

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	$\pm 22 \mathrm{~V}$
Input Voltage	$\pm 22 \mathrm{~V}$
Output Short-Circuit Duration	Continuous

Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH0094CD	
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\quad LH0094CD	
Lead Temperature	
(Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. Transfer function: $\mathrm{E}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Y}} \frac{\mathrm{V}_{\mathrm{Z}} \mathrm{m}}{\mathrm{V}_{\mathrm{X}}} ; 0.1 \leq \mathrm{m} \leq 10 ; O \mathrm{~V} \leq \mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathrm{Y}}, \mathrm{V}_{\mathrm{Z}} \leq 10 \mathrm{~V}$

Parameter	Conditions	LH0094C			Units
		Min	Typ	Max	
ACCURACY					
Multiply Untrimmed External Trim	$E_{O}=V_{Z} V_{Y}\left(0.03 \leq V_{Y} \leq 10 V ; 0.01 \leq V_{Z} \leq 10 V\right)$ (Figure 2) (Figure 3) vs. Temperature		$\begin{gathered} 0.45 \\ 0.1 \\ 0.2 \end{gathered}$	0.9	\% F.S. (10V) \% F.S. $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Divide Untrimmed External Trim	$\mathrm{E}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{Z}} / \mathrm{V}_{\mathrm{X}}$ (Figure 4), $0.5 \leq \mathrm{V}_{\mathrm{X}} \leq 10 ; 0.01 \leq \mathrm{V}_{\mathrm{Z}} \leq 10$) (Figure 5), $\left(0.1 \leq \mathrm{V}_{\mathrm{X}} \leq 10 ; 0.01 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right)$ vs. Temperature		$\begin{gathered} 0.45 \\ 0.1 \\ 0.2 \end{gathered}$	0.9	\% F.S. \% F.S. $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Square Root Untrimmed External Trim	$E_{O}=10 \sqrt{V_{Z} / 10}$ (Figure 8), $\left(0.03 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right.$ (Figure 9), ($0.01 \leq \mathrm{V}_{\mathrm{Z}} \leq 10$		$\begin{aligned} & 0.45 \\ & 0.15 \end{aligned}$	0.9	$\begin{aligned} & \text { \% F.S. } \\ & \text { \% F.S. } \end{aligned}$
Square Untrimmed	$E_{O}=10\left(V_{Z} / 10\right)^{2}\left(0.1 \leq V_{Z} \leq 10\right)$ (Figure 6)	1.0	2.0	\% F.S.	
External Trim	(Figure 7)	0.15		\% F.S.	
Low Level Square Root	$\mathrm{E}_{\mathrm{O}}=\sqrt{10 \mathrm{~V}_{\mathrm{Z}}} ; 5.0 \mathrm{mV} \leq \mathrm{V}_{\mathrm{Z}} \leq 10 \mathrm{~V}$, (Figure 10)		0.05		\% F.S.
Exponential Circuits	$\begin{aligned} & \mathrm{m}=0.2, \mathrm{E}_{\mathrm{O}}=10\left(\mathrm{~V}_{\mathrm{Z}} / 10\right)^{2} \text { (Figure 11), }\left(0.1 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right) \\ & \mathrm{m}=5.0, \mathrm{E}_{\mathrm{O}}=10\left(\mathrm{~V}_{\mathrm{Z}} / 10\right)^{5}\left(\text { Figure 11), }\left(1.0 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right)\right. \end{aligned}$		$\begin{aligned} & 0.08 \\ & 0.08 \end{aligned}$		$\begin{aligned} & \text { \% F.S. } \\ & \text { \% F.S. } \end{aligned}$
OUTPUT OFFSET					
	$V_{X}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{Z}}=0$		5.0	10	mV
AC CHARACTERISTICS					
3 dB Bandwidth Noise	$\begin{aligned} & m=1.0, V_{X}=10 \mathrm{~V}, V_{Y}=0.1 V_{\text {rms }} \\ & 10 \mathrm{~Hz} \text { to } 1.0 \mathrm{kHz}, \mathrm{~m}=1.0, \mathrm{~V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{Z}}=\mathrm{OV} \\ & \mathrm{~V}_{\mathrm{X}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{X}}=0.1 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 10 \\ 100 \\ 300 \\ \hline \end{array}$		kHz $\mu \mathrm{V} / \mathrm{rms}$ $\mu \mathrm{V} / \mathrm{rms}$
EXPONENT					
m		$\begin{gathered} 0.2 \text { to } \\ 5.0 \end{gathered}$	$\begin{gathered} 0.1 \text { to } \\ 10 \end{gathered}$		
INPUT CHARACTERISTICS					
Input Voltage Input Impedance	(For Rated Performance) (All Inputs)	$\begin{gathered} 0 \\ 98 \end{gathered}$	100	10	$\begin{gathered} \mathrm{V} \\ \mathrm{k} \Omega \end{gathered}$
OUTPUT CHARACTERISTICS					
Output Swing Output Impedance Supply Current	$\begin{aligned} & \left(R_{L} \leq 10 k\right) \\ & \left(V_{S}= \pm 15 \mathrm{~V}\right)(\text { Note } 1) \end{aligned}$	10	$\begin{aligned} & 12 \\ & 1.0 \\ & 3.0 \end{aligned}$	5.0	$\begin{gathered} \mathrm{V} \\ \Omega \\ \mathrm{~mA} \end{gathered}$

