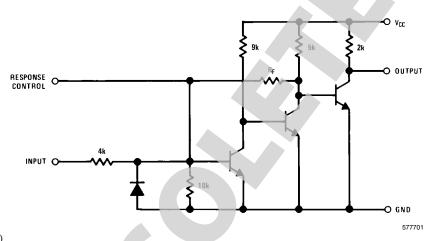


DS1489/DS1489A

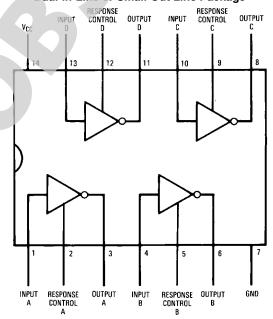
OBSOLETE July 14, 2010

Quad Line Receiver


General Description

The DS1489/DS1489A are quad line receivers designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA Standard RS-232D. The DS1489/DS1489A meet and exceed the specifications of MC1489/MC1489A and are pin-for-pin replacements.

Features


- Four separate receivers per package
- Programmable threshold
- Built-in input threshold hysteresis
- "Fail safe" operating mode: high output for open inputs
- Inputs withstand ±30V

Schematic and Connection Diagrams

(¼ of unit shown) DS1489: $R_F = 10k$ DS1489A: $R_F = 2k$

Dual-In-Line or Small-Out Line Package

Top View
Order Number DS1489M, DS1489MX, DS1489N, DS1489AM, DS1489AMX or DS1489AN
See NS Package Number M14A or N14A

© 2010 National Semiconductor Corporation

577

AC Test Circuit and Voltage Waveforms

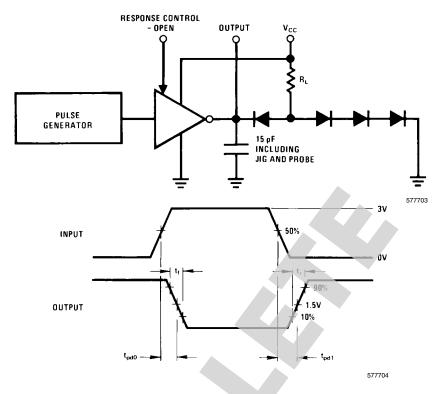


FIGURE 1.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage 10V Maximum Power Dissipation (*Note 1*) at 25°C Input Voltage Range ±30V Molded DIP Package 1207 mW

Output Load Current 20 mA SO Package 1042 mW

Power Dissipation (Note 3) 1W Lead Temperature (Soldering, 4

Operating Temperature Range 0°C to +75°C sec.) 260°C

Storage Temperature Range -65°C to +150°C

Note 1: Derate molded DIP package 9.7 mW/°C above 25°C; derate SO package 8.33 mW/°C above 25°C.

Electrical Characteristics (Note 3, Note 4, Note 5)

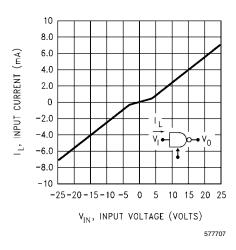
DS1489/DS1489A: The following apply for $V_{CC} = 5.0V \pm 1\%$, $0^{\circ}C \le T_{A} \le +75^{\circ}C$ unless otherwise specified.

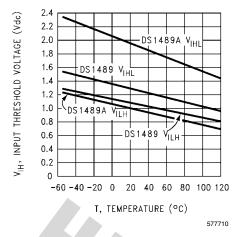
Symbol	Parameter	Conditions			Min	Тур	Max	Units
V _{TH}	Input High Threshold Voltage	V _{OUT} ≤ 0.45V,	DS1489	$T_A = 25^{\circ}C$	1.0	1.25	1.5	٧
		I _{OUT} = 10 mA			0.9		1.6	٧
			DS1489A	$T_A = 25^{\circ}C$	1.75	2.00	2.25	V
					1.55		2.40	V
V _{TL}	Input Low Threshold Voltage	V _{OUT} ≥ 2.5V,		T _A = 25°C	0.75	1.00	1.25	٧
		$I_{OUT} = -0.5 \text{ mA}$			0.65		1.35	٧
I _{IN}	Input Current	V _{IN} = +25V			+3.6	+5.6	+8.3	mA
		$V_{IN} = -25V$			-3.6	-5.6	-8.3	mA
		$V_{IN} = +3V$			+0.43	+0.53		mA
		$V_{IN} = -3V$			-0.43	-0.53		mA
V _{OH}	Output High Voltage	$I_{OUT} = -0.5 \text{ mA}$	$V_{IN} = 0.75V$		2.6	3.8	5.0	٧
			Input = Open		2.6	3.8	5.0	٧
V _{OL}	Output Low Voltage	$V_{IN} = 3.0 V, I_{OUT} =$	10 mA			0.33	0.45	V
I _{SC}	Output Short Circuit Current	V _{IN} = 0.75V				-3.0		mA
Icc	Supply Current	$V_{IN} = 5.0V$				14	26	mA
P _d	Power Dissipation	V _{IN} = 5.0V				70	130	mW

Switching Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd1}	Input to Output "High"	R _L = 3.9k, (<i>Figure 1</i>) (AC Test Circuit)		28	85	ns
	Propagation Delay					
t _{pd0}	Input to Output "Low"	$R_L = 390\Omega$, (<i>Figure 1</i>) (AC Test Circuit)		20	50	ns
	Propagation Delay					
t _r	Output Rise Time	R _L = 3.9k, (<i>Figure 1</i>) (AC Test Circuit)		110	175	ns
t _f	Output Fall Time	R _L = 390Ω, (<i>Figure 1</i>) (AC Test Circuit)		9	20	ns


Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


 $\textbf{Note 3:} \ \, \textbf{Unless otherwise specified min/max limits apply across the 0°C to +75°C temperature range for the DS1489 and DS1489A.} \\$

Note 4: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 5: These specifications apply for response control pin = open.

