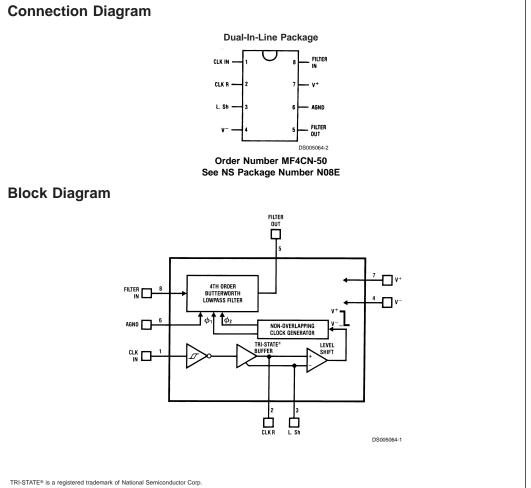
July 1999

National Semiconductor


MF4 4th Order Switched Capacitor Butterworth Lowpass Filter

General Description

The MF4 is a versatile, easy to use, precision 4th order Butterworth low-pass filter. Switched-capacitor techniques eliminate external component requirements and allow a clock-tunable cutoff frequency. The ratio of the clock frequency to the low-pass cutoff frequency is internally set to 50 to 1. A Schmitt trigger clock input stage allows two clocking options, either self-clocking (via an external resistor and capacitor) for stand-alone applications, or for tighter cutoff frequency control an external TTL or CMOS logic compatible clock can be applied. The maximally flat passband frequency response together with a DC gain of 1 V/V allows cascading MF4 sections together for higher order filtering.

Features

- Low Cost
- Easy to use
- 8-pin mini-DIP or 14-pin wide-body S.O.
- No external components
- 5V to 14V supply voltage
- Cutoff frequency range of 0.1 Hz to 20 kHz
- Cutoff frequency accuracy of ± 0.3% typical
- Cutoff frequency set by external clock
- Separate TTL and CMOS/Schmitt-trigger clock inputs

© 1999 National Semiconductor Corporation DS005064

Block Diagram (Continued)			Pin	Pin	Function		
Pin Descriptions			#	Name	T I 1 1 1 1 C IL T		
Pin	Pin	Function	8	FILTER IN	The input to the low-pass filter. To minimize gain errors the source		
# 1	Name CLK IN	A CMOS Schmitt-trigger input to be used with an external CMOS logic level clock. Also used for self clocking Schmitt-trigger oscillator (see section 1.1).			impedance that drives this input shou be less than 2K (see section 1.3 of the Application Hints). For single supply operation the input signal must be biased to mid-supply or AC coupled through a capacitor.		
2	CLK R	A TTL logic level clock input when in split supply operation ($\pm 2.5V$ to $\pm 7V$) with L. Sh tied to system ground. This pin becomes a low impedance output when L. Sh is tied to V ⁻ . Also used in conjunction with the CLK IN pin for a self clocking Schmitt-trigger oscillator (see section 1.1). The TTL input signal must not exceed the supply voltages by more than 0.2V.					
3	L. Sh	Level shift pin; selects the logic threshold levels for the clock. When tied to V ⁻ it enables an internal tri-state buffer stage between the Schmitt trigger and the internal clock level shift stage thus enabling the CLK IN Schmitt-trigger input and making the CLK R pin a low impedance output. When the voltage level at this input exceeds 25% (V ⁺ – V ⁻) + V ⁻ the internal tri-state buffer is disabled allowing the CLK R pin to become the clock input for the internal clock level-shift stage. The CLK R threshold level is now 2V above the voltage on the L. Sh pin. The CLK R pin will be compatible with TTL logic levels when the MF4 is operated on split supplies with the L. Sh pin connected to system ground.					
5	FILTER OUT	The output of the low-pass filter. It will typically sink 0.9 mA and source 3 mA and swing to within 1V of each supply rail.					
6	AGND	The analog ground pin. This pin sets the DC bias level for the filter section and must be tied to the system ground for split supply operation or to mid-supply for single supply operation (see section 1.2). When tied to mid-supply this pin should be well bypassed.					
7, 4	V+, V-	The positive and negative supply pins. The total power supply range is 5V to 14V. Decoupling these pins with 0.1 μF					

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature	150°C
ESD Susceptibility (Note 13)	800 V
Soldering Information (10 sec.)	260°C

Operating Ratings (Note 2)

Temperature Range	
MF4CN-50	
Supply Voltage (V ⁺ -V ⁻)	

 $\begin{array}{ll} T_{min} & \leq T_A & \leq T_{max} \\ 0^\circ C \leq T_A \leq 70^\circ C \\ & 5V \text{ to } 14V \end{array}$

Filter Electrical Characteristics

Supply Voltage (V⁺-V⁻)

Input Current at Any Pin (Note 14)

Package Input Current (Note 14)

Power Dissipation (Note 15)

Voltage At Any Pin

The following specifications apply for $f_{CLK} \le 250$ kHz (Note 5) unless otherwise specified. Boldface limits apply for T_{MIN} to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$.