Note 1: Refer to RETS0094D drawing for specifications of the military LH00940 version

Applications Information

GENERAL INFORMATION

Power supply bypass capacitors ($0.1 \mu \mathrm{~F}$) are recommended for all applications.

The LH0094 series is designed for positive input signals only. However, negative input up to the supply voltage will not damage the device.
A clamp diode (Figure 1) is recommended for those applications in which the inputs may be subjected to open circuit or negative input signals
For basic applications (multiply, divide, square, square root) it is possible to use the device without any external adjustments or components. Two matched resistors are provided internally to set m for square or square root.
When using external resistors to set m, such resistors should be as close to the device as possible.

SELECTION OF RESISTORS TO SET m

Internal Matched Resistors
R_{A} and R_{B} are matched internal resistors. They are $100 \Omega \pm 10 \%$, but matched to 0.1%.
(a) $m=2^{*}$

(b) $\mathrm{m}=0.5^{*}$

TL/H/5695-2
*No external resistors required, strap as indicated

External Resistors

The exponent is set by 2 external resistors or it may be continuously varied by a single trim pot. (R1 $+\mathrm{R} 2 \leq 500 \Omega$.
(a) $m=1$

(b) $m<1$

$m=\frac{R 2}{R 1+R_{2}} R 1+R 2 \approx 200 \Omega$
(c) $m>1$

$$
m=\frac{R 1+R 2}{R 2}
$$

TL/H/5695-4

ACCURACY (ERROR)

The accuracy of the LH0094 is specified for both externally adjusted and unadjusted cases.
Although it is customary to specify the errors in percent of full-scale (10V), it is seen from the typical performance curves that the actual errors are in percent of reading. Thus, the specified errors are overly conservative for small input voltages. An example of this is the LH0094 used in the multiplication mode. The specified typical error is 0.25% of fullscale (25 mV). As seen from the curve, the unadjusted error is $\approx 25 \mathrm{mV}$ at 10 V input, but the error is less than 10 mV for inputs up to 1 V . Note also that if either the multiplicand or the multiplier is at less than 10 V , (5 V for example) the unadjusted error is less. Thus, the errors specified are at full-scale-the worst case.

The LH0094 is designed such that the user is able to externally adjust the gain and offset of the device-thus trim out all of the errors of conversion. In most applications, the gain adjustment is the only external trim needed for super accu-racy-except in division mode, where a denominator offset adjust is needed for small denominator voltages.

EXPONENTS

The LH0094 is capable of performing roots to 0.1 and powers up to 10. However, care should be taken when applying these exponent-otherwise, results may be misinterpreted. For example, consider the $1 / 10$ th power of a number: i.e., 0.001 raised to 0.1 power is $0.5011 ; 0.1$ raised to the 0.1 power is 0.7943 ; and 10 raised to the 0.1 power is 1.2589 . Thus, it is seen that while the input has changed 4 decades, the output has only changed a little more than a factor of 2. It is also seen that with as little as 1 mV of offset, the output will also be greater than zero with zero input.

