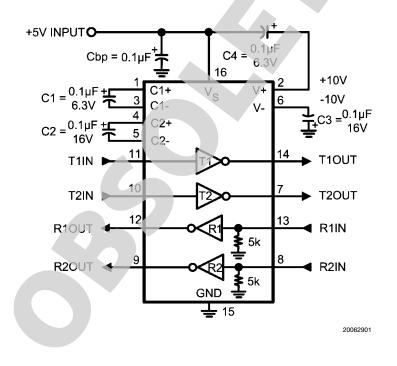


5V Single Supply TIA/EIA-232 Dual Transceivers

General Description

The LMS202 features two transmitters and two receivers for RS-232 communication. It has a DC-to-DC converter that permits the device to operate with only a single +5V power supply. The on-chip DC-to-DC converter which utilizes four external 0.1µF capacitors to generate dual internal power supplies for RS-232 compatible output levels.

The device meet EIA/TIA-232E and CCITT V.28 specifications up to 230kbits/sec. The LMS202 is available in a 16 pin narrow and Wide SOIC package.


Features

- Single +5V power supply
- 230 kbps data rate
- On-board DC-to-DC converter
- 0.1µF charge pump capacitors
- Drop-in replacement to Maxim's MAX202

Applications

- POS equipment (Bar code reader) . Hand-held equipment
- General purpose RS-232 communication

Connection Diagram and Typical Circuit

© 2010 National Semiconductor Corporation 200629

Pin Descriptions

Pin Number	Pin Name	Pin Function		
1, 3	C1+, C1–	External capacitor connection pins. Recommended external capacitor $C1 = 0.1 \mu F$ (6.3V)		
2	V+	Positive supply for TIA/EIA-232E drivers. Recommended external capacitor C4 = 0.1μ F (6.3V)		
4, 5	C2+, C2-	External capacitor connection pins. Recommended external capacitor C2 = 0.1μ F (16V)		
6	V-	Negative supply for TIA/EIA-232E drivers. Recommended external capacitor C3 = 0.1µF (16V)		
7, 14	T1out, T2out	Transmitter output pins conform to TIA/EIA-232E levels. The typical transmitter output swing is $\pm 8V$ when loaded $3k\Omega$ load to ground. The open-circuit output voltage swings from (V+ – 0.6V) to V–		
8,13	R1in, R2in	Receiver inputs accept TIA/EIA-232		
9, 12	R1out and R2out	Receiver output pins are TTL/CMOS compatible		
10, 11	Tin1, Tin2	Transmitter input pins are TTL/CMOS compatible. Inputs of transmitter do not have pull-up resistors. Connect all unused transmitter inputs to ground		
15	GND	Ground pin		
16	Vs	Power supply pin for the device, +5V (±10%)		

Ordering Information

Package	Package Part Number Package Marking Transport Media		Transport Media	NSC Drawing	
	LMS202CM		48 Units/Rail		
16-Pin SOIC	LMS202CMX	LMS202CM	2.5k Units Tape and Reel	MIGA	
	LMS202IM		48 Units/Rail	M16A	
	LMS202IMX	LMS202IM	2.5k Units Tape and Reel]	
	LMS202CMW	LMS202CMW	45 Units/Rail		
16-Pin Wide SOIC	LMS202CMWX		1.0k Units Tape and Reel	M16B	
10-Fill Wide SOIC	LMS202IMW	LMS202IMW	45 Units/Rail		
	LMS202IMWX	LIVISZUZIIVIVV	1.0k Units Tape and Reel		

www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V _S	-0.3V to 6V
V+	(V _S – 0.3V) to + 14V
V–	+0.3V to -14V
Driver Input Voltage, T _{IN}	-0.3V to (V+ +0.3V)
Receiver Input Voltage, R _{IN}	± 30V
Driver Output Voltage T _O	(V0.3V to (V+ + 0.3V)
Receiver Output Voltage R _O	–0.3 to (V _S + 0.3)
Short Circuit Duration, T _O	Continuous
ESD Rating	
Human Body Model (<i>Note 2</i>)	2kV
Machine Model (<i>Note 6</i>)	200V

Soldering InformationInfrared or Convection235°C(20sec.)150°CJunction Temperature150°CStorage Temperature Range-65°C to +150°C

LMS202

Operating Ratings

Supply Voltage V _S	4.5V to 5.5V
Ambient Temperature Range, T _A	
Commercial (C)	0°C to +70°C
Industrial (I)	–40°C to +85°C
Package Thermal Resistance (Note	
3)	
SO	71°C/W
WSO	55°C/W

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

 $C1 = C2 = C3 = C4 = Cbp = 0.1 \mu F$

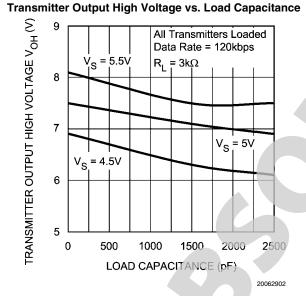
Symbol	Parameter	Conditions	Min (<i>Note 5</i>)	Тур	Max (<i>Note 5</i>)	Units
DC Charac	teristics					
I _s	Supply Current	No Load, $T_A = 25^{\circ}C$		1	7	mA
Logic			•	•	• •	
I _{INPUT}	Input Leakage Current	$T_{IN} = 0V \text{ to } V_S$			±10	μA
V _{THL}	Input Logic Theshold Low	T _{IN}			0.8	V
V _{THH}	Input Logic Theshold High	T _{IN}	2.0			V
V _{OL}	TTL/CMOS Output Voltage Low	R _{OUT} , I _{OUT} = 3.2mA			0.4	V
V _{OH}	TTL/CMOS Output Voltage High	R_{OUT} , $I_{OUT} = -1.0$ mA	3.5	V _S –0.1		V
RS-232 Red	ceiver Inputs		•		• •	
V _{RI}	Receiver Input Voltage Range		-30		+30	V
V _{RTHL}	Receiver Input Theshold