read.
Input-port data is sampled during the preceding ${ }^{12} \mathrm{C}$ acknowledge bit (the acknowledge bit for the ${ }^{2}{ }^{2} \mathrm{C}$ slave address in the case of a single-byte or 2-byte read).
A multibyte read (more than 2 bytes before the $1^{2} \mathrm{C}$ STOP bit) from the output ports of the MAX7324 repeatedly returns the status of the eight output ports, read back as inputs.
A single-byte write to the input ports of the MAX7324 sets the interrupt mask register and clears both the internal transition flags and INT output.
A single-byte write to the output ports of the MAX7324 sets the logic state of all eight ports.
A multibyte write to the input ports of the MAX7324 sets the interrupt mask register repeatedly.
A multibyte write to the output ports of the MAX7324 repeatedly sets the logic state of all eight ports.

Reading from the MAX7324
A read from the input ports of the MAX7324 starts with the master transmitting the input ports' slave address with the R/W bit set to high. The MAX7324 acknowledges the slave address and samples the ports during the acknowledge bit. INT deasserts during the slave address acknowledge.
Typically, the master reads 1 or 2 bytes from the MAX7324 with each byte being acknowledged by the master upon reception with the exception of the last byte.
When the master reads one byte from the open-drain ports of the MAX7324 and subsequently issues a STOP condition (Figure 6), the MAX7324 transmits the current port data, clears the transition flags, and resets the transition detection. INT deasserts during the slave acknowledge. The new snapshot data is the current port data transmitted to the master, and therefore, port changes occuring during the transmission are detected. INT remains high until the STOP condition.

Figure 6. Reading Input Ports of the MAX7324 (1 Data Byte)

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

When the master reads 2 bytes from the output ports of the MAX7324 and subsequently issues a STOP condition (Figure 7), the MAX7324 transmits the current port data, followed by the transition flags. The transition flags are then cleared, and transition detection is reset. INT deasserts during the slave acknowledge. The new snapshot data is the current port data transmitted to the master, and therefore, port transitions occuring during the transmission are detected. INT remains high until the STOP condition. When the master reads more than 2 data bytes, the input port data alternates with the transition flag.
A read from the output ports of the MAX7324 starts with the master transmitting the ports' slave address with the R / \bar{W} bit set high. The MAX7324 acknowledges the slave address and samples the logic state of the output ports during the acknowledge bit. The master can read
one or more bytes from the output ports of the MAX7324, and then issues a STOP condition (Figure 8). The MAX7324 transmits the current port data, read back from the actual port outputs (not the port output latches) during the acknowledge. If a port is forced to a logic state other than its programmed state, the readback reflects this. If driving a capacitive load, the readback port level verification algorithms may need to take the $R C$ rise/fall time into account.

Typically, the master reads one byte from the ouput ports of the MAX7324, then issues a STOP condition (Figure 8). However, the master can read two or more bytes from the output ports of the MAX7324, and then issues a STOP condition. In this case, the MAX7324 resamples the port outputs during each acknowledge and transmits the new data each time.

Figure 7. Reading Input Ports of the MAX7324 (2 Data Bytes)

Figure 8. Reading Output Ports of the MAX7324

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

Writing to the MAX7324
A write to the input ports of the MAX7324 starts with the master transmitting the group's slave address with the R/W bit set low. The MAX7324 acknowledges the slave address and samples the ports during the acknowledge bit. INT deasserts during the slave acknowledge. The master can now transmit one or more bytes of data. The MAX7324 acknowledges these subsequent bytes of data and updates the interrupt mask register with each new byte until the master issues a STOP condition (Figure 9).

A write to the output ports of the MAX7324 starts with the master transmitting the group's slave address with the R/W bit set low. The MAX7324 acknowledges the slave address and samples the ports during the acknowledge bit. The master can now transmit one or more bytes of data. The MAX7324 acknowledges these subsequent bytes of data and updates the corresponding group's ports with each new byte until the master issues a STOP condition (Figure 10).