14V

V⁺ + 0.2V

V⁻ - 0.2V

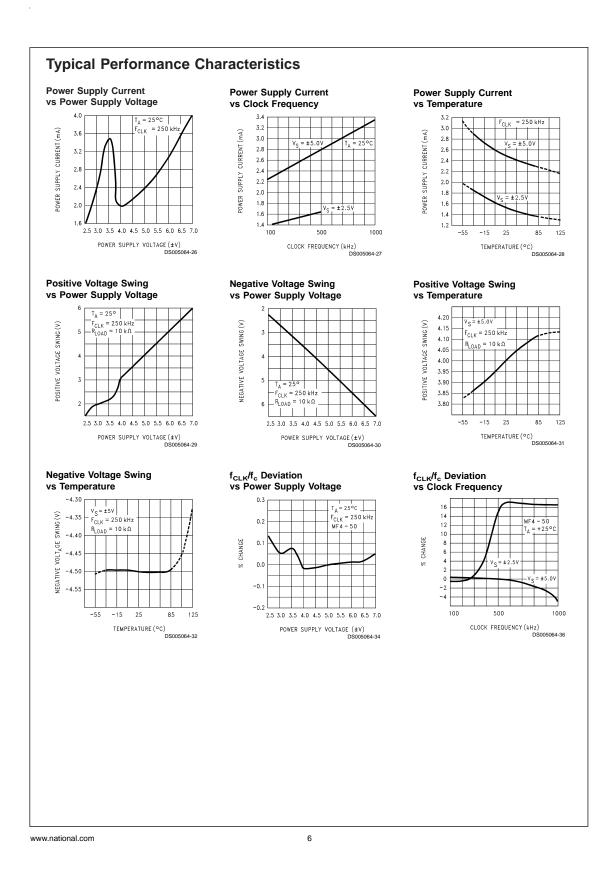
5 mA

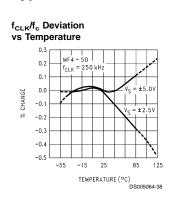
20 mA 500 mW

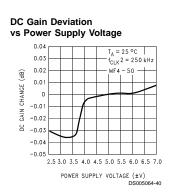
Para	meter		Conditions	Typical	Tested	Design	Unit
				(Note 10)	Limit	Limit	
					(Note 11)	(Note 12)	
$V^+ = +5V, V^- = -5V$							
f _c , Cutoff Frequency		Min				0.1	Hz
Range (Note 3)		Max				20k	
Supply Current			f _{clk} = 250 kHz	2.5	3.5	3.5	mA
Maximum Clock	Filter	Output	$V_{in} = 0V$				
Feedthrough				25			mV
(Peak-to-Peak)							
H _o , DC Gain			$R_{source} \le 2 \ k\Omega$	0.0	±0.15	±0.15	dB
f _{clk} /f _c , Clock to Cutoff				49.96	49.96		
Frequency Ratio				±0.3%	±1%		
f _{clk} /f _c Temperature				±15			ppm/°0
Coefficient							
Stopband Attenuation	(Min)		at 2 f _c	-25.0	-24.0	-24.0	dB
DC Offset Voltage				-200			mV
Minimum Output Swing)		R _L = 10 kΩ	+4.0	+3.5	+3.5	V
				-4.5	-4.0	-4.0	V
Output Short Circuit		Source		50			mA
Current (Note 8)		Sink		1.5			mA
Dynamic Range (Note	4)			80			dB
Additional Magnitude			f = 6000 Hz		-7.57	-7.57	
Response Test Points					±0.47	±0.47	dB
(Note 6)			f = 4500 Hz		-1.44	-1.44	1
f _{clk} = 250 kHz					±0.12	±0.12	
UIX			f = 3000 Hz				
							dB
			f = 2250 Hz				1
V ⁺ = +2.5V, V ⁻ = -2.5	v						
fc Cutoff Frequency		min				0.1	Hz
Range (Note 3)		max				10k	
Supply Current		1	f _{clk} = 250 kHz	1.5	2.25	2.25	mA
Maximum Clock							1
Feedthrough Filter Output		out	$V_{in} = 0V$	15			mV
(Peak-to-Peak)							
H _o , DC Gain			$R_{source} \le 2 \ k\Omega$	0.0	±0.15	±0.15	dB
f _{clk} /f _c , Clock to Cutoff				50.07	50.07		1
Frequency Ratio				±0.3%	±1.0%		
f _{CLK} /f _C Temperature				±25			ppm/°0
Coefficient							

