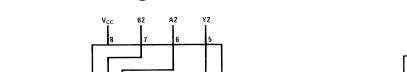
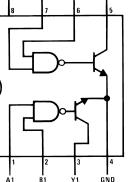
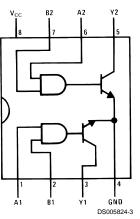
February 2000


DS75451/2/3 **Series Dual Peripheral Drivers General Description**

The DS7545X series of dual peripheral drivers is a family of versatile devices designed for use in systems that use TTL logic. Typical applications include high speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, bus drivers and memory drivers.

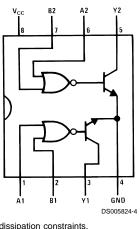
The DS75451, DS75452 and DS75453 are dual peripheral AND, NAND and NOR drivers, respectively, (positive logic) with the output of the logic gates internally connected to the bases of the NPN output transistors.


Features


- 300 mA output current capability
- High voltage outputs
- No output latch-up at 20V
- High speed switching
- Choice of logic function
- TTL compatible diode-clamped inputs
- Standard supply voltages
- Replaces TI "A" and "B" series

DS005824-2

Connection Diagrams (Dual-In-Line and Metal Can Packages)



Top View

*See (Note 5) and Appendix E regarding S.O. package power dissipation constraints. Order Number DS75452M or DS75452N

Top View Order Number DS75451M or DS75451N

*See (Note 5) and Appendix E regarding S.O. package power dissipation constraints.

Top View Order Number DS75453M or DS75453N See NS Package Numbers M08A* or N08E

© 2001 National Semiconductor Corporation DS005824

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, (V _{CC}) (Note 2)	7.0V
Input Voltage	5.5V
Inter-Emitter Voltage (Note 3)	5.5V
Output Voltage (Note 4)	30V
Output Current (Note 5)	300 mA
Maximum Power (Note 5)	
Dissipation [†] at 25°C	

Molded DIP Package	957 mW
SO Package	632 mW
Storage Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 4 sec.)	260°C

Operating Conditions

	Min	Max	Units
Supply Voltage, (V _{CC})	4.75	5.25	V
Temperature, (T _A)	0	+70	°C
[†] Derate molded package 7.7 mW/°C mW/°C above 25°C.	above 25°C, o	derate SO pac	kage 7.56

Electrical Characteristics

(Notes 6, 7)

Sumbol	Parameter			Conditions		Min	Tun	Max	Units
Symbol				Conditions			Тур	wax	
V _{IH}	High-Level Input Voltage	(Figure 7)				2			V
VIL	Low-Level Input Voltage							0.8	V
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_1 = -12 \text{ mA}$					-1.5	V
V _{OL}	Low-Level Output Voltage	V _{CC} =	$V_{IL} = 0.8V$	I _{OL} = 100 mA	DS75451, DS75453		0.25	0.4	V
		Min,		I _{OL} = 300 mA	DS75451, DS75453		0.5	0.7	V
		(Figure 7)	$V_{IH} = 2V$	I _{OL} = 100 mA	DS75452		0.25	0.4	V
				I _{OL} = 300 mA	DS75452		0.5	0.7	V
I _{он}	High-Level Output Current	V _{CC} = Min.	V _{OH} = 30V	$V_{IH} = 2V$	DS75451, DS75453			100	μA
		(<i>Figure 7</i>)		$V_{IL} = 0.8V$	DS75452			100	μA
l _l	Input Current at Maximum Input Voltage	$V_{CC} = Max, V_1 = 5.5V, (Figure 9)$					1	mA	
I _{IH}	High-Level Input Current	V _{CC} = Max	$k_{1} = 2.4 V_{1} (R)$	-igure 9)				40	μA
I_{IL}	Low-Level Input Current	V _{CC} = Max	$k_{1} = 0.4 V_{1} (R)$	-igure 8)			-1	-1.6	mA
I _{CCH}	Supply Current, Outputs	V _{CC} = V _I = 5V DS75451			7	11	mA		
	High	Max, (<i>Figure</i>	Max, $V_1 = 0V$ DS75452		DS75452		11	14	mA
		10)	$V_I = 5V$		DS75453		8	11	mA
I _{CCL}	Supply Current, Outputs	V _{CC} =			DS75451		52	65	mA
	Low	Max, (<i>Figure</i>	$V_1 = 5V$		DS75452		56	71	mA
		(<i>r igure</i> 10)	$V_1 = 0V$		DS75453		54	68	mA

