National Semiconductor

LMX3161 Single Chip Radio Transceiver

General Description

The LMX3161 Single Chip Radio Transceiver is a monolithic, integrated radio transceiver optimized for use in a Digital Enhanced Cordless Telecommunications (DECT) system. It is fabricated using National's ABiC V BiCMOS process ($f_T = 18$ GHz).

The LMX3161 contains phase locked loop (PLL), transmit and receive functions. The 1.1 GHz PLL block is shared between transmit and receive section. The transmitter includes a frequency doubler, and a high frequency buffer. The receiver consists of a 2.0 GHz low noise mixer, an intermediate frequency (IF) amplifier, a high gain limiting amplifier, a frequency discriminator, a received signal strength indicator (RSSI), and an analog DC compensation loop. The PLL, doubler, and buffers can be used to implement open loop modulation along with an external VCO and loop filter. The circuit features on-chip voltage regulation to allow supply voltages ranging from 3.0V to 5.5V. Two additional voltage regulators provide a stable supply source to external discrete stages in the Tx and Rx chains.

The IF amplifier, high gain limiting amplifier, and discriminator are optimized for 110 MHz operation, with a total IF gain of 85 dB. The single conversion receiver architecture pro-

vides a low cost, high performance solution for communications systems. The RSSI output may be used for channel quality monitoring.

PRELIMINARY

November 1999

The Single Chip Radio Transceiver is available in a 48-pin 7mm X 7mm X 1.4mm PQFP surface mount plastic package.

Features

- Single chip solution for DECT RF transceiver
- RF sensitivity to -93 dBm; RSSI sensitivity to -100 dBm
- Two regulated voltage outputs for discrete amplifiers
- High gain (85 dB) intermediate frequency strip
- Allows unregulated 3.0V–5.5V supply voltage
- Power down mode for increased current savings
- System noise figure 6.5 dB (typ)

Applications

- Digital Enhanced Cordless Telecommunications (DECT)
- Personal wireless communications (PCS/PCN)
- Wireless local area networks (WLANs)
- Other wireless communications systems

© 1999 National Semiconductor Corporation DS012815

Pin No.	Pin Name	I/O	Description
1	V _{CC}	_	Power supply for CMOS section of PLL and ESD bussing.
2	MIXEROUT	0	IF output from the mixer.
3	V _{cc}	_	Power supply for mixer section.
4	GND	_	Ground.
5	RFIN	1	RF input to the mixer.
6	GND	_	Ground.
7	Tx V _{REG}	_	Regulated power supply for external PA gain stage.
8	Vcc	_	Power supply for analog sections of PLL and doubler.
9	GND	_	Ground.
10	Tx _{OUT}	0	Frequency doubler output.
11	GND	_	Ground.
12	Vcc	_	Power supply for analog sections of PLL and doubler.
13	GND	-	Ground.
14	GND	-	Ground.
15	fusi	1	RF Input to PLL and frequency doubler.
16	CE	1	Chip Enable, Pulling LOW powers down entire chip, Taking CE HIGH powers up the
			appropriate functional blocks depending on the state of bits F6, F7, F11, and F12
			programmed in F-latch. It is necessary to initialize the internal registers once, after the
			power up reset. The registers' contents are kept even in power-down condition.
17	V _P		Power supply for charge pump.
18	D _o	0	Charge pump output. For connection to a loop filter for driving the input of an external VCC
19	V _{cc}	-	Power supply for CMOS section of PLL and ESD bussing.
20	GND	-	Ground.
21	OUT 0	0	Programmable CMOS output. Refer to Function Register Programming Description section for details.
22	Rx PD/OUT 1	I/O	Receiver power down control input or programmable CMOS output. Refer to Function Register Programming Description section for details.
23	Tx PD/OUT 2	I/O	Transmitter power down control input or programmable CMOS output. Refer to Function Register Programming Description section for details.
24	PLL PD	I	PLL power down control input. LOW for PLL normal operations, and HIGH for PLL power saving.
25	CLOCK	I	MICROWIRE™ clock input. High impedance CMOS input with Schmitt Trigger.
26	DATA	1	MICROWIRE data input. High impedance CMOS input with Schmitt Trigger.
27	LE	1	MICROWIRE load enable input. High impedance CMOS input with Schmitt Trigger.
28	OSCIN	1	Oscillator input. High impedance CMOS input with feedback.
29	S FIELD	I	DC compensation circuit enable. While LOW, the DC compensation circuit is enabled and the threshold is updated through the DC compensation loop. While HIGH, the switch is opened, and the comparator threshold is held by the external capacitor.
30	RSSI	0	Received signal strength indicator (RSSI) output.
31	THRESH	0	Threshold level to external comparator.
32	DC COMPIN	1	Input to DC compensation circuit
33	DISCOUT	0	Demodulated output of discriminator
34	GND	_	Ground.
35	Voo	_	Power supply for the discriminator circuit
36	QUAD	1	Quadrature input for tank circuit
37	Vaa	<u> </u>	Power supply for limiter output stage
38			Ground
30	V		Power supply for limiter gain stages
40		+	Ground
-10	UND	<u>⊢</u>	