Applications Information (Continued)

1. CLAMP DIODE CONNECTION

FIGURE 1. Clamp Diode Connection

2. MULTIPLY

FIGURE 2a. LH0094 Used to Multiply (No External Adjustment)

FIGURE 2b. Typical Performance of LH0094 in Multiply Mode Without External Adjustment

Trim Procedure
Set $V_{Z}=V_{Y}=10 \mathrm{~V}$ Adjust R2 until output $=10.000 \mathrm{~V}$

FIGURE 3. Precision Multiplier (0.02\% Typ) with 1 External Adjustment

Applications Information (Continued)

FIGURE 4a. LH0094 Used to Divide (No External Adjustment)

FIGURE 4b. Typical Performance, Divide Mode, Without External Adjustments

Trim Procedures
Apply 10 V to $\mathrm{V}_{\mathrm{Y}}, 0.1 \mathrm{~V}$ to V_{X} and V_{Z} Adjust R3 until $\mathrm{E}_{\mathrm{O}}=10.000 \mathrm{~V}$.
Apply 10.000 V to all inputs. Adjust R2 until $\mathrm{E}_{\mathrm{O}}=10.000 \mathrm{~V}$ Repeat procedure

4. SQUARE

FIGURE 6a. Basic Connection of LH0094 (m=2) without External Adjustment Using Internal Resistors to Set m

TL/H/5695-6
FIGURE 6b. Squaring Mode without External Adjustment

Applications Information
 (Continued)

4. SQUARE (Continued)

5. SQUARE ROOT

FIGURE 8a. Basic Connection of LH0094 ($\mathrm{m}=0.5$) without External Adjustment Using Internal Resistors to Set m

TL/H/5695-7

Applications Information (Continued)

6. Low Level square root

FIGURE 10. 3-Decade Precision Square Root Circuit Using the LH0094 with $\mathbf{m}=1$

Typical Applications

FIGURE 11. Precision Exponentiator ($\mathrm{m}=0.2$ to 5)

Typical Applications (Continued)

Note. The LH0094 may be used to generate a voltage equivalent to:

$$
V 0=\sqrt{1^{2}+V 2^{2}}
$$

$\mathrm{V} 0=\mathrm{V} 2+\frac{\mathrm{V} 1^{2}}{\mathrm{~V} 0+\mathrm{V} 2}$
$\mathrm{V}^{2}{ }^{2}+\mathrm{V} 0 \mathrm{~V} 2=\mathrm{V} 2 \mathrm{~V} 0+\mathrm{V}_{2}{ }^{2}+\mathrm{V}_{1}{ }^{2}$
$\mathrm{V}_{0}{ }^{2}=\mathrm{V}_{1}{ }^{2}+\mathrm{V}_{2}{ }^{2}$

$$
\therefore \mathrm{V} 0=\sqrt{\mathrm{V}^{2}+\mathrm{V}^{2}} \quad \mathrm{~V} 1, \mathrm{~V} 2 \quad 0 \rightarrow 10 \mathrm{~V}
$$

$R \approx 10 k$
National Semiconductor resistor array RA08-10k is recommended
FIGURE 12. Vector Magnitude Function

Note. The LH0094 may be used in direct measurement of gas flow.
Flow $=k \sqrt{\frac{P \Delta P}{T}}$
$E_{O}=10 \frac{V_{P}}{V_{T}} \times \frac{V_{\Delta P}}{E_{O}}$
$E_{O}{ }^{2}=10 \frac{V_{P} V_{\Delta P}}{V T}$
$E_{O}=\sqrt{10 \frac{V P V_{\Delta P}}{V T}}$
$\mathrm{P}=$ Absolute pressure
$\mathrm{T}=$ Absolute temperature
$\Delta \mathrm{P}=$ Pressure drop
FIGURE 13. Mass Gas Flow Circuit

Typical Applications (Continued)

Note. The LH0094 may also be used to generate the Log
of a ratio of 2 voltages. The output is taken from pin 14 of the LH0094 for the Log application.
$E_{L O G}=K 1 \frac{K T}{q} \ell n \frac{V_{Z}}{V_{X}}$
where $\mathrm{K} 1=\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}$
If $\mathrm{K} 1=\frac{1}{\mathrm{KT} / \mathrm{q} \ell \mathrm{n} 10}$
then $E_{L O G}=\log _{10} \frac{V_{Z}}{V_{X}}$
$\mathrm{R} 1=15.9 \mathrm{R} 2$
$R 2 \approx 400 \Omega$
R2 must be a thermistor with a tempco of $\approx 0.33 \% /{ }^{\circ} \mathrm{C}$ to be compensated over temperature.

FIGURE 14. Log Amp Application

Physical Dimensions inches (millimeters)

Order Number LH0094CD NS Package Number D16D

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