Switching Characteristics

 $(V_{CC} = 5V, T_A = 25^{\circ}C)$

Symbol	Parameter	Conditions		Min	Тур	Max	Units
t _{PLH}	Propagation Delay Time, Low-to-High	$C_{L} = 15 \text{ pF}, R_{L} = 50\Omega,$	DS75451		18	25	ns
	Level Output	I _O ≈ 200 mA, (<i>Figure 14</i>)	DS75452		26	35	ns
			DS75453		18	25	ns
t _{PHL}	Propagation Delay Time, High-to-Low	$C_{L} = 15 \text{ pF}, R_{L} = 50\Omega,$	DS75451		18	25	ns
	Level Output	I _O ≈ 200 mA, (<i>Figure 14</i>)	DS75452		24	35	ns
			DS75453		16	25	ns
t _{TLH}	Transition Time, Low-to-High Level Output	$C_L = 15 \text{ pF}, R_L = 50\Omega, I_O \approx 200 \text{ mA},$ (<i>Figure 14</i>)			5	8	ns
t _{THL}	Transition Time, High-to-Low Level Output	C_L = 15 pF, R_L = 50 Ω , $I_O \approx$ 200 mA, (Figure 14)			7	12	ns
V _{OH}	High-Level Output Voltage after Switching	$V_{\rm S}$ = 20V, $I_{\rm O}$ \approx 300 mA, (F	Figure 15)	V _S – 6.5			mV

Switching Characteristics (Continued)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Voltage values are with respect to network ground terminal unless otherwise specified.

Note 3: The voltage between two emitters of a multiple-emitter transistor.

Note 4: The maximum voltage which should be applied to any output when it is in the "OFF" state.

Note 5: Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

Note 6: Unless otherwise specified min/max limits apply across 0°C to +70°C range. All typicals are given for V_{CC} = +5V and T_A = 25°C.

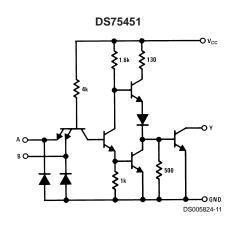
Note 7: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Truth Tables (H = high level, L = low level)

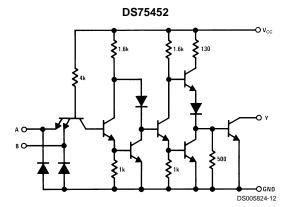
DS75451

Α	В	Y
L	L	L (ON State)
L	Н	L (ON State)
Н	L	L (ON State)
Н	Н	H (OFF State)

DS75452

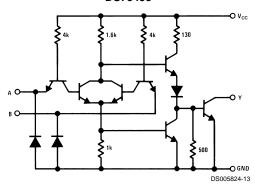

Α	В	Y
L	L	H (OFF State)
L	Н	H (OFF State)
н	L	H (OFF State)
н	Н	L (ON State)

DS75453

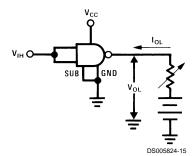

Α	В	Y	
L	L	L (ON State)	
L	Н	H (OFF State)	
н	L	H (OFF State)	
н	Н	H (OFF State)	

DS75451/2/3

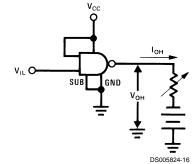
Schematic Diagrams



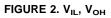
Resistor values shown are nominal.


Resistor values shown are nominal.

DS75453


Resistor values shown are nominal.

DC Test Circuits



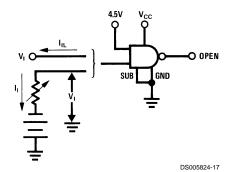
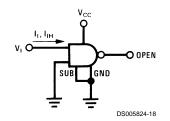

Both inputs is tested simultaneously.