www.national.com

LMX3161

LMX3161 Pin Diagram (Continued)

		.g							
Pin No.	Pin Name	I/O	Description						
42	LIMIN	I	IF input to the limiter.						
43	GND	-	Ground.						
44	IF _{OUT}	0	IF output from IF amplifier.						
45	V _{cc}	-	Power supply for IF amplifier output.						
46	GND	—	Ground.						
47	IF _{IN}	1	IF input to IF amplifier.						
48	Rx V _{REG}	-	Regulated power supply for external LNA stages.						

Absolute Maximum Ratings (Notes 1, 2)

Power Supply Voltage (V_{CC}) V_{P} Voltage on Any Pin with

 $\begin{array}{l} {\sf GND} = {\sf OV} \; ({\sf V}_{\sf I}) \\ {\sf Storage \; {\sf Temperature \; Range \; ({\sf T}_{\sf S})} \\ {\sf Lead \; {\sf Temp. \; (solder, \; 4 \; sec)}({\sf T}_{\sf L}) \end{array} } \end{array}$

-0.3V to V_{CC} +0.3V -65°C to +150°C +260°C

-0.3V to +6.5V

-0.3V to +6.5V

Recommended Operating Conditions

Supply Voltage (V_{CC}) (V_{P})

3.0V to 5.5V V_{CC} to 5.5V LMX3161

Note 2: This device is a high performance RF integrated circuit with an ESD rating < KeV and is ESD sensitive. Handling and assembly of this device should only be done at ESD work stations.

Electrical Characteristics

The following specifications are guaranteed for V_{CC} = 3.6V and T_A = 25°C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Current Consumption					
I _{DD, RX}	-Open-Loop Receive Mode	PLL & TX chain powered down	-	50	60	mA
I _{DD, TX}	-Open-Loop Transmit Mode	PLL & RX chain powered down	—	27	37	mA
I _{DD, PLL}	-Closed-Loop PLL Mode	RX & TX chain powered down	_	6	8	mA
I _{PD}	-Power Down Mode		—	—	70	μΑ
MIXER		f_{RF} = 1.89 GHz, f_{IF} = 110 MHz, f_{LO} = 1) MHz)			
f _{RF}	RF Frequency Range	(Note 3)	1.7	—	2.0	GHz
f _{IF}	IF Frequency	(Note 4)	-	110	—	MHz
Z _{IN}	Input Impedance, RF _{IN}		—	15-j5	—	Ω
Z _{OUT}	Output Impedance, Mixer Out		—	160-j70	—	Ω
NF	Noise Figure (Single Side Band)	(Notes 5, 6)	—	10	14	dB
G _C	Conversion Gain	(Note 5)	14	17	—	dB
P _{1dB}	Input 1dB Compression Point	(Note 5)	-24	-20	—	dBm
OIP3	Output 3rd Order Intercept Point	(Note 5)	—	7.5	—	dBm
F _{IN} -RF	Fin to RF Isolation	F _{IN} =890 MHz	-	-30	_	dB
		f _{IN} =1780 MHz	—	-10.6	—	dB
		f _{IN} =2670 MHz	—	-30	_	dB
F _{IN} -IF	Fin to IF Isolation	f _{IN} =890 MHz	-	-30	_	dB
		f _{IN} =1780 MHz	-	-30	_	dB
		f _{IN} =2670 MHz	—	-30	_	dB
RF–IF	RF to IF Isolation	P _{IN} =0 to -85 dB	—	-30	—	dB
IF AMPL	IFIER	f _{IN} = 110 MHz				
NF	Noise Figure	(Note 7)	—	8	11	dB
A _V	Gain	(Note 7)	15	24	_	dB
Z _{IN}	Input Impedance		-	150–j120	_	Ω
Z _{OUT}	Output Impedance		—	190–j20	_	Ω
IF LIMITE	ER	f _{IN} = 110 MHz				
Sens	Limiter/Discriminator Sensitivity	BER=10 ⁻³	—	-65	_	dBm
IF _{IN}	IF Limiter Input Impedance		—	100–j300	_	Ω
DISCRIM	INATOR	f _{IN} = 110 MHz				
	Disc Gain	1X Mode	—	10	—	mV/°
	(mV/° of Phase Shift from Tank Circuit)	3X Mode	—	33	_	mV/°
V _{OUT}	Discriminator Output Peak to Peak	1X Mode (Note 8)	80	160	_	mV
	Voltage	3X Mode (Note 8)	400	580	_	mV
Vos	Disc. Output DC Voltage	Nominal (Note 10)	1.2		1.82	V
DISCOUT	Disc. Output Impedance		—	300	_	Ω