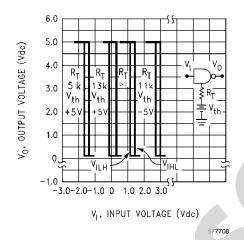

Typical Characteristics $V_{CC} = 5.0V$, $T_A = +25$ °C unless otherwise noted

FIGURE 2. Input Current

FIGURE 5. Input Threshold Voltage vs Temperature

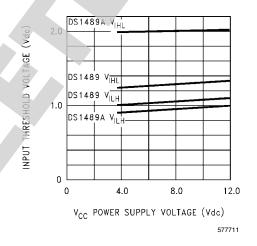
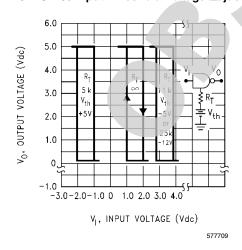



FIGURE 3. DS1489 Input Threshold Voltage Adjustment

FIGURE 6. Input Threshold vs Power Supply Voltage

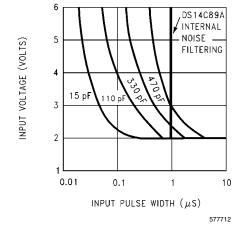
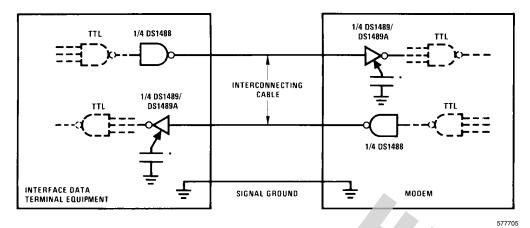
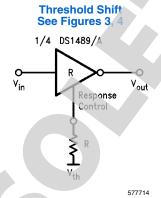
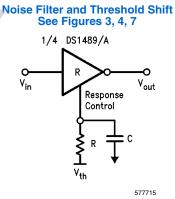



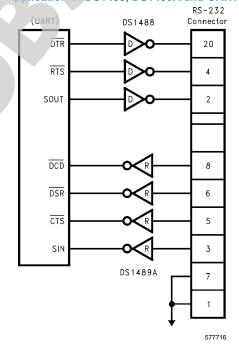
FIGURE 4. DS1489A Input Threshold Voltage Adjustment

FIGURE 7. Noise Rejection vs Capacitance for DS1489A


Typical Application Information



*Optional for noise filtering.


Applications Using the Response Control Pin

Noise Filter See Figure 7 1/4 DS1489/A Vin Response Control 577713

Application of DS1488, DS1489A and UART

Physical Dimensions inches (millimeters) unless otherwise noted 0.335 - 0.344(8.509 - 8.738)0.228 - 0.244(5.791 - 6.198)TYP LEAD NO. 1 IDENT 0.010 MAX (0.254)0.150 - 0.157 (3.810 - 3.988)0.053 - 0.0690.010 - 0.020 $\overline{(1.346 - 1.753)}$ (0.254 - 0.508)8° MAX TYP 0.004 - 0.010ALL LEADS $\overline{(0.102 - 0.254)}$ SEATING PLANE 0.014 0.014 <u>- 0.020</u> TYP 0.008 - 0.010(0.203-0.254) TYP ALL LEADS 0.016 - 0.050(1.270) TYP (0.356 - 0.508)(0.406 - 1.270)0.004 0.008 (0.203) TYP TYP ALL LEADS (0.102) M14A (REV H) ALL LEAD TIPS SO Fackage (M) Order Number DS1489M, DS1489MX or DS1489AM, DS1489AMX NS Package Number M14A 0.740 - 0.770(18.80 - 19.56)0.090 (2.286)14 13 12 11 10 14 13 12 INDEX 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 PIN NO. 1 IDENT 1 2 3 4 5 6 7 IDENT 1 2 3 $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX OPTION 1 OPTION 02 0.135 ± 0.005 0.300 - 0.320 (3.429 ± 0.127) $\overline{(7.620 - 8.128)}$ 0.065 0.145 - 0.2000.060 4° TYP (1.651)(3.683 - 5.080)(1.524) OPTIONAL $\frac{0.008 - 0.016}{(0.203 - 0.406)} \text{ TYP}$ 95° ± 5° 0.020 90 (0.508)0.125 - 0.150 0.075 ± 0.015 $\overline{(3.175 - 3.810)}$ 0.280 (1.905 ± 0.381) 0.014-0.023 TYP (7.112)-MIN 0.100 ± 0.010 (0.356 - 0.584) (2.540 ± 0.254) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)} \text{ TYP}$ $0.325 ^{\,+\,0.040}_{\,-\,0.015}$ $8.255 + 1.016 \\ -0.381$ N14A (REV F)

NS Package Number N14A

Molded Dual-In-Line Package (N)
Order Number DS1489N or DS1489AN

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support			
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench		
Audio	www.national.com/audio	App Notes	www.national.com/appnotes		
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns		
Data Converters	www.national.com/adc	Samples	www.national.com/samples		
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards		
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging		
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green		
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts		
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality		
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback		
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy		
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions		
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero		
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic		
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia **Pacific Technical Support Center** Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

5777 Version 6 Revision 4 Print Date/Time: 2010/07/14 11:50:11