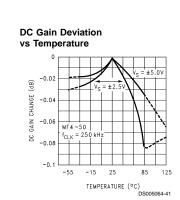
Filter Electrical Characteristics (Continued)

. .


The following specifications apply for $f_{CLK} \le 250$ kHz (Note 5) unless otherwise specified. Boldface limits apply for T_{MIN} to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$.


Parameter			Tested	Design	Unit
		(Note 10)	Limit	Limit	
			(Note 11)	(Note 12)	
	at 2 f _c	-25.0	-24.0	-24.0	dB
		-150			mV
	$R_L = 10 \ k\Omega$	+1.5	+1.0	+1.0	V
		-2.2	-1.7	-1.7	V
Source		28			mA
Sink		0.5			mA
		78			dB
	f _{clk} = 250 kHz				
			-7.57	-7.57	dB
$(f_c = 5 \text{ kHz})$			±0.47	±0.47	
Magnitude at			-1.46	-1.46	dB
			±0.12	±0.12	
	f = 3000 Hz				
					dB
	f = 2250 Hz				1
		Source $R_L = 10 \text{ k}\Omega$ Sink f _{clk} = 250 kHz f = 6000 Hz f = 4500 Hz f = 3000 Hz f = 3000 Hz	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c c } \hline left & limit & (Note 12) \\ \hline & & & & & & & & & & & & & & & & & &$


Logic Input-Output Characteristics The following specifications apply for V⁻ = 0V (Note 7) unless otherwise specified. **Boldface limits apply for T_{MIN} to T_{MAX};** all other limits $T_A = T_J = 25^{\circ}C$.


Parameter		Conditi	ons	Typical (Note 10)	Tested Limit	Design Limit	Unit
i didiliotor	Contait		(11010-10)	(Note 11)	(Note 12)		
SCHMITT TRIGGER		1		1	. ,	. ,	
V _T +, Positive Going Threshold	Min	V ⁺ = 10V		7.0	6.1	6.1	V
Voltage	Max					8.9	
	Min	V+ = 5V		3.5	3.1	3.1	V
	Max				4.4	4.4	
V _T -, Negative Going Threshold	Min	V ⁺ = 10V		3.0	1.3	1.3	V
Voltage	Max				3.8	3.8	
	Min	V ⁺ = 5V		1.5	0.6	0.6	V
	Max				1.9	1.9	
Hysteresis (V _{T+} -V _{T-})	Min	V ⁺ = 10V		4.0	2.3	2.3	V
	Max				7.6	7.6	
	Min	V ⁺ = 5V		2.0	1.2	1.2	V
	Max				3.8	3.8	
Minimum Logical "1" Output Voltage		I _o = -10 μA	V ⁺ = 10V		9.0	9.0	V
(pin 2)			V ⁺ = 5V		4.5	4.5	V
Maximum Logical "0" Output Voltage		I _o = 10 μA	V ⁺ = 10V		1.0	1.0	V
(pin 2)			V ⁺ = 5V		0.5	0.5	V
Minimum Output Source Current		CLK R Shorted	V ⁺ = 10V	6.0	3.0	3.0	mA
(pin 2)		to Ground	V ⁺ = 5V	1.5	0.75	0.75	mA
Maximum Output Sink Current		CLK R Shorted	V ⁺ = 10V	5.0	2.5	2.5	mA
(pin 2)		to V ⁺	V ⁺ = 5V	1.3	0.65	0.65	mA