Figure 9. Writing to the Input Ports of the MAX7324

Figure 10. Writing to the Output Ports of the MAX7324

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

Applications Information

Port Input and I2C Interface Level Translation from Higher or Lower Logic Voltages

SDA, SCL, ADO, AD2, $\overline{\mathrm{RST}}, \overline{\mathrm{INT}}$, and $10-17$ are overvoltage protected to +6 V . This allows the MAX7324 to operate from a lower supply voltage, such as +3.3 V , while the $I^{2} \mathrm{C}$ interface and/or any of the eight input ports are driven from a higher logic level, such as +5 V .
The MAX7324 can operate from a higher supply voltage, such as +3 V , while the I2C interface and/or some of the input ports $10-17$ are driven from a lower logic level, such as +2.5 V . For $\mathrm{V}+<1.8 \mathrm{~V}$, apply a minimum voltage of $0.8 \times \mathrm{V}+$ to assert a logic-high on any input. For $\mathrm{V}+\geq 1.8 \mathrm{~V}$, apply a voltage of $0.7 \times \mathrm{V}+$ to assert a logic-high. For example, a MAX7324 operating from a +5 V supply may not recognize a +3.3 V nominal logic high. One solution for input level translation is to drive the MAX7324 inputs from open-drain outputs. Use a pullup resistor to $\mathrm{V}+$ or a higher supply to ensure a high logic voltage greater than $0.7 \times \mathrm{V}+$.

Port Output Signal Level Translation

RST, SCL, SDA, AD0, and AD2 remain high impedance with up to +6 V asserted on them when the MAX7324 is powered down ($\mathrm{V}_{+}=0$). The MAX7324 can therefore be used in hot-swap applications.

Figure 11. MAX7324 Output Port Structure

Each of the eight output ports has protection diodes to $\mathrm{V}+$ and GND. When a port output is driven to a voltage higher than $V+$ or lower than GND, the appropriate protection diode clamps the output to a diode drop above $\mathrm{V}+$ or below GND. When the MAX7324 is powered down $\left(V_{+}=0\right)$, every output port's protection diodes to V+ and GND continue to appear as a diode clamp from each output to GND (Figure 11).
Each of the input ports I0-I7 has a protection diode to GND (Figure 12). When a port input is driven to a voltage lower than GND, the protection diode clamps the voltage to a diode drop below GND.
Each of the eight input ports I0-I7 also has a $40 \mathrm{k} \Omega$ (typ) pullup resistor that can be enabled or disabled. When a port input is driven to a voltage higher than V_{+}, the body diode of the pullup enable switch conducts and the $40 \mathrm{k} \Omega$ pullup resistor is enabled. When the MAX7324 is powered down ($\mathrm{V}_{+}=0$), every input port appears as a $40 \mathrm{k} \Omega$ resistor in series with a diode connected to ground. Input ports are protected to +6 V under any of these circumstances.

Driving LED Loads
When driving LEDs from one of the eight output ports, O8-015, a resistor must be fitted in series with the LED to limit the LED current to no more than 20 mA . Connect the LED cathode to the MAX7324 port, and the LED anode to V+ through the series current-limiting resistor, RLED.

Figure 12. MAX7324 Input Port Structure

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

Set the port output low to light the LED. Choose the resistor value according to the following formula:

$$
\text { RLED }=\left(V_{S U P P L Y}-V_{\text {LED }}-V_{O L}\right) / \text { LLED }
$$

where:
RLED is the resistance of the resistor in series with the LED (Ω).
VSUPPLY is the supply voltage used to drive the LED (V).

VLED is the forward voltage of the LED (V).
VOL is the output low voltage of the MAX7324 when sinking lLED (V).
lLED is the desired operating current of the LED (A).
For example, to operate a 2.2 V red LED at 10 mA from +5 V supply:

$$
\text { RLED }=(5-2.2-0.1) / 0.01=270 \Omega
$$

Driving Load Currents Higher than 20mA
The MAX7324 can be used to drive loads such as relays that draw more than 20 mA by paralleling outputs. Use at least one output per 20mA of load current; for example, a 5 V 330 mW relay draws 66 mA , and therefore, requires four paralleled outputs. Any combination of outputs can be used as part of a load-sharing design because any combination of ports can be set or cleared at the same time by writing to the MAX7324. Do not exceed a total sink current of 100 mA for the device.
Protect the MAX7324 from the negative voltage transient generated when switching off inductive loads (such as relays) by connecting a reverse-biased diode across the inductive load. Choose the peak current for the diode to be greater than the inductive load's operating current.

