features

- DC Gain Linearity: 14 Bits
- Maximum DC Offset: $\pm 1.5 \mathrm{mV}$
- DC Offset TempCo: 7 $\quad \mathrm{V} /{ }^{\circ} \mathrm{C}$
- Device Fully Tested at $\mathrm{f}_{\text {CUTOFF }}=80 \mathrm{kHz}$
- Maximum Cutoff Frequency: $120 \mathrm{kHz}\left(\mathrm{V}_{S}= \pm 8 \mathrm{~V}\right)$
- Drives $1 \mathrm{k} \Omega$ Load with 0.02\% THD or Better
- Signal-to-Noise Ratio: 90dB
- Input Impedance: $500 \mathrm{M} \Omega$
- Selectable Elliptic or Linear Phase Response
- Operates from Single 5 V up to $\pm 8 \mathrm{~V}$ Power Supplies
- Available in an 18-Pin SO Wide Package

APPLICATIONS

- Instrumentation
- Data Acquisition Systems
- Anti-Aliasing Filters
- Smoothing Filters
- Audio Signal Processing
$\overline{\mathbf{Q T}}$, LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DESCRIPTION

The LTC ${ }^{\circledR} 1066-1$ is an 8th order elliptic lowpass filter which simultaneously provides clock-tunability and DC accuracy. The unique and proprietary architecture of the filter allows 14 bits of DC gain linearity and a maximum of 1.5 mV DC offset. An external RC is required for DC accurate operation. With $\pm 7.5 \mathrm{~V}$ supplies, a 20 k resistor and a $1 \mu \mathrm{~F}$ capacitor, the cutoff frequency can be tuned from 800 Hz to 100 kHz . A clock-tunable 10 Hz to 100 kHz operation can also be achieved (see Typical Application section).
The filter does not require any external active components such as input/output buffers. The input/output impedance is $500 \mathrm{M} \Omega / 0.1 \Omega$ and the output of the filter can source or sink 40 mA . When pin 8 is connected to V^{+}, the clock-tocutoff frequency ratio is $50: 1$ and the input signal is sampled twice per clock cycle to lower the risk of aliasing. For frequencies up to $0.75 f_{\text {Cutoff, }}$, the passband ripple is $\pm 0.15 \mathrm{~dB}$. The gain at f Cutoff is -1 dB and the filter's stopband attenuation is 80 dB at $2.3 f_{\text {CuTOFF. }}$ Linear phase operation is also available with a clock-to-cutoff frequency ratio of 100:1 when pin 8 is connected to ground.

The LTC1066-1 is available in an 18-pin SO Wide package.

TYPICAL APPLICATION

Clock-Tunable, DC Accurate, 800 Hz to 80 kHz Elliptic Lowpass Filter

Amplitude Response

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Total Supply Voltage (V^{+}to V^{-}) 16.5V
Power Dissipation .. 700 mW
Burn-In Voltage .. 16.5V
Voltage at Any Input $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{IN}} \leq\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Maximum Clock Frequency
$V_{S}= \pm 8 \mathrm{~V} . ~ 6.1 M H z ~$
$V_{S}= \pm 7.5 \mathrm{~V}$... 5.4 MHz
$V_{S}= \pm 5 \mathrm{~V}$.. 4.1 MHz
$V_{S}=$ Single 5V .. 1.8MHz
Operating Temperature Range* $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

* For an extended operating temperature range contact LTC Marketing for details.

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS (See Test Circuit)