Parameter	Conditions	Typical (Note 10)	Tested Limit	Design Limit	Uni
TTL CLOCK INPUT, CLK R PIN (Note 9)			(Note 11)	(Note 12)	
Maximum V_{IL} , Logical "0" Input Voltage		0.8			V
Minimum V _{IL} , Logical "1" Input Voltage		2.0			V
Maximum Leakage Current at CLK R Pin	L. Sh Pin at Mid-Supply	2.0			μA
Note 1: Absolute Maximum Ratings indicate limits be the device beyond its specified operating conditions.	,		ical specifications of	l lo not apply when c	
Note 2: All voltages are with respect to GND.					
Note 4: For ±5V supplies the dynamic range is refer the MF4-50. For ±2.5V supplies the dynamic range is r Note 5: The specifications for the MF4 have been gi deviate from the specified error band of ±0.6% but th	eferenced to 1.06 Vrms (1.5V peak) where the ven for a clock frequency (f_{CLK}) of 250 kHz e filter still maintains its magnitude character	he wideband noise of or less. Above the eristics. See Application	over a 20 kHz band clock frequency the ation Hints.	width is typically 130 e cutoff frequency b) µVrms egins t
Note 6: Besides checking the cutoff frequency (f _c) and filter. The magnitudes are referenced to a DC gain of Note 7: For simplicity all the logic levels have been re	0.0 dB.				
±2.5V supplies. Note 8: The short circuit source current is measured to the negative supply. The short circuit sink current is output to the positive supply. These are worst case or	s measured by forcing the output that is bei				
Note 9: The MF4 is operating with symmetrical split:					
Note 10: Typicals are at 25°C and represent most lik					
Note 11: Guaranteed to National's Average Outgoing			1-		
Note 12: Guaranteed, but not 100% production teste Note 13: Human body model; 100 pF discharged thr		outgoing quality leve	ls.		
Note 14: When the input voltage (V_{\rm IN}) at any pin exc to 5 mA or less. The 20 mA package input current lim	eeds the power supply rails ($V_{IN} < V^{-}$ or V_{II}				
Note 15: Thermal Resistance θ _{JA} (Junction to Ambient) N Package: 105°C/W.					

1.0 MF4 Application Hints

The MF4 is a non-inverting unity gain low-pass fourth-order Butterworth switched-capacitor filter. The switched-capacitor topology makes the cutoff frequency (where the gain drops 3.01 dB below the DC gain) a direct ratio of the clock frequency supplied to the filter. Internal integrator time constants set the filter's cutoff frequency. The resistive element of these integrators is actually a capacitor which is "switched" at the clock frequency (for a detailed discussion see Input Impedance Section). Varying the clock frequency changes the value of this resistive element and thus the time constant of the integrators. The clock-to-cutoff-frequency ratio $(f_{\mathsf{CLK}} f_{\mathrm{c}})$ is set by the ratio of the input and feedback capacitors in the integrators. The higher the clock-to-cutoff-frequency ratio the closer this approximation is to the theoretical Butterworth response. The MF4 is available in f_{CLK}/f_c ratios of 50:1 (MF4-50).

Typical Performance Characteristics (Continued)

1.1 CLOCK INPUTS

The MF4 has a Schmitt-trigger inverting buffer which can be used to construct a simple R/C oscillator. Pin 3 is connected to V^- which makes Pin 2 a low impedance output. The oscillator's frequency is nominally

$$f_{CLK} = \frac{1}{\text{RC In}\left[\left(\frac{V_{CC} - V_{T^-}}{V_{CC} - V_{T^+}}\right)\left(\frac{V_{T^+}}{V_{T^-}}\right)\right]}$$
(1)

which, is typically

$$f_{CLK} \cong \frac{1}{1.69 \text{ RC}}$$
(2)

for V_{CC} = 10V.

Note that f_{CLK} is dependent on the buffer's threshold levels as well as the resistor/capacitor tolerance (see *Figure 1*). Schmitt-trigger threshold voltage levels can change significantly causing the R/C oscillator's frequency to vary greatly from part to part.

Where accurate cutoff frequency is required, an external clock can be used to drive the CLK R input of the MF4. This input is TTL logic level compatible and also presents a very light load to the external clock source (~2 μ A). With split supplies and the level shift (L. Sh) tied to system ground, the logic level is about 2V. (See the Pin Description for L. Sh).

1.2 POWER SUPPLY

The MF4 can be powered from a single supply or split supplies. The split supply mode shown in *Figures 2, 3* is the most flexible and easiest to implement. Supply voltages of $\pm 5V$ to $\pm 7V$ enable the use of TTL or CMOS clock logic levels. *Figure 4* shows AGND resistor-biased to V⁺/2 for single supply operation. In this mode only CMOS clock logic levels can be used, and input signals should be capacitor-coupled or biased near mid-supply.