Electrical Characteristics (Continued)

ŜΙΤ

Symbol RSSI (No RSSI _{out} RSSI DC COM	Parameter te 11) Output Voltage Slope	$\label{eq:final} \begin{array}{c} \mbox{Conditions} \\ f_{IN} = 110 \mbox{ MHz} \\ \mbox{P}_{IN} = -80 \mbox{ dBm}^{@}IF_{IN} \mbox{ input pin} \end{array}$	Min	Тур	Max	Unit
RSSI (No RSSI _{out} RSSI DC COM	te 11) Output Voltage Slope	$f_{IN} = 110 \text{ MHz}$ $P_{IN}=-80 \text{ dBm@IF}_{IN}$ input pin				
RSSI RSSI DC COM	Output Voltage Slope	P _{IN} =-80 dBm@IF _{IN} input pin				
RSSI DC COM	Slope		0.12	0.2	0.6	V
RSSI DC COM	Slope	P _{IN} =-20 dBm@IF _{IN} input pin	0.9	1.2	—	V
RSSI DC COM		P_{IN} = -90 to -30 dBm@LIM _{IN} input pin	11	18	25	mV/d B
DC COM	Dynamic Range	P _{IN} min= -90 dBm@LIM _{IN} input pin	—	60	—	dB
	PENSATION CIRCUIT					
V _{os}	Input Offset Voltage		-5	—	+5	mV
V _{I/O}	Input/Output Voltage Swing	Centered at 1.5V	_	1.0	—	V _{PP}
R _{SH}	Sample and Hold Resistor		2000	3000	3600	Ω
FREQUE	NCY SYNTHESIZER	$P_{IN} = -14 \text{ to } -9 \text{ dBm}$				
f _{IN}	Input Frequency Range	(Note 9)	500	_	1200	MHz
P _{IN}	Input Signal Level	Z _{IN} =200Ω (Note 15)	_	-11.5	_	dBm
fosc	Oscillator Frequency Range	(Note 12)	5	_	20	MHz
Vosc	Oscillator Sensitivity	(Note 12)	0.5	1.0	_	V _{pp}
I _{Do-source}	Charge Pump Output Current	$V_{do} = V_{P}/2, I_{cpo} = LOW$ (Note 14)	_	-1.5	—	mA
I _{Do-sink}		$V_{do} = V_{P}/2, I_{cpo} = LOW$ (Note 14)	_	1.5	—	mA
I _{Do-source}		$V_{do} = V_{P}/2, I_{cpo} = HIGH$ (Note 14)	_	-6.0	—	mA
I _{Do-sink}		$V_{do} = V_{P}/2$, $I_{CPO} = HIGH$ (Note 14)	_	6.0	—	mA
I _{Do-Tri}		$0.5 \le V_{do} \le V_p - 0.5$ $T_A = 25^{\circ}C$	-1.0	—	1.0	nA
FREQUE	NCY DOUBLER	f _{IN} = 945 MHz, f _{OUT} = 1.89 GHz		. <u> </u>	1	
f _{out}	Output Frequency Range	(Note 13)	1770	—	1900	MHz
Pout	Output Signal Level	P _{IN} = -11.5 dBm, f _{OUT} = 1.89 GHz	-10	-3	_	dBm
	Fundamental Output Power	P _{IN} = -11.5 dBm, f _{OUT} = 945 MHz	_	-22	-13.5	dBm
	Harmonic Output Power	P _{IN} = -11.5 dBm, f _{OUT} = 2.835 GHz	_	-24	-15	dBm
Z _{OUT}	Output Impedance	TX chain powered up	_	25+j60	_	Ω
		TX chain powered down	_	15-j30	_	Ω
VOLTAG	E REGULATOR			·I		
Vo	Output Voltage	$I_{LOAD} = 5 \text{ mA}$	2.55	2.75	2.90	V
DIGITAL	INPUT/OUTPUT PINS					
V _{IH}	High Level Input Voltage		2.4	—	V _{cc}	V
VIL	Low Level Input Voltage		0.0	—	0.8	V
IIH	Input Current	$GND < V_{IN} < V_{CC}$	-10	_	10	μΑ
V _{OH}	High Level Output Voltage	I _{OH} =-0.5 mA	2.4	_	_	V
V _{OL}	Low Level Output Voltage	I _{OL} =0.5 mA	_	—	0.4	V
Note 3: Note 4: Note 5: nH induct	The mixer section is tested at 1.89 GHz, and it is gual The IF section of this device is designed for optimum The matching network used on RF_{IN} consists of a serie rance and a shunt 12 pF capacitance into the pin.	anteed by design to operate within 1.7 — 2.0 GHz ra operating performance at 110 MHz to meet the DECT is 3.3 pF capacitance into the pin. The matching circuit	ange. specification t used on MI	ns. XER _{OUT} con	sists of a se	ries 100