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $V_{S}= \pm 7.5 \mathrm{~V}$, $R_{L}=1 \mathrm{k}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {cLK }}$ signal level is TTL or CMOS (maximum clock rise or fall time $\leq 1 \mu \mathrm{~s}$) unless otherwise specified. All AC gain measurements are referenced to passband gain.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Passband Gain ($0.01 \mathrm{f}_{\text {CUTOFF }}$ to $\left.0.25 \mathrm{f}_{\text {CUTOFF }}\right)$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=2 \mathrm{kHz}$	\bullet	-0.18	0.16	0.36	dB
Passband Ripple ($0.01 \mathrm{f}_{\text {Cutoff }}$ to $0.75 \mathrm{f}_{\text {CUTOFF }}$) for $\mathrm{f}_{\text {CLK }} /{ }^{\prime}$ Cutoff $=50: 1$	$\mathrm{f}_{\text {CUTOFF }} \leq 50 \mathrm{kHz}$ (See Note on Test Circuit)			± 0.15		dB
Gain at $0.50 f_{\text {CutOFF }}$ for $\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}=50: 1$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=4 \mathrm{kHz}$	\bullet	$\begin{aligned} & -0.09 \\ & -0.14 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.14 \end{aligned}$	dB dB
	$\mathrm{f}_{\text {CLK }}=2 \mathrm{MHz}, \mathrm{f}_{\text {TEST }}=20 \mathrm{kHz}$	\bullet	$\begin{aligned} & -0.16 \\ & -0.22 \end{aligned}$	$\begin{aligned} & -0.05 \\ & -0.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.02 \\ & \hline \end{aligned}$	dB dB
Gain at $0.75 f_{\text {CutOFF }}$ for $\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}=50: 1$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=6 \mathrm{kHz}$	\bullet	$\begin{aligned} & -0.18 \\ & -0.22 \end{aligned}$	$\begin{aligned} & -0.05 \\ & -0.10 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	dB dB
	$\mathrm{f}_{\text {CLK }}=2 \mathrm{MHz}, \mathrm{f}_{\text {TEST }}=30 \mathrm{kHz}$	\bullet	$\begin{aligned} & -0.36 \\ & -0.45 \end{aligned}$	$\begin{aligned} & -0.20 \\ & -0.30 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	dB dB
	$\mathrm{f}_{\text {CLK }}=4 \mathrm{MHz}, \mathrm{f}_{\text {TEST }}=60 \mathrm{kHz}$	\bullet	$\begin{aligned} & -0.65 \\ & -0.85 \end{aligned}$	$\begin{aligned} & -0.30 \\ & -0.40 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.75 \end{aligned}$	dB dB
Gain at $1.00 f_{\text {CutOFF }}$ for $\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}=50: 1$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=8 \mathrm{kHz}$	\bullet	$\begin{aligned} & -1.50 \\ & -1.80 \end{aligned}$	$\begin{aligned} & \hline-1.10 \\ & -1.20 \end{aligned}$	$\begin{aligned} & -0.05 \\ & -0.05 \end{aligned}$	dB dB
	$\mathrm{f}_{\text {CLK }}=2 \mathrm{MHz}, \mathrm{f}_{\text {TEST }}=40 \mathrm{kHz}$	\bullet	$\begin{aligned} & -2.10 \\ & -2.30 \end{aligned}$	$\begin{aligned} & -1.60 \\ & -1.60 \end{aligned}$	$\begin{aligned} & -1.20 \\ & -1.20 \end{aligned}$	dB dB
	$\mathrm{f}_{\text {CLK }}=4 \mathrm{MHz}, \mathrm{f}_{\text {TEST }}=80 \mathrm{kHz}$	\bullet	$\begin{aligned} & \hline-2.20 \\ & -2.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1.60 \\ & -1.60 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.05 \\ 0.25 \\ \hline \end{array}$	dB dB
	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=16 \mathrm{kHz}$	\bullet	$\begin{aligned} & -56 \\ & -54 \end{aligned}$	$\begin{aligned} & -58 \\ & -57 \end{aligned}$	$\begin{aligned} & -64 \\ & -64 \end{aligned}$	dB dB
	$\mathrm{f}_{\text {CLK }}=2 \mathrm{MHz}, \mathrm{f}_{\text {TEST }}=80 \mathrm{kHz}$	\bullet	$\begin{aligned} & -53 \\ & -51 \end{aligned}$	$\begin{aligned} & -56 \\ & -55 \end{aligned}$	$\begin{aligned} & -62 \\ & -62 \end{aligned}$	dB dB
	$\mathrm{f}_{\text {CLK }}=4 \mathrm{MHz}, \mathrm{f}_{\text {TEST }}=160 \mathrm{kHz}$	\bullet	$\begin{aligned} & -50 \\ & -48 \end{aligned}$	$\begin{aligned} & -52 \\ & -51 \end{aligned}$	$\begin{aligned} & -60 \\ & -60 \end{aligned}$	dB dB
						10661fa

ELECTRICAL CHARACTERISTICS (see Test Ciruait)

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $V_{S}= \pm 7.5 \mathrm{~V}$, $R_{L}=1 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}$ signal level is TTL or CMOS (maximum clock rise or fall time $\leq 1 \mu \mathrm{~s}$) unless otherwise specified. All AC gain measurements are referenced to passband gain.