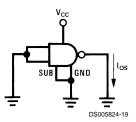
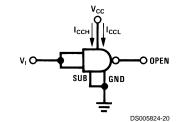
FIGURE 1. V_{IH} , V_{OL}

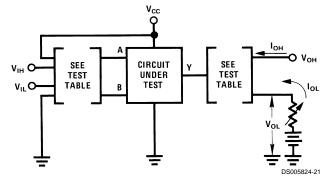


Each input is tested separately.

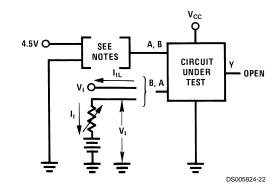
Each input is tested separately.

FIGURE 4. I_I, I_{IH}

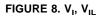



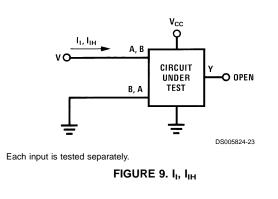

FIGURE 5. Ios

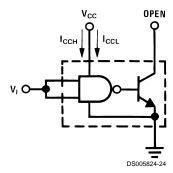
Both gates are tested simultaneously.


FIGURE 6. I_{CCH}, I_{CCL}

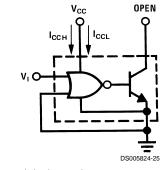
DC Test Circuits (Continued)



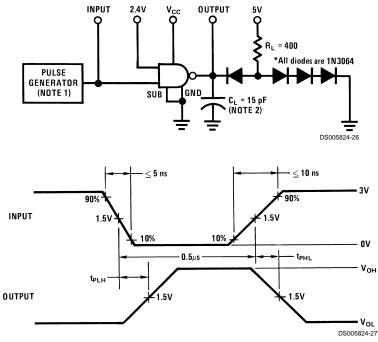

Circuit	Input Under	Other	Output	
Circuit	Test	Input	Apply	Measure
DS75451	V _{IH}	V _{IH}	V _{он}	I _{OL}
	V _{IL}	V _{cc}	I _{OL}	V _{OL}
DS75452	V _{IH}	V _{IH}	I _{OL}	V _{OL}
	V _{IL}	V _{cc}	V _{он}	I _{он}
DS75453	V _{IH}	Gnd	V _{он}	I _{он}
	VIL	VIL	I _{OL}	V _{он}


FIGURE 7. V_{IH} , V_{IL} , I_{OH} , V_{OL}

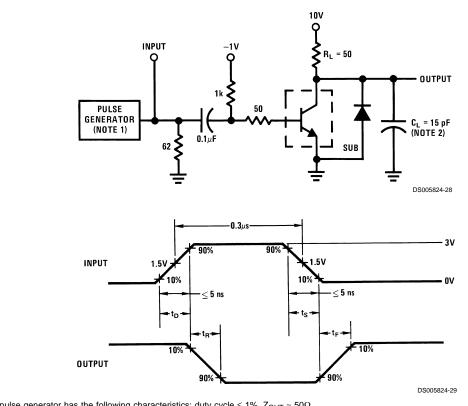
Note A: Each input is tested separately. **Note B:** When testing DS75453 input not under test is grounded. For all other circuits it is at 4.5V.