Note 7: The matching network used on IF_{IN} consists of a series 33 nH inductance and a shunt 1.8 pF capacitance into the pin.

Note 8: The discriminator is with the DC level centered at 1.5V. The unloaded Q of the tank is 40.

Note 9: The frequency synthesizer section is guaranteed by design to operate within 500 - - 1200 MHz range.

Note 10: Nominal refers to zero DC offsets programmed for the discriminator.

Note 11: It depends on loss of inter-stage filter. These specifications are for an inter-stage filter with a loss of 8 dB.

Note 12: The frequency synthesizer section is guaranteed by design to operate for OSC_{IN} input frequency within 5 — 20 MHz range and minimun amplitude of 0.5 V_{pp} .

Electrical Characteristics (Continued)

Note 13: The doubler section is tested at 1.89 GHz, and it is guaranteed by design to operate within 1.7 - 1.9 GHz range. **Note 14:** See Function Register Programming Description for Icp_o description. **Note 15:** Tested in a 50 Ω environment.

AC Timing Characteristics

Serial Data Input Timing

TEST CONDITIONS: The Serial Data Input Timing is tested using a symmetrical waveform around $V_{CC}/2$. The test waveform has an skew rate of 0.6 V / ns.

LMX3161

PLL Functional Description

The simplified block diagram below shows the building blocks of frequency synthesizer and all internal registers, which are 20-bit data register, 18-bit F-latch, 12-bit N-counter, and 6-bit R-counter.

The DATA stream is clocked into the data register on the rising edge of CLOCK signal, MSB first. The last two bits are the control bits to indicate which register to be written. Upon the rising edge of the LE (Load Enable) signal, the rest of data bits is transferred to the addressed register accordingly. The decoding scheme of the two control bits is as follows:

Contro	ol Bits	Register
C2	C1	
0	0	N-Counter
1	0	R-Counter
Х	1	F-Latch

Note: X = Don't Care Condition

Programmable Feedback Divider (N-Counter)

The N-counter consists of the 6-bit swallow counter (A-counter) and the 6-bit programmable counter (B-counter). When the control bits are "00", data is transferred from the 20-bit shift register into two 6-bit latches. One latch sets the A-counter while the other sets the B-counter. The serial data format is shown below.