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
Gain at $\mathrm{f}_{\text {CUTOFF }}$ for $\mathrm{f}_{\text {CLK }}=20 \mathrm{kHz}, \mathrm{V}_{S}= \pm 7.5 \mathrm{~V}$		$\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}=50: 1, \mathrm{f}_{\text {TEST }}=400 \mathrm{~Hz}$	\bullet	-1.75	-1.25	-0.50	dB
Gain at $\mathrm{f}_{\text {CUTOFF }}$ for $\mathrm{V}_{\mathrm{S}}= \pm 2.375 \mathrm{~V}, \mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}=50: 1$		$\mathrm{f}_{\text {CLK }}=1 \mathrm{MHz}, \mathrm{f}_{\text {TEST }}=20 \mathrm{kHz}$	\bullet	-1.75	-0.70	0.10	dB
Gain at 70 kHz for $\mathrm{V}_{\text {S }}= \pm 5 \mathrm{~V}, \mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}=50: 1$		$\mathrm{f}_{\text {CLK }}=4 \mathrm{MHz}, \mathrm{f}_{\text {TEST }}=70 \mathrm{kHz}$	\bullet		1.00	1.40	dB
Linear Phase Response $\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}=100: 1$, Pin 8 at GND	Phase at $0.25 \mathrm{f}_{\text {CutOFF }}$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=1 \mathrm{kHz}$	\bullet	$\begin{aligned} & -48.5 \\ & -48.0 \end{aligned}$	$\begin{aligned} & -50.0 \\ & -50.0 \end{aligned}$	$\begin{aligned} & -51.5 \\ & -52.0 \end{aligned}$	Deg Deg
	Gain at 0.25fcutoff	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=1 \mathrm{kHz}$	\bullet	-0.65	-0.25	0.25	dB
	Phase at $0.50 f_{\text {cutoff }}$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=2 \mathrm{kHz}$	\bullet	$\begin{aligned} & \hline-97.5 \\ & -97.0 \end{aligned}$	$\begin{aligned} & \hline-99.5 \\ & -99.5 \end{aligned}$	$\begin{aligned} & \hline-101.5 \\ & -102.0 \end{aligned}$	Deg Deg
	Gain at $0.50 f_{\text {Cutoff }}$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=2 \mathrm{kHz}$	\bullet	-0.75	-0.50	-0.10	dB
	Phase at $0.75 \mathrm{f}_{\text {cutorf }}$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=3 \mathrm{kHz}$	\bullet	$\begin{aligned} & -148.0 \\ & -147.5 \end{aligned}$	$\begin{aligned} & -150.5 \\ & -150.5 \end{aligned}$	$\begin{aligned} & \hline-152.5 \\ & -153.0 \end{aligned}$	Deg Deg
	Gain at $0.75 f_{\text {Cutoff }}$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=3 \mathrm{kHz}$	\bullet	-1.40	-1.00	-0.60	dB
	Phase at $\mathrm{f}_{\text {CUTOFF }}$	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=4 \mathrm{kHz}$	\bullet	$\begin{aligned} & \hline-208.0 \\ & -207.5 \end{aligned}$	$\begin{aligned} & \hline-210.0 \\ & -210.0 \end{aligned}$	$\begin{aligned} & \hline-212.5 \\ & -213.0 \end{aligned}$	Deg Deg
	Gain at f Cutoff	$\mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}, \mathrm{f}_{\text {TEST }}=4 \mathrm{kHz}$	\bullet	-2.10	-1.80	-1.60	dB
Input Bias Current		$\mathrm{V}_{\mathrm{S}}= \pm 2.375 \mathrm{~V}$	\bullet		$\begin{aligned} & 60 \\ & 70 \end{aligned}$	135	nA
Input Offset Current		$\begin{aligned} & V_{S}= \pm 2.375 \mathrm{~V} \\ & V_{S} \geq \pm 5 \mathrm{~V} \text { (Note 3) } \end{aligned}$	\bullet		$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 45 \end{aligned}$	nA
Input Offset Current TempCo		$\pm 2.375 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 7.5 \mathrm{~V}$			40		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Output Voltage Offset TempCo		$\pm 2.375 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 7.5 \mathrm{~V}$			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Output Offset Voltage		$\mathrm{V}_{S}= \pm 2.375 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=400 \mathrm{kHz}$	\bullet		$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	± 1.5	mV mV
		$\begin{aligned} & V_{S} \geq \pm 5 \mathrm{~V} \\ & \text { (Note 3) } \end{aligned}$	\bullet		$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	± 1.5	mV mV
Common Mode Rejection		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=-5 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 90 \\ & 84 \end{aligned}$	$\begin{aligned} & 96 \\ & 90 \end{aligned}$		dB dB
Power Supply Rejection		$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 7.5 \mathrm{~V}$	\bullet	$\begin{aligned} & \hline 80 \\ & 78 \end{aligned}$	$\begin{aligned} & \hline 84 \\ & 82 \end{aligned}$		dB dB
Input Voltage Range and Output Voltage Swing		$\mathrm{V}_{\mathrm{S}}= \pm 2.375 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	\bullet	$\begin{aligned} & \pm 1.2 \\ & \pm 1.1 \end{aligned}$	± 1.4		V
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	\bullet	$\begin{aligned} & \pm 3.4 \\ & \pm 3.2 \end{aligned}$	± 3.6		V
		$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	\bullet	$\begin{aligned} & \pm 5.4 \\ & \pm 5.0 \end{aligned}$	± 5.8		V
Output Short-Circuit Current		$\pm 2.375 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 7.5 \mathrm{~V}$		± 20			mA
Power Supply Current (Note 2)		$\mathrm{V}_{\mathrm{S}}= \pm 2.375 \mathrm{~V}$	\bullet		$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 16 \\ & 19 \end{aligned}$	mA mA
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$	\bullet		$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 26 \\ & 29 \end{aligned}$	mA
		$\mathrm{V}_{S}= \pm 7.5 \mathrm{~V}$	\bullet		$\begin{aligned} & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & 30 \\ & 33 \end{aligned}$	mA mA
Power Supply Range				± 2.375		± 8	V

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The maximum current over temperature is at $0^{\circ} \mathrm{C}$. At $70^{\circ} \mathrm{C}$ the maximum current is less than its maximum value at $25^{\circ} \mathrm{C}$.
Note 3: Guaranteed by design and test correlation.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

1066-1608

THD + Noise vs Frequency

THD + Noise vs Input Voltage

1006-1 12

Group Delay vs Frequency

1066-1 G10

Phase Matching vs Frequency

1066-1 G11

THD + Noise vs Frequency

LTC 1066-1

TYPICAL PERFORMANCE CHARACTERISTICS

1066-1 G18

Table 1. Elliptic Response, $\mathrm{f}_{\mathrm{C}}=10 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$ UTOFF $=50: 1$, $V_{S}= \pm 7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=20 \mathrm{k}, \mathrm{C}_{\mathrm{F}}=1 \mu \mathrm{~F}$, No RC Compensation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

FREQUENCY $(\mathbf{k H z})$	GAIN (dB)	PHASE $(\mathbf{D E G})$	GROUP DELAY $(\mu \mathbf{s})$
2.000	0.117	-50.09	70.52
3.000	0.118	-75.75	72.04
4.000	0.116	-101.96	74.32
5.000	0.112	-129.25	77.59
6.000	0.104	-157.82	82.04
7.000	0.074	171.68	88.56
8.000	-0.014	138.41	97.80
9.000	-0.278	101.26	110.33
10.000	-0.986	58.98	124.91

Table 3. Linear Phase Response, $\mathrm{f}_{\mathrm{C}}=10 \mathrm{kHz}$,
$\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {Cutoff }}=100: 1, \mathrm{~V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=20 \mathrm{k}, \mathrm{C}_{\mathrm{F}}=1 \mu \mathrm{~F}$, No RC Compensation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