1.3 INPUT IMPEDANCE

The MF4 low-pass filter input (FILTER IN) is not a high impedance buffer input. This input is a switched-capacitor resistor equivalent, and its effective impedance is inversely proportional to the clock frequency. The equivalent circuit of the filter's input can be seen in *Figure 5*. The input capacitor charges to V_{in} during the first half of the clock period; during the second half the charge is transferred to the feedback capacitor. The total transfer of charge in one clock cycle is therefore Q = $C_{in}V_{in}$, and since current is defined as the flow of charge per unit time, the average input current becomes

l_{in} = Q/T

(where T equals one clock period) or

li

$$_{n}=\frac{C_{in}V_{in}}{T}=C_{in}V_{in}f_{CLK}$$

The equivalent input resistor (Rin) then can be expressed as

$$R_{in} = \frac{V_{in}}{I_{in}} = \frac{1}{C_{in}f_{CLK}}$$

The input capacitor is 2 pF, so

$$\mathsf{R}_{\mathsf{in}} = \frac{5 \times 10^{11}}{\mathsf{f}_{\mathsf{CLK}}} = \frac{5 \times 10^{11}}{\mathsf{f}_{\mathsf{c}} \times 50} = \frac{1 \times 10^{10}}{\mathsf{f}_{\mathsf{c}}}$$

The higher the clock-to-cutoff-frequency ratio, the greater equivalent input resistance for a given clock frequency.

This input resistance will form a voltage divider with the source impedance (R_{source}). Since R_{in} is inversely proportional to the cutoff frequency, operation at higher cutoff frequencies will be more likely to load the input signal which would appear as an overall decrease in gain to the output of the filter. Since the filter's ideal gain is unity, the overall gain is given by:

1.0 MF4 Application Hints (Continued)

$$A_{v} = \frac{R_{in}}{R_{in} + R_{source}}$$

If the MF were set up for a cutoff frequency of 10 kHz the input impedance would be:

$$R_{in} = \frac{1 \times 10^{10}}{10 \text{ kHz}} = 1 \text{ M}\Omega$$

In this example with a source impedance of 10K the overall gain, if the MF4 had an ideal gain of 1 or 0 dB, would be:

$$A_v = \frac{1 M\Omega}{10 k\Omega + 1 M\Omega} = 0.99009 \text{ or } -0.086 \text{ dB}$$

Since the maximum overall gain error for the MF4 is ± 0.15 dB with R_s $\leq 2 \ k\Omega$ the actual gain error for this case would be +0.06 dB to -0.24 dB.

1.4 CUTOFF FREQUENCY RANGE

The filter's cutoff frequency (f_c) has a lower limit due to leakage currents through the internal switches draining the charge stored on the capacitors. At lower clock frequencies these leakage currents can cause millivolts of error, for example:

$$\begin{split} f_{CLK} &= 100 \text{ Hz}, I_{\text{leakage}} = 1 \text{ pA}, \text{C} = 1 \text{ pF} \\ V &= \frac{1 \text{ pA}}{1 \text{ pF} (100 \text{ Hz})} = 10 \text{ mV} \end{split}$$

The propagation delay in the logic and the settling time required to acquire a new voltage level on the capacitors limit the filter's accuracy at high clock frequencies. The amplitude characteristic on ±5V supplies will typically stay flat until f_{CLK} exceeds 750 kHz and then peak at about 0.5 dB at the corner frequency with a 1 MHz clock. As supply voltage drops to ± 2.5V, a shift in the f_{CLK}/f_c ratio occurs which will become noticeable when the clock frequency exceeds 250 kHz. The response of the MF4 is still a good approximation of the ideal Butterworth low-pass characteristic shown in *Figures 6, 7.*

2.0 Designing With The MF4

Given any low-pass filter specification, two equations will come in handy in trying to determine whether the MF4 will do the job. The first equation determines the order of the low-pass filter required to meet a given response specification:

$$n = \frac{\log \left[(10^{0.1} \text{Amin} - 1) / (10^{0.1} \text{Amax} - 1) \right]}{2 \log (f_8 / f_b)}$$
(3)

where n is the order of the filter, A_{min} is the minimum stopband attenuation (in dB) desired at frequency f_s , and A_{max} is the passband ripple or attenuation (in dB) at cutoff frequency f_b . If the result of this equation is greater than 4, more than a single MF4 is required.