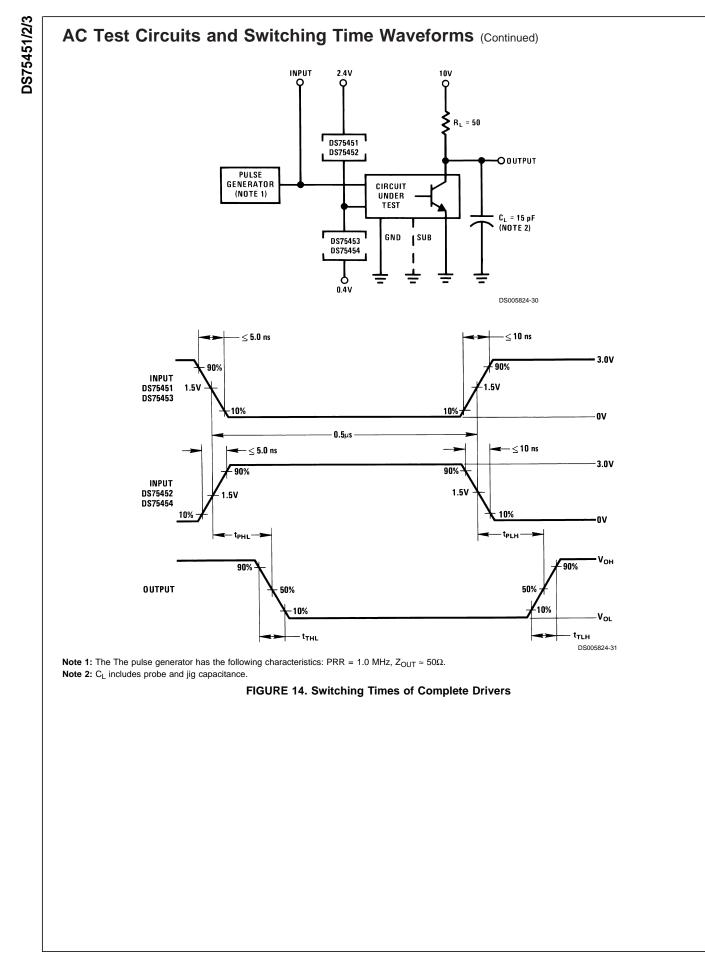


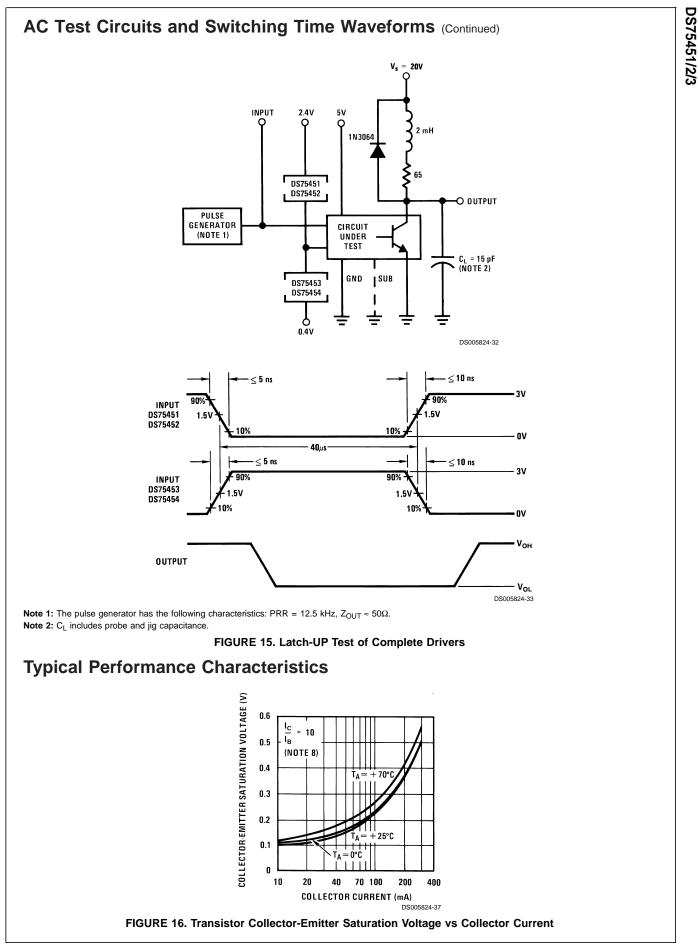
Both gates are tested simultaneously.