FREQUENCY $(\mathbf{k H z})$	GAIN $(\mathbf{d B})$	PHASE $(\mathbf{D E G})$	GROUP DELAY $(\boldsymbol{\mu s})$
2.000	-0.020	-39.96	55.25
3.000	-0.181	-59.76	55.03
4.000	-0.383	-79.60	54.98
5.000	-0.601	-99.34	55.28
6.000	-0.811	-119.40	56.34
7.000	-1.004	-139.91	58.56
8.000	-1.196	-161.56	62.34
9.000	-1.451	175.21	67.29
10.000	-1.910	149.99	72.31

Table 2. Elliptic Response, $f_{C}=50 \mathrm{kHz}, \mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUtoff }}=50: 1$, $V_{S}= \pm 7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=20 \mathrm{k}, \mathrm{C}_{\mathrm{F}}=1 \mu \mathrm{~F}$, No RC Compensation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

FREQUENCY $(\mathbf{k H z})$	GAIN $(\mathbf{d B})$	PHASE $(\mathbf{D E G})$	GROUP DELAY $(\boldsymbol{\mu s})$
10.000	0.104	-50.91	14.32
15.000	0.105	-76.95	14.61
20.000	0.107	-103.51	15.05
25.000	0.109	-131.13	15.70
30.000	0.107	-160.03	16.57
35.000	0.089	169.22	17.85
40.000	0.014	135.72	19.66
45.000	-0.231	98.44	22.10
50.000	-0.905	56.15	24.93

Table 4. Linear Phase Response, $\mathrm{f}_{\mathrm{C}}=50 \mathrm{kHz}$,
$\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {Cutoff }}=100: 1, \mathrm{~V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=20 \mathrm{k}, \mathrm{C}_{\mathrm{F}}=1 \mu \mathrm{~F}$, No RC Compensation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

FREQUENCY $(\mathbf{k H z})$	GAIN $(\mathbf{d B})$	PHASE $(\mathbf{D E G})$	GROUP DELAY $(\boldsymbol{\mu s})$
10.000	0.039	-40.72	11.30
15.000	-0.068	-61.01	11.31
20.000	-0.202	-81.42	11.36
25.000	-0.345	-101.88	11.48
30.000	-0.479	-122.74	11.73
35.000	-0.594	-144.09	12.20
40.000	-0.701	-166.68	12.99
45.000	-0.860	169.15	14.06
50.000	-1.214	142.72	15.19

PIn functions

Power Supply Pins (5, 18, 4, 10)

The power supply pins should be bypassed with a $0.1 \mu \mathrm{~F}$ capacitor to an adequate analog ground. The bypass capacitors should be connected as close as possible to the power supply pins. The V^{+}pins $(5,18)$ and the V^{-}pins $(4$, 10) should always be tied to the same positive supply and negative supply value respectively. Low noise linear supplies are recommended. Switching power supplies are not recommended as they will lower the filter dynamic range.

When the LTC1066-1 is powered up with dual supplies and, if V^{+}is applied prior to a floating V^{-}, connect a signal diode (1N4148) between pin 10 and ground to prevent power supply reversal and latch-up. A signal diode (1N4148) is also recommended between pin 5 and ground if the negative supply is applied prior to the positive supply and the positive supply is floating. Note, in most laboratory supplies, reversed biased diodes are always connected between the supply output terminals and ground, and the above precautions are not necessary. However, when the filter is powered up with conventional 3-terminal regulators, the diodes are recommended.

Analog Ground Pin (15)

The filter performance depends on the quality of the analog signal ground. For either dual or single supply operation, an analog ground plane surrounding the package is recommended. The analog ground plane should be connected to any digital ground at a single point. For dual supply operation, pin 15 should be connected to the analog ground plane. For single supply operation pin 15 should be biased at $1 / 2$ supply and should be bypassed to the analog ground plane with at least a $1 \mu \mathrm{~F}$ capacitor (see Typical Applications). For single 5V operation and for $\mathrm{f}_{\mathrm{CLK}} \geq 1.4 \mathrm{MHz}$, pin 15 should be biased at 2 V . This minimizes passband gain and phase variations.

Clock Input Pin (9)

Any TTL or CMOS clock source with a square-wave output and 50% duty cycle ($\pm 10 \%$) is an adequate clock source for the device. The power supply for the clock source should not be the filter's power supply. The analog ground for the filter should be connected to clock's ground at a single point only. Table 5 shows the clock's low and high
level threshold values for a dual or single supply operation. Sine waves are not recommended for clock input frequencies less than 100 kHz , since excessively slow clock rise or fall times generate internal clock jitter (maximum clock rise or fall time $\leq 1 \mu \mathrm{~s}$). The clock signal should be routed from the left side of the IC package and perpendicular to it to avoid coupling to any input or output analog signal path. A 200Ω resistor between clock source and pin 9 will slow down the rise and fall times of the clock to further reduce charge coupling.

Table 5. Clock Source High and Low Threshold Levels

POWER SUPPLY	HIGH LEVEL	LOW LEVEL
Dual Supply $= \pm 7.5 \mathrm{~V}$	$\geq 2.18 \mathrm{~V}$	$\leq 0.5 \mathrm{~V}$
Dual Supply $= \pm 5 \mathrm{~V}$	$\geq 1.45 \mathrm{~V}$	$\leq 0.5 \mathrm{~V}$
Dual Supply $= \pm 2.5 \mathrm{~V}$	$\geq 0.73 \mathrm{~V}$	$\leq-2.0 \mathrm{~V}$
Single Supply $=12 \mathrm{~V}$	$\geq 7.80 \mathrm{~V}$	$\leq 6.5 \mathrm{~V}$
Single Supply $=5 \mathrm{~V}$	$\geq 1.45 \mathrm{~V}$	$\leq 0.5 \mathrm{~V}$