The attenuation at any frequency can be found by the following equation:

Attn (f) = 10 log
$$[1 + (10^{0.1 \text{Amax}} - 1) (f/f_b)^{2n}] \text{ dB}$$
 (4)
where n = 4 for the MF4.

www.national.com

M

2.1 A LOW-PASS DESIGN EXAMPLE

Suppose the amplitude response specification in *Figure 8* is given. Can the MF4 be used? The order of the Butterworth approximation will have to be determined using *Equation (1)*:

$$\begin{split} A_{min} &= 18 \text{ dB}, A_{max} = 1.0 \text{ dB}, f_s = 2 \text{ kHz}, \text{ and } f_b = 1 \text{ kHz} \\ n &= \frac{\log \left[(10^{1.8} - 1) / (10^{0.1} - 1) \right]}{2 \text{log}(2)} = 3.95 \end{split}$$

Since n can only take on integer values, n = 4. Therefore the MF4 can be used. In general, if n is 4 or less a single MF4 stage can be utilized.

Likewise, the attenuation at f_s can be found using *Equation* (4) with the above values and n = 4:

Attn (2 kHz) = 10 log [1 + 10^{0.1} – 1) (2 kHz/1 kHz)⁸] = 18.28 dB

This result also meets the design specification given in *Figure 8* again verifying that a single MF4 section will be adequate.

Since the MF4's cutoff frequency (f_c), which corresponds to a gain attenuation of –3.01 dB, was not specified in this example, it needs to be calculated. Solving *Equation (4)* where f = f_c as follows:

$$\begin{split} f_{c} &= f_{b} \left[\frac{(10^{0.1}(3.01 \text{ dB}) - 1}{(10^{0.1}\text{Amax} - 1)} \right]^{1/(2n)} \\ &= 1 \text{ kHz} \left[\frac{10^{0.301} - 1}{10^{0.1} - 1} \right]^{1/8} \\ &= 1.184 \text{ kHz} \end{split}$$

where $f_c = f_{CLK}/50$. To implement this example for the MF4-50 the clock frequency will have to be set to $f_{CLK} = 50(1.184 \text{ kHz}) = 59.2 \text{ kHz}$, or for the MF4-100, $f_{CLK} = 100 (1.184 \text{ kHz}) = 118.4 \text{ kHz}$.

2.2 CASCADING MF4s

When a steeper stopband attenuation rate is required, two MF4s can be cascaded (*Figure 9*) yielding an 8th order slope of 48 dB per octave. Because the MF4 is a Butterworth filter and therefore has no ripple in its passband when MF4s are cascaded, the resulting filter also has no ripple in its passband. Likewise the DC and passband gains will remain at 1V/V. The resulting response is shown in *Figure 10, Figure 11*.

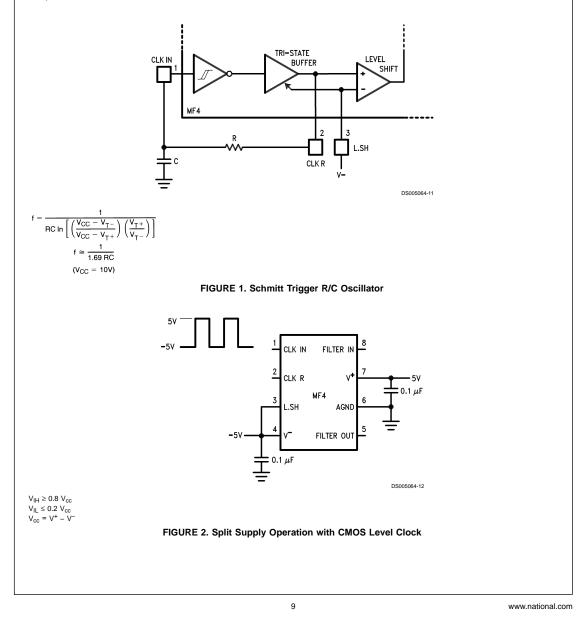
In determining whether the cascaded MF4s will yield a filter that will meet a particular amplitude response specification, as above, *Equations (5)*, (6) can be used, shown below.