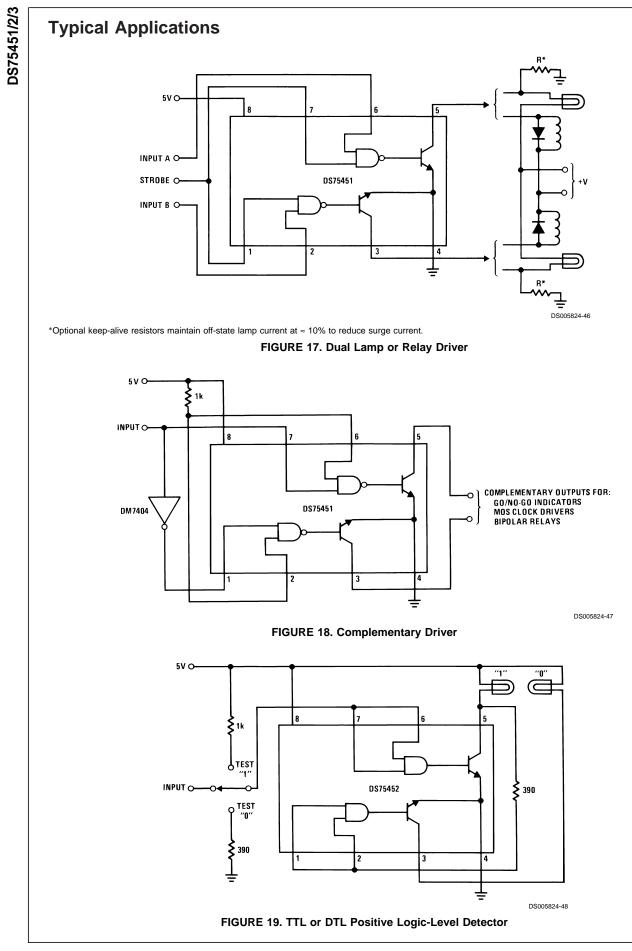

FIGURE 10. $I_{\rm CCH},\,I_{\rm CCL}$ for AND, NAND Circuits

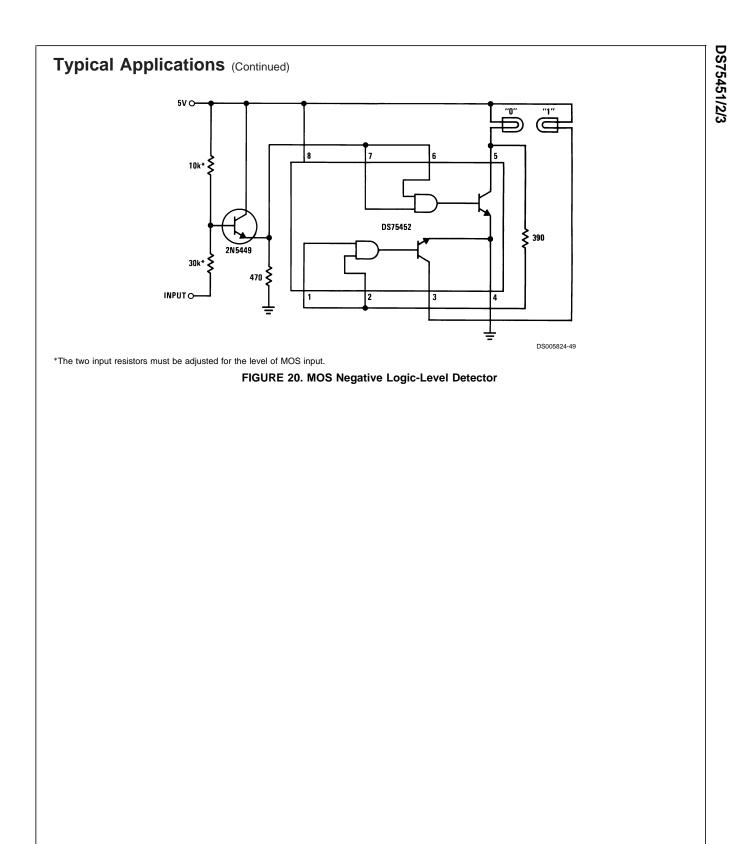
Both gates are tested simultaneously.