50:1/100:1 Pin (8)

The DC level at pin 8 determines the ratio of the clock to the filter cutoff frequency. When pin 8 is connected to V^{+}the clock-to-cutoff frequency ratio ($\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\text {CUTOFF }}$) is 50:1 and the filter response is elliptic. The design of the internal switched-capacitor filter was optimized for a $50: 1$ operation.
When pin 8 is connected to ground (or $1 / 2$ supply for single supply operation), the $\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {Cutoff }}$ ratio is equal to 100:1 and the filter response is pseudolinear phase (see Group Delay vs Frequency in Typical Performance Characteristic section).
When pin 8 is connected to V^{-}(or ground for single supply operation), the $\mathrm{f}_{\text {CLK }} / \mathrm{f}_{\text {CUTOFF }}$ ratio is $100: 1$ and the filter response is transitional Butterworth elliptic. The Typical Performance Characteristics provide all the necessary information.

If the DC level at pin 8 is mechanically switched, a 10k resistor should be connected between pin 8 and the DC source.

Input Pins (2, 3, 14, 16)

Pin 3 (+IN A) and pin 2 (-IN A) are the positive and negative inputs of an internal high performance op amp A

LTC 1066-1

PIn fUnCTIOnS

(see Block Diagram). Input bias current flows out of pins 2 and 3 . Pin $16(+\operatorname{IN} B)$ is the positive input of a high performance op amp B which is internally connected as a unity-gain follower. Op amp B buffers the switchedcapacitor network output. The input capacitance of both op amps is 10 pF .
Pin 14 (FILTER $_{\text {IN }}$) is the input of a switched-capacitor network. The input impedance of pin 14 is typically 11 k .

Output Pins (1, 7, 17)

Pins 1 and 17 are the outputs of the internal high performance op amps A and B. Pin 1 is usually connected to the internal switched-capacitor filter network input pin 14. Pin 17 is the buffered output of the filter and it can drive loads as heavy as 200Ω (see THD + Noise curves under Typical Performance Characteristics). Pin 7 is the internal switched-capacitor network output and it can typically sink or source 1 mA .

Compensation Pins $(11,13)$

Pins 11 and 13 are the AC compensation pins. If compensation is needed, an external 30k resistor in series with a
$15 p F$ capacitor should be connected between pins 11 and 13. Compensation is recommended for the following cases shown in Table 6.

Table 6. Cases Where an RC Compensation (15pF in Series with $30 \mathrm{k} \Omega$ pins 11,13) is Recommended, fllk $^{\text {/f}}$ CUTOFF $=50: 1$

$\mathrm{V}_{\text {S }}=$ Single $5 \mathrm{~V}($ AGND $=2 \mathrm{~V}$)	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & f_{\text {CUTOFF }} \geq 28 \mathrm{kHz} \\ & \mathrm{f}_{\text {CUTOFF }} \geq 24 \mathrm{kHz} \end{aligned}$
$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\text {CUTOFF }} \geq 60 \mathrm{kHz} \\ & \mathrm{f}_{\text {CUTOFF }} \geq 50 \mathrm{kHz} \end{aligned}$
$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\text {CUTOFF }} \geq 70 \mathrm{kHz} \\ & \mathrm{f}_{\text {CuTOFF }} \geq 60 \mathrm{kHz} \end{aligned}$

Connect Pins $(6,12)$

Pin 6 (CONNECT 1) and pin 12 (CONNECT 2) should be shorted. In a printed circuit board the connection should be done under the IC package through a short trace surrounded by the analog ground plane. Pin 6 should be 0.2 inches away from any other circuit trace.

BLOCK DIAGRAM

TGST CIRCUIT

APPLICATIONS INFORMATION

DC PERFORMANCE

The DC performance of the LTC1066-1 is dictated by the DC characteristics of the input precision op amp.

1. DC input voltages in the vicinity of the filter's half of the total power supply are processed with exactly 0 dB (or $1 \mathrm{~V} / \mathrm{V}$) of gain.
2. The typical $D C$ input voltage ranges are equal to:

$$
\begin{aligned}
& V_{\text {IN }}= \pm 5.8 \mathrm{~V}, V_{S}= \pm 7.5 \mathrm{~V} \\
& V_{\text {IN }}= \pm 3.6 \mathrm{~V}, \mathrm{~V}_{S}= \pm 5 \mathrm{~V} \\
& \mathrm{~V}_{\text {IN }}= \pm 1.4 \mathrm{~V}, \mathrm{~V}_{S}= \pm 2.5 \mathrm{~V}
\end{aligned}
$$

With an input $D C$ voltage range of $\mathrm{V}_{I N}= \pm 5 \mathrm{~V}$, $\left(\mathrm{V}_{S}=\right.$ $\pm 7.5 \mathrm{~V}$), the measured CMRR was 100 dB . Figure 1 shows the DC gain linearity of the filter exceeding the requirements of a 14-bit, 10 V full scale system.
3. The filter output DC offset $\mathrm{V}_{\mathrm{OS}(\text { OUT })}$ is measured with the input grounded and with dual power supplies. The $V_{\text {OS(OUT) }}$ is typically $\pm 0.1 \mathrm{mV}$ and it is optimized for the filter connection shown in the test circuit figure. The filter output offset is equal to:

$$
V_{O S(O U T)}=V_{O S}(0 \mathrm{opamp} A)-I_{B I A S} \times R_{F}=0.1 \mathrm{mV}(\text { Typ })
$$