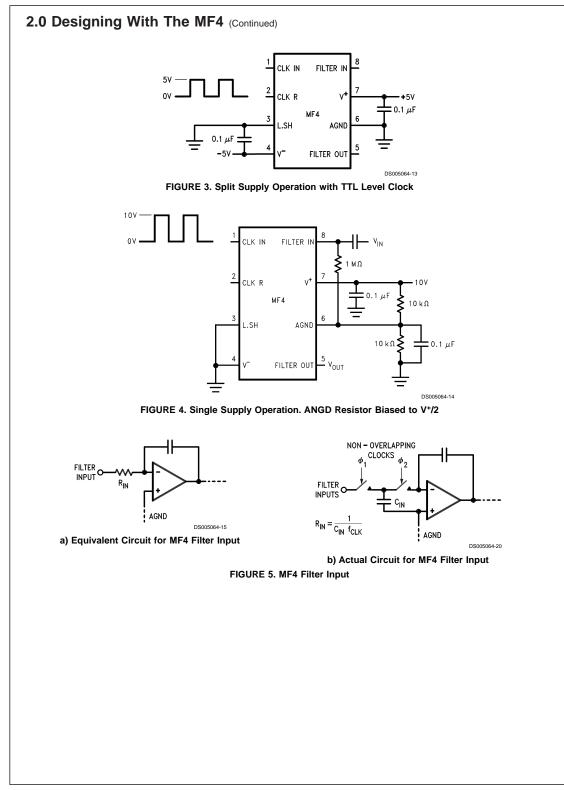
$$n = \frac{\log[(10^{0.05A}min - 1)/(10^{0.05A}max - 1)]}{2\log(f_{s}/f_{c})}$$
(5)

where n = 4 (the order of each filter).

Equation (5) will determine whether the order of the filter is adequate (n \leq 4) while Equation (6) can determine the actual stopband attenuation and cutoff frequency (f_c) necessary to obtain the desired frequency response. The design procedure would be identical to the one shown in section 2.0.

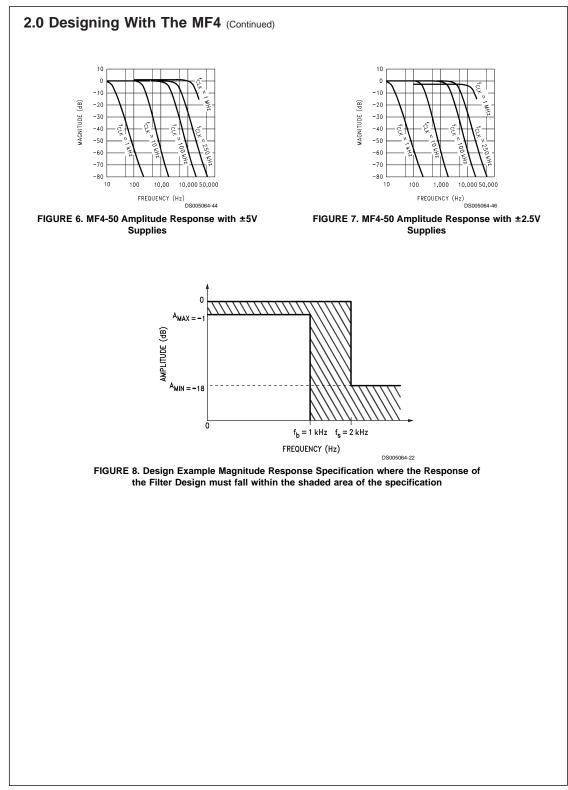
2.0 Designing With The MF4 (Continued)