Power-Supply Considerations
The MAX7324 operates with a supply voltage of +1.71 V to +5.5 V over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Bypass the supply to GND with a ceramic capacitor of at least $0.047 \mu \mathrm{~F}$ as close as possible to the device. For the TQFN version, additionally connect the exposed pad to GND.

I2C Port Expander with Eight Push－Pull Outputs and Eight Inputs

Pin Configurations（continued）

Typical Application Circuit

Chip Information
PROCESS：BiCMOS

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMDN DIMENSIDNS															
PKG	12L 4×4			16L 4×4			20L 4×4			24L 4×4			28L 4×4		
REF.	MIN.	NDM.	MAX.												
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
A1	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05
A2	0.20 REF														
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
e	0.80 BSC.			0.65 BSC.			0.50 BSC.			0.50 BSC .			0.40 BSC .		
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50
N	12			16			20			24			28		
ND	3			4			5			6			7		
NE	3			4			5			6			7		
$\begin{aligned} & \hline \text { vedec } \\ & \text { vor } \end{aligned}$	VGGB			WGGC			WGGD-1			WGGD-2			WGGE		

EXPDSED PAD							VARIATIDNS			
PKG. CDDES	D2			E2						
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	ALLDWED			
T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES			
T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND			
T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES			
T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND			
T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES			
T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND			
T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES			
T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES			
T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	ND			
T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	ND			

NOTES:

1. DIMENSIONNG \& TOLERANCING CONFORN TO ASNE Y14.5M-1994.
2. ALL DMENSIONS ARE IN MLUMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMEER OF TERUINALS.
4. THE TERMINAL \# DDENTIFER AND TERMINL NUMBERING CONENTION SHAL CONFORM TO JESO 95-1 SPP-012. DETALS OF TERMMNL $\ddagger 1$ IDENTIFIER ARE OPTIONAL, BUT MUST $E E$ LOCATED WTTHIN THE ZONE NDICATED. THE TERMNNL $\$ 1$ IDENTFIER MAY BE EETHER A NOLO OR WARKED FEATURE.
S. DIMENSION b APPLES TO METALLIEE TERMNAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FRON TERMNAL TIP.
— nd and ne refer to the number of terminus on each dand e side respectively.
5. DEPOPULATON IS POSSIBLE IN A STMMEIRICAL FASHION.

80 coplanarit apples to the exposed heat sink slug as well as the terminals.
9. DRAWNG CONFORUS TO JEDEC NO220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1.

4d marking is for package orientation reference only.
11. COPLANARTY SHALL NOT EXCEED 0.08 mm
12. WARPAGE SHALL Not EXCEEND 0.10 mm

43 lead centerlines to be at true postion as defned by basic ommension "e", ± 0.05.
14. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY

AWING NDT TI SCALE-

APFEVAL	Docurant mintal na. $21-0139$	$\begin{array}{\|c} \overline{\text { REV. }} \\ E \end{array}$	2/2

I2C Port Expander with Eight Push-Pull Outputs and Eight Inputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	.053	.069	1.35	1.75
A1	.004	.010	.102	.254
A己	.049	.065	1.245	1.651
B	.008	.012	0.20	0.30
C	.0075	.0098	0.191	0.249
D	SEE VARIATIDNS			
E	.150	.157	3.81	
e	.025			BSC
H	.230	.244	0.635	
h	.010	.016	BSC	
L	.016	.035	0.25	
N	SEE VARIATIDNS			
a	0°	8°	0.41	

VARIATIUNS:

	INCHES		MILLIMETERS		
	MIN.	MAX.	MIN.	MAX.	N
D	. 189	. 196	4.80	4.98	$16 / \mathrm{AB}$
S	. 0020	. 0070	0.05	0.18	
D	. 337	344	8.56	8.74	$20 \mid A D$
S	. 0500	. 0550	1.270	1.397	
D	. 337	. 344	8.56	8.74	$24 / \mathrm{AE}$
5	. 0250	. 0300	0.635	0.762	
D	. 386	. 393	9.80	9.98	$28 / \mathrm{AF}$
S	. 0250	. 0300	0.635	0,762	

NOTES:

2). MILD FLASH OR PROTRUSIUNS NUT TI EXCEED .006" PER SIDE.
3). CONTRQLLING DIMENSIDNS: INCHES.
4). MEETS JEDEC MD137.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