4. The $\mathrm{V}_{\text {OS(OUT) }}$ temperature drift is typically $7 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ ($\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$), and $-7 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C}\right)$.
5. The $\mathrm{V}_{\mathrm{OS}(\mathrm{OUT})}$ temperature drift can be improved by using an input resistor $\mathrm{R}_{\text {IN }}$ equal to the feedback resistor R_{F}, however, the absolute value of $\mathrm{V}_{\text {OS(OUT) }}$ will increase. For instance, if a 20k resistor is added in series with pin 3 (see Test Circuit), the output $\mathrm{V}_{0 S}$ drift will be

Figure 1. DC Gain Linearity
improved by $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, however, the $\mathrm{V}_{\mathrm{OS}(\text { OUT })}$ may increase by $1 \mathrm{mV} \mathrm{V}_{\text {(MAX) }}$.
6. The filter DC output offset voltage $\mathrm{V}_{\mathrm{OS}(\text { OUT })}$ is independent from the filter clock frequency ($\mathrm{f}_{\text {CLK }} \leq 250 \mathrm{kHz}$).

Figures 2 and 3 show the $\mathrm{V}_{\mathrm{OS} \text { (OUT) }}$ variation for three different power supplies and for clock frequencies up to 5 MHz . Both figures were traced with the LTC1066-1 soldered into the PC board. Power supply decoupling is very important, especially with $\pm 7.5 \mathrm{~V}$ supplies. If necessary connect a small resistor (20 $)$ between pins 5 and 18, and between pins 10 and 4, to isolate the precision op amp supply pin from the switched capacitor network supply (see the Test Circuit).

1066-1 1 F02
Figure 2. Output Offset Change vs Clock (Relative to Offset for fcLK $=250 \mathrm{kHz}$)

Figure 3. Output Offset Change vs Clock (Relative to Offset for f CLK $=250 \mathrm{kHz}$)

APPLICATIONS INFORMATION

AC PERFORMANCE

AC (Passband) Gain

The passband gain of the LTC1066-1 is equal to the passband gain of the internal switched-capacitor lowpass filter, and it is measured at $f=0.25 f_{\text {CUTOFF }}$. Unlike conventional monolithic filters, the LTC1066-1 starts with an absolutely perfect OdB DC gain and phases into an "imperfect" AC passband gain, typically $\pm 0.1 \mathrm{~dB}$.
The filter's low passband ripple, typically 0.05 dB , is measured with respect to the AC passband gain.
The LTC1066-1 DC stabilizing loop slightly warps the filter's passband performance ifthe-3dB frequency of the feedback passive elements $\left(1 / 2 \pi R_{F} C_{F}\right)$ is more than the
cutoff frequency of the internal switched-capacitor filter divided by 250. The LTC1066-1 clock tunability directly relates to the above constraint. Figure 4 illustrates the passband behavior of the LTC1066-1 and it demonstrates the clock tunability of the device. A typical LTC1066-1 device was used to trace all four curves of Figure 4. Curve D, for instance, has nearly zero ripple and 0.04dB passband gain. Curve D's 20 kHz cutoff is much higher than the 8 Hz cutoff frequency of the $R_{F} C_{F}$ feedback network, so its passband is free from any additional error due to $\mathrm{R}_{\mathrm{F}} \mathrm{C}_{\mathrm{F}}$ feedback elements. Curve B illustrates the passband error when the 1 MHz clock of curve D is lowered to 100 kHz . A 0.1 dB error is added to the filter's original AC gain of 0.04 dB .

Figure 4. Passband Behavior

LTC 1066-1

APPLICATIONS INFORMATION

Transient Response and Settling Time

The LTC1066-1 exhibits two different transient behaviors. First, during power-up the DC correcting loop will settle after the voltage offset of the internal switched-capacitor network is stored across the feedback capacitor C_{F} (see Block Diagram). It takes approximately five time constants ($5 R_{F} C_{F}$) for settling to 1%. Second, following DC loop settling, the filter reaches steady state. The filter transient response is then defined by the frequency characteristics of the internal switched-capacitor lowpass filter. Figure 5 shows details.

DC loop settling is also observed if, at steady state, the DC offset of the internal switched-capacitor network suddenly changes. A sudden change may occur if the clock frequency is instantaneously stepped to a value above 1 MHz .

Figure 5. Transient Response

Clock Feedthrough

Clock feedthrough is defined as the RMS value of the clock frequency and its harmonics that are present at the filter's output pin (9). The clock feedthrough is tested with the input pin (2) grounded and depends on PC board layout
and on the value of the power supplies. With proper layout techniques the values of the clock feedthrough are shown on Table 7.

Table 7. Clock Feedthrough

POWER SUPPLY	$\mathbf{5 0 : 1}$	$\mathbf{1 0 0 : 1}$
Single 5 V	$70 \mu \mathrm{~V}_{\text {RMS }}$	$90 \mu V_{\text {RMS }}$
$\pm 5 \mathrm{~V}$	$100 \mu \mathrm{~V}_{\text {RMS }}$	$200 \mu V_{\text {RMS }}$
$\pm 7.5 \mathrm{~V}$	$160 \mu \mathrm{~V}_{\text {RMS }}$	$650 \mu \mathrm{~V}_{\text {RMS }}$

Wideband Noise

The wideband noise of the filter is the total RMS value of the device's noise spectral density and is used to determine the operating signal-to-noise ratio. Most of its frequency contents lie within the filter passband and cannot be reduced with post filtering. For instance, the LTC10661 wideband noise at $\pm 5 \mathrm{~V}$ supply is $100 \mu \mathrm{~V}_{\mathrm{RMS}}, 95 \mu \mathrm{~V}_{\mathrm{RMS}}$ of which have frequency contents from DC up to the filter's cutoff frequency. The total wideband noise ($\mu \mathrm{V}_{\mathrm{RMS}}$) is nearly independent of the value of the clock. The clock feedthrough specifications are not part of the wideband noise. Table 8 lists the typical wideband noise for each supply.