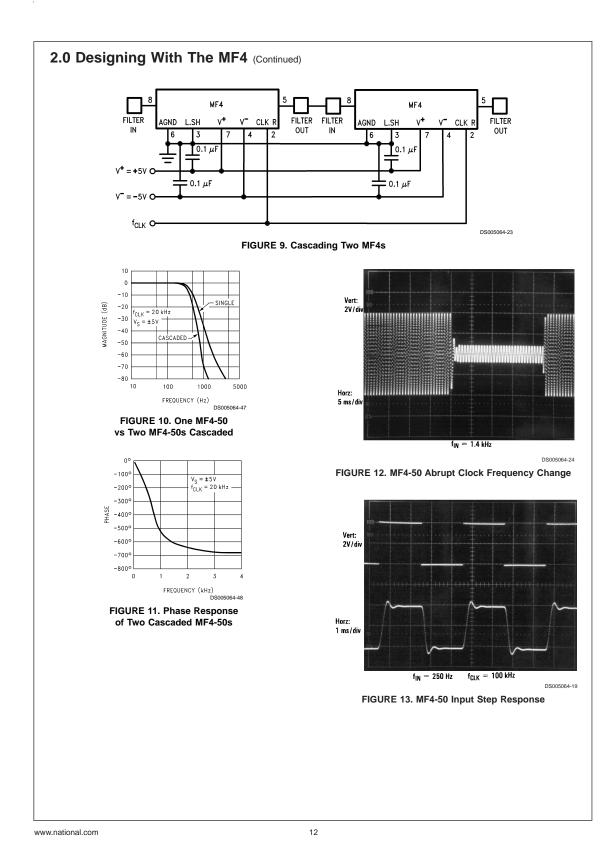

2.3 CHANGING CLOCK FREQUENCY INSTANTANEOUSLY

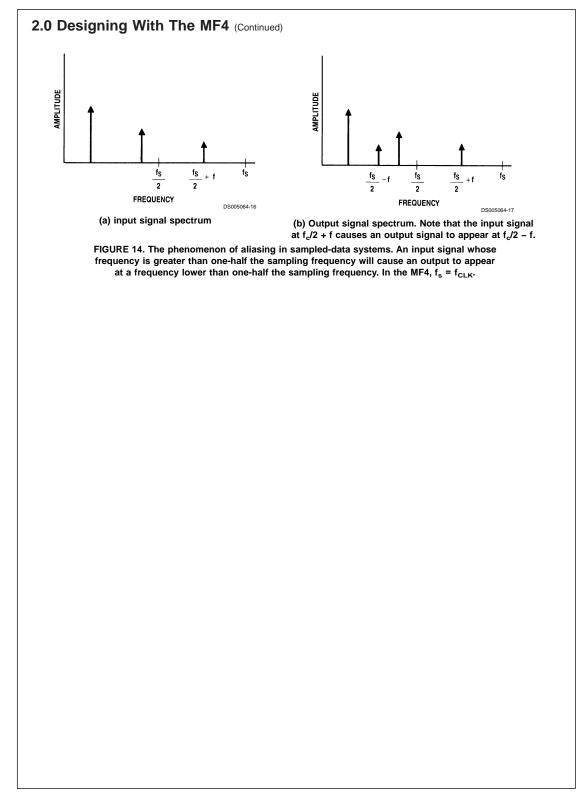

The MF4 will respond favorably to an instantaneous change in clock frequency. If the control signal in *Figure 12* is low the MF4-50 has a 100 kHz clock making $f_{\rm c}$ = 2 kHz; when this signal goes high the clock frequency changes to 50 kHz yielding $f_{\rm c}$ = 1 kHz. As the Figure illustrates, the output signal changes quickly and smoothly in response to a sudden change in clock frequency.

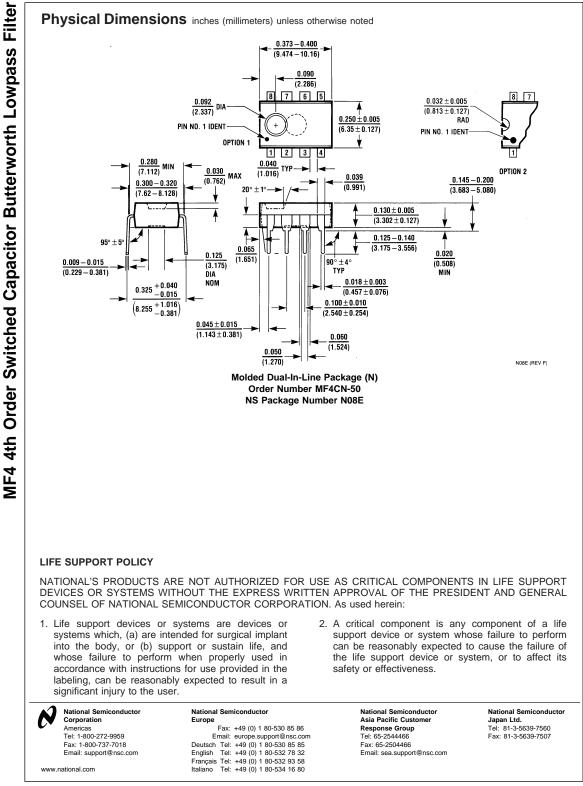
The step response of the MF4 in Figure 13 is dependent on $f_{\rm c}.$ The MF4 responds as a classical fourth-order Butterworth low-pass filter.

2.4 ALIASING CONSIDERATIONS


Aliasing effects have to be considered when input signal frequencies exceed half the sampling rate. For the MF4 this equals half the clock frequency ($f_{\rm CLK}$). When the input signal contains a component at a frequency higher than half the clock frequency $f_{\rm CLK}/2$, as in *Figure 14a*, that component will be "reflected" about $f_{\rm CLK}/2$ into the frequency range below $f_{\rm CLK}/2$, as in *Figure 14b*. If this component is within the passband of the filter and of large enough amplitude it can cause problems. Therefore, if frequency components in the input signal exceed $f_{\rm CLK}2$ they must be attenuated before being applied to the MF4 input. The necessary amount of attenuation will vary depending on system requirements. In critical applications the signal components above $f_{\rm CLK}/2$ will have to be attenuated at least to the filter's residual noise level.






www.national.com

10