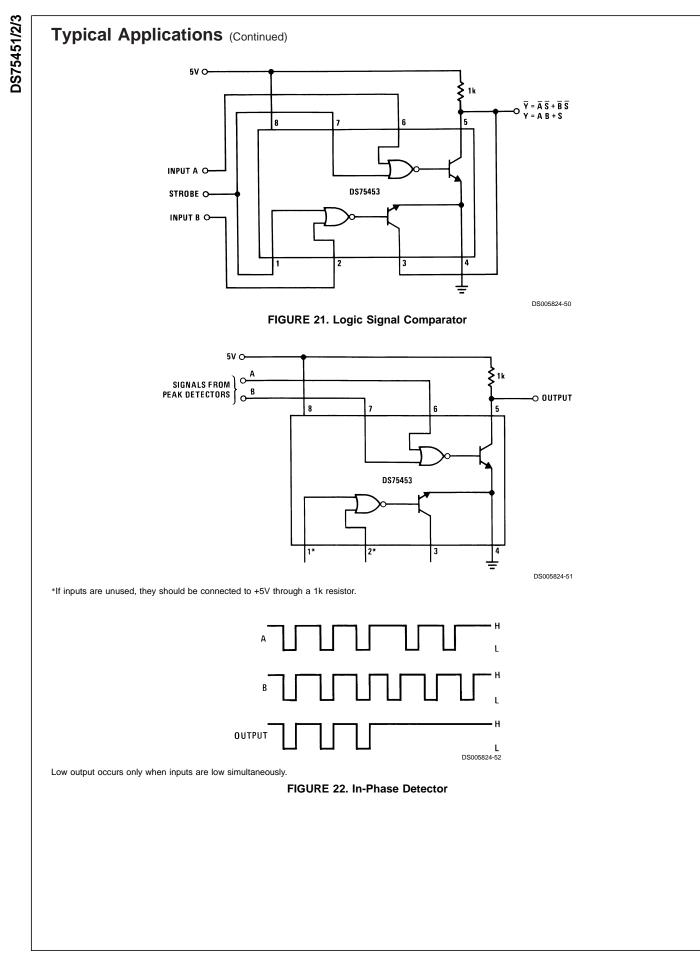

FIGURE 11. I_{CCH} , I_{CCL} for OR, NOR Circuits

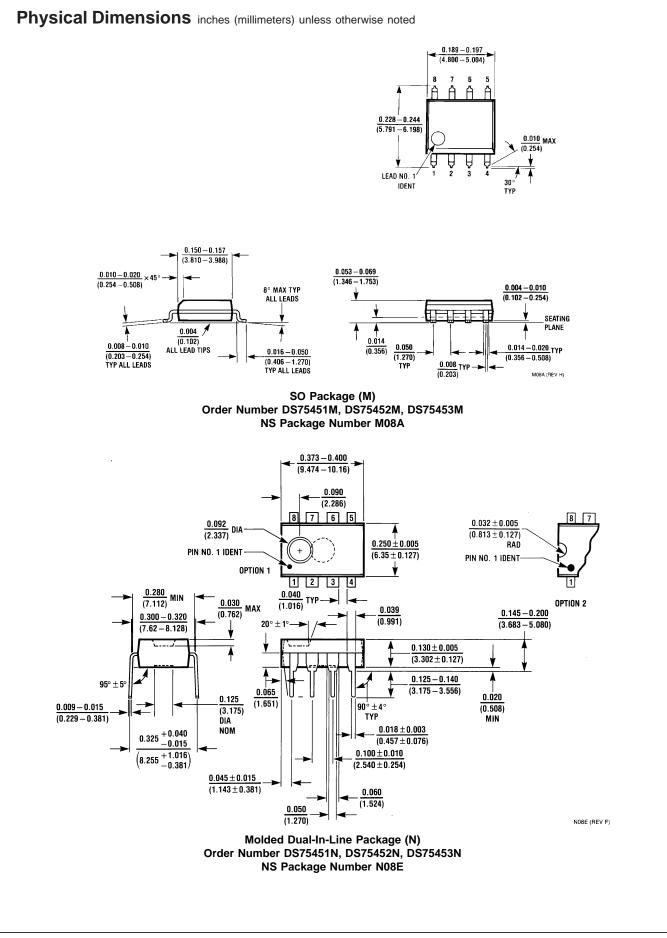

Note 1: The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{OUT} \approx 50\Omega$. **Note 2:** C_L includes probe and jig capacitance.






Note 1: The pulse generator has the following characteristics: duty cycle \leq 1%, Z_{OUT} \approx 50 Ω . **Note 2:** C_L includes probe and jig capacitance.





DS75451/2/3

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

 National Semiconductor Corporation Americas Email: support@nsc.com
 National Semiconductor Europe

 www.national.com
 Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com

 Deutsch
 Tel: +49 (0) 69 9508 6208 English

 Tel: +44 (0) 870 24 0 2171 Français
 Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Notes