Table 8. Wideband Noise

POWER SUPPLY	$\mathbf{5 0 : 1}$	$\mathbf{1 0 0 : 1}$ (Pin 8 to GND)
Single 5 V	$90 \mu V_{\text {RMS }}$	$80 \mu V_{\text {RMS }}$
$\pm 5 \mathrm{~V}$	$100 \mu V_{\text {RMS }}$	$85 \mu V_{\text {RMS }}$
$\pm 7.5 \mathrm{~V}$	$106 \mu V_{\text {RMS }}$	$90 \mu V_{\text {RMS }}$

Speed Limitations

To avoid op amp slew rate limiting at maximum clock frequencies, the signal amplitude should be kept below a specified level as shown in Table 9.

Table 9. Maximum V_{IN}

INPUT FREQUENCY	MAXIMUM V IN
$\geq 250 \mathrm{kHz}$	$0.50 \mathrm{~V}_{\text {RMS }}$
$\geq 700 \mathrm{kHz}$	$0.25 \mathrm{~V}_{\text {RMS }}$

APPLICATIONS INFORMATION

Aliasing

In a sampled-data system the sampling theorem says that if an input signal has any frequency components greater than one half the sampling frequency, aliasing errors will appear at the output. In practice, aliasing is not always a serious problem. High order switched-capacitor lowpass filters are inherently band limited and significant aliasing occurs only for input signals centered around the clock frequency and its multiples.

Figure 6 shows the LTC1066-1 aliasing response when operated with a clock-to-cutoff frequency ratio of $50: 1$. With a 50:1 ratio LTC1066-1 samples its input twice during one clock period and the sampling frequency is equal to two times the clock frequency.
The figure also shows the maximum aliased output generated for inputs in the range of $2 f_{C L K} \pm f_{C}$. For instance, if the LTC1066-1 is programmed to produce a cutoff frequency of 20 kHz with 1 MHz clock, a $10 \mathrm{mV}, 1.02 \mathrm{MHz}$ input signal will cause a $10 \mu \mathrm{~V}$ aliased signal at 20 kHz . This signal will be buried in the noise. Maximum aliasing will occur only for input signals in the narrow range of $2 \mathrm{MHz} \pm 20 \mathrm{kHz}$ or multiples of 2 MHz .

Figure 7 shows the LTC1066-1 aliased response when operated with a clock-to-cutoff frequency ratio of 100:1 (linear phase response with pin 8 to ground).

Figure 6. Aliasing vs Frequency $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}=50: 1$ (Pin 8 to V^{+}) Clock is a 50% Duty Cycle Square Wave

Figure 7. Aliasing vs Frequency $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}=100: 1$ (Pin 8 to Ground) Clock is a 50\% Duty Cycle Square Wave

LTC 1066-1

TYPICAL APPLICATION

Dual Supply Operation
DC Accurate, 10 Hz to 100 kHz , Clock-Tunable, 8th Order Elliptic Lowpass Filter $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}=50: 1$

MAXIMUM OUTPUT VOLTAGE OFFSET $= \pm 5.5 \mathrm{mV}$, DC LINEARITY $= \pm 0.0063 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
THE PINS 6 TO 12 CONNECTION SHOULD BE UNDER THE IC AND SHIELDED BY AN ANALOG SYSTEM GROUND PLANE.
RC COMPENSATION BETWEEN PINS 11 AND 13 REQUIRED ONLY FOR $f_{\text {CUTOFF }} \geq 60 \mathrm{kHz}$.
THE 33μ F CAPACITOR IS A NONPOLARIZED, ALUMINUM ELECTROLYTIC, $\pm 20 \%, 16 \mathrm{~V}$ (NICHICON UUPIC 330MCRIGS OR NIC NACEN 33M16V 6.3×5.5 OR EQUIVALENT).

* PROTECTION DIODES, 1N4148 ARE OPTIONAL. SEE PIN DESCRIPTIONS. 1066-1 ta03
\qquad

Single 5V Supply Operation
DC Accurate, 10 Hz to 36 kHz , Clock-Tunable, 8th Order Elliptic Lowpass Filter $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}=50: 1$

INPUT LINEAR RANGE $=1.4 \mathrm{~V}$ to 3.6 V . DC LINEARITY $= \pm 0.0063 \%$.
THE PINS 6 TO 12 CONNECTION SHOULD BE UNDER THE IC AND SHIELDED BY AN ANALOG SYSTEM GROUND PLANE.
RC COMPENSATION BETWEEN PINS 11 AND 13 REQUIRED ONLY FOR fCUTOFF $\geq 24 \mathrm{kHz}$. THE $33 \mu \mathrm{~F}$ CAPACITOR IS A NONPOLARIZED, ALUMINUM ELECTROLYTIC, $\pm 20 \%$, 16 V (NICHICON UUPIC 330MCRIGS OR NIC NACEN 33M16V 6.3×5.5)

1066-1 TA04

LTC 1066-1

TYPICAL APPLICATION

DC Accurate Lowpass Filter with Input Anti-Aliasing
(fclk $\leq 250 \mathrm{kHz}$)