MSB	MSB REGISTER'S BIT MAPPING											l	LSB						
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RESERVED						RESERVED N-COUNTER's Divide Ratio									C2	C1		
Х	Х	Х	Х	Х	Х	N12	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1	0	0

Note: X = Don't Care Condition

Swallow Counter Divide Ratio (A-Counter)

Divide Ratio, A	N6	N5	N4	N3	N2	N1
0	0	0	0	0	0	0
1	0	0	0	0	0	1
*	*	*	*	*	*	*
63	1	1	1	1	1	1

Note: Divide ratio must be from 0 to 63, and B must be $\geq A$.

Programmable Counter Divide Ratio (B-Counter)

Divide Ratio, B	N12	N11	N10	N9	N8	N7
3	0	0	0	0	1	1
4	0	0	0	1	0	0
*	*	*	*	*	*	*
63	1	1	1	1	1	1

Note: Divide ratio must be from 3 to 63, and B must be \geq A.

Programmable Reference Divider (R-Counter)

If the control bits are "10", data is transferred from the 20-bit shift register into a latch, which sets the 6-bit R-counter. The serial data format is shown below.

MSB	MSB REGISTER'S BIT MAPPING															LSB			
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RESERVED R-COUNTER's Divide Ratio														C2	C1			
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	R6	R5	R4	R3	R2	R1	1	0

Note: X = Don't Care Condition

Reference Counter Divide Ratio (R-Counter)

Divido Patio P P6 P5 P4 P3 P2 P	21
	•••
3 0 0 0 1	1
4 0 0 0 1 0	0
* * * * *	*
63 1 1 1 1 1	1

Note: Divide ratio must be from 3 to 63.

Pulse Swallow Function

$$f_{vco} = \frac{\left[(P \bullet B) + A \right] \bullet f_{osc}}{P}$$

f_{vco}: Output frequency of external voltage controlled oscillator (VCO)

B: Preset divide ratio of binary 6-bit programmable counter (3 to 63)

A: Preset divide ratio of binary 6-bit swallow counter ($0 \le A \le P, A \le B$)

f_{OSC}: Output frequency of the external reference frequency oscillator

R: Preset divide ratio of binary 6-bit programmable reference counter (3 to 63)

P: Preset modulus of dual modulus prescaler (32 or 64)

Receiver Functional Description

The simplified block diagram below shows the mixer, IF amplifier, limiter, and discriminator. In addition, the DC compensation circuit, doubler, and voltage regulator for an external LNA stage are shown.

www.national.com

LMX3161

The simplified block diagram below shows the doubler and voltage regulator for an external transmit gain stage.

Note: The transmitter can be powered down, either by hardware through the Tx PD pin, or by software through the programming of F7 bith in F-Latch. The power down control method is determined by the settings of F11 and F12 in F-Latch. (Refer to Function Register Programming Description section for details.)

Function Register Programming Description (F-Latch)

If the control bits are "1X", data is transferred from the 20-bit shift register into the 18-bit F-latch. Serial data format is shown below.

MSB REGISTER'S BIT MAPPING											LSB								
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE CONTROL WORD										C2	C1								
F18	F17	F16	F15	F14	F13	F12	F11	F10	F9	F8	F7	F6	F5	F4	F3	F2	F1	Х	1

Note: X = Don't Care Condition

Various modes of operation can be programmed with the function register bits F1–F18, including the phase detector polarity, charge pump TRI-STATE® and CMOS outputs. In addition, software or hardwire power down modes can be specified with bits F11 and F12.

Mode Control	Model Control Description	Setting to "0" to Select	Setting to "1" to Select
Bit			
F1	Prescaler modules select.	32/33	64/65
F2	Phase detector polarity. It is used to reverse the polarity of	Negative VCO	Positive VCO
	the phase detector according to the VCO characteristics.	Characteristics	Characteristics
F3	Charge pump current gain select.	LOW Charge Pump	HIGH Charge Pump
		Current (1X I _{cpo}).	Current (4X I _{cpo}).
F4	TRI-STATE charge pump output.	Normal Operation	Force to TRI-STATE
F5	Reserved. Setting to "0" always.	-	—
F6	Receive chain power down control. Software power down can only be activated when both F11 and F12 are set to "0".	Power Up RX Chain	Power Down RX Chain
F7	Transmit chain power down control. Software power down can only be activated when both F11 and F12 are set to "0".	Power Up TX Chain	Power Down TX Chain
F8	Out 0 CMOS output.	OUT 0 = LOW	OUT 0 = HIGH
F9	Out 1 CMOS output. Functions only in software power down mode, when both F11 and F12 are set to "0".	OUT 1 = LOW	OUT 1 = HIGH
F10	Out 2 CMOS output. Functions only in software power down mode, when both F11 and F12 are set to "0".	OUT 2 = LOW	OUT 2 = HIGH
F11	Power down mode select.	Software	Hardware
F12	Set both F11 and F12 to "0" for software power down mode.	Power Down	Power Down
	Set both F11 and F12 to "1" for hardwire power down mode.		
	Other combinations are reserved for test mode.		
F13	Demodulator gain select	1X Gain Mode	3X Gain Mode
F14	Demodulator DC level shift +/- level shifting polarity	Set Negative Polarity	Set Positive Polarity

Function Register Programming Description (F-Latch) (Continued)							
Mode Control Bit	Model Control Description	Setting to "0" to Select	Setting to "1" to Select				
F15	Demodulator DC level shift of 1.000V	No Shift	Shift the DC Level by 1.000V				
F16	Demodulator DC level shift of 0.500V	No Shift	Shift the DC Level by 0.500V				
F17	Demodulator DC level shift of 0.250V	No Shift	Shift the DC Level by 0.250V				
F18	Demodulator DC level shift of 0.125V	No Shift	Shift the DC Level by 0.125V				

Power Down Mode/Control Table

Software Power Down Mode (F11=F12=0)			Hardwire Power Down Mode (F11=F12=1)		
Pin/Bit	Setting to "0"	Setting to "1"	Pin/Bit	Setting to "0"	Setting to "1"
	means	means		means	means
F6	Receiver ON	Receiver OFF	Rx PD	Receiver OFF	Receiver ON
F7	Transmitter ON	Transmitter OFF	Tx PD	Transmitter OFF	Transmitter ON
PLL PD	PLL ON	PLL OFF	PLL PD	PLL ON	PLL OFF
CE	LMX3161 OFF	LMX3161 ON	CE	LMX3161 OFF	LMX3161 ON

www.national.com

12

and

Loop Gain Equations

A linear control system model of the phase feedback for a PLL in the locked state is shown in *Figure 2*. The open loop gain is the product of the phase comparator gain (K_{\u03c6}), the VCO gain (K_{\u03c6}/s), and the loop filter gain Z(s) divided by the gain of the feedback counter modulus (N). The passive loop filter configuration used is displayed in *Figure 3*, while the complex impedance of the filter is given in *Equation (2)*.

T

Open loop gain = H(s) G(s) =
$$\theta i/\theta e = K_{\phi} Z(s) K_{VCO}/Ns$$
 (1)

$$Z(s) = \frac{s(C2 \bullet R2) + 1}{s^2(C1 \bullet C2 \bullet R2) + sC1 + sC2}$$

The time constants which determine the pole and zero frequencies of the filter transfer function can be defined as

$$1 = R2 \bullet \frac{C1 \bullet C2}{C1 + C2} \tag{3}$$

(2)

(4)

T2 = R2 • C2

The 3rd order PLL Open Loop Gain can be calculated in terms of frequency, $\omega,$ the filter time constants T1 and T2, and the design constants $K_{\varphi},~K_{vco},$ and N.

$$G(S) \bullet H(S) \bigg|_{S = j \bullet \omega} \frac{-K_{\phi} \bullet K_{\nu CO}(1 + j\omega \bullet T2)}{\omega^2 C1 \bullet N(1 + j\omega \bullet T1)} \bullet \frac{T1}{T2}$$
(5)

From *Equations (3), (4)* we can see that the phase term will be dependent on the single pole and zero such that the phase margin is determined in *Equation (6)*.

 $\phi(\omega) = \tan^{-1}(\omega \bullet T2) - \tan^{-1}(\omega \bullet T1) + 180^{\circ}$ (6)

Downloaded from Elcodis.com electronic components distributor