TYPICAL APPLICATION

DC Accurate Lowpass Filter with Input Anti-Aliasing (fclk > 250kHz)
$\mathrm{f}_{-3 \mathrm{~dB}}$ IS THE -3dB FREQUENCY
OF THE 2ND ORDER RC FILTER
$\mathrm{f}_{-3 \mathrm{~dB}}=5 \bullet \mathrm{f}_{\text {CUTOFF }}$
$\mathrm{C}=\frac{100}{\mathrm{f}_{-3 \mathrm{~dB}}} \mu \mathrm{~F}\left(\mathrm{f}_{-3 \mathrm{~dB}}\right.$ IN Hz $)$
$\mathrm{f}_{\text {CUTOFF }}=\frac{\mathrm{f}_{\text {CLK }}}{50}$

1066-1 TA06

LTC 1066-1

TYPICAL APPLICATION

DC Accurate Clock-Tunable Lowpass Filter with Tunable Input Anti-Aliasing Filter (Circuit provides at least -20dB attenuation to input frequencies at 2 f cLK.

COMPONENT CALCULATIONS FOR A CLOCK-TUNABLE RANGE OF FIVE OCTAVES:
DEFINITIONS: 1. THE CUTOFF FREQUENCY OF LTC1066-1 IS ABBREVIATED AS f_{C}
2. $\mathrm{f}_{\mathrm{C}(\text { LOW }}$ IS THE LOWEST CUTOFF FREQUENCY OF INTEREST
3. A RANGE OF FIVE OCTAVES IS FROM $\mathrm{f}_{\mathrm{C}}(\mathrm{LOW}) \mathrm{TO} 32 \mathrm{f}_{\mathrm{C}}(\mathrm{LOW})$

COMPONENT CALCULATIONS:
$\frac{1}{2 \pi R_{F} C_{F}}=\frac{f_{C(L O W)}}{125} ; \mathrm{R}_{I N}{ }^{*}=\underset{\mathrm{f}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{F}}}\left(\right.$ IF R R R_{F} CAN BE CHOSEN TO BE 20k, $\mathrm{R}_{\text {IN }}$ AND $\mathrm{C}_{\text {CIN }}$ ARE OMITTED.
$\mathrm{f}_{\mathrm{C}(\mathrm{LOW})} / 125$ ALLOWS FOR 0.2dB GAIN PEAK IN THE PASSBAND)
$\mathrm{C} 1=\frac{1}{\mathrm{f}_{\mathrm{C}(\mathrm{LOW})}} \mu \mathrm{F}\left(\mathrm{f}_{\mathrm{C}(\mathrm{LOW})} \mathrm{IN} \mathrm{Hz}\right) ; \mathrm{R} 1=1 \mathrm{k}$
$C 2=C 1, C 3=2 \cdot C 1, C 4=4 \bullet C 1, C 5=8 \cdot C 1$
$\mathrm{C}_{\mathrm{P}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{P}}=\frac{10^{5}}{50 \bullet \mathrm{f}_{\mathrm{C}}(\mathrm{LOW})} \mathrm{k}$
$\mathrm{C}_{\mathrm{A}}=0.047 \mu \mathrm{~F} ; \mathrm{R}_{\mathrm{A}}=\frac{5 \times 10^{5}}{50 \cdot \mathrm{f}_{\mathrm{C}}(\mathrm{LOW})} \mathrm{k}$
EXAMPLE: LET'S CHOOSE A FIVE OCTAVE RANGE FROM 1 kHz TO $32 \mathrm{kHz} . \mathrm{f}_{\mathrm{C}}(\mathrm{LOW})=1 \mathrm{kHz}(1000 \mathrm{~Hz})$.
LET $C_{F}=1 \mu F$, THEN R_{F} CALCULATES TO BE 20k. R ${ }_{I N}$ AND C CIN OMITTED;
$\mathrm{R} 1=1 \mathrm{k}, \mathrm{C} 1=0.001 \mu \mathrm{~F}, \mathrm{C} 2=0.001 \mu \mathrm{~F}, \mathrm{C} 3=0.0022 \mu \mathrm{~F}, \mathrm{C} 4=0.0039 \mu \mathrm{~F}$,
$\mathrm{C} 5=0.0082 \mu \mathrm{~F} . \mathrm{C}_{\mathrm{P}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{P}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{A}}=0.047 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{A}}=10 \mathrm{k}$
1066-1 TA07

PACKAGE DESCRIPTION

SW Package
18-Lead Plastic Small Outline (Wide . 300 Inch)
(Reference LTC DWG \# 05-08-1620)

LTC 1066-1

TYPICAL APPLICATIONS

100kHz Elliptic Lowpass Filter with Input Anti-Aliasing and Output Clock Feedthrough Filters (Not DC Accurate)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1063	Clock-Tunable 5th Order Butterworth Lowpass	1 mV Offset, 80dB CMR
LTC1065	Clock-Tunable 5th Order Bessel Lowpass Filter	1mV Offset, 80dB CMR
LTC1565-31	650kHz Linear Phase Lowpass Filter	Continuous Time, Fully Diff In/Out
LTC1566-1	Low Noise, 2.3MHz Lowpass Filter	Continuous Time, Fully Diff In/Out
LT1567	Low Noise Op Amp and Inverter Building Block	Single Ended to Differential Conv
LT1568	Low Noise, 10MHz 4th Order Building Block	Lowpass or Bandpass, Diff Outputs
LT6600-2.5	Low Noise Differential Amp and 10MHz Lowpass	$55 \mu V_{\text {RMS }}$ Noise 100kHz to 10MHz, 3V Supply
LT6600-10	Low Noise Differential Amp and 20MHz	Lowpass 86 $\mathrm{V}_{\text {RMS }}$ Noise 100kHz to 20MHz, 3V Supply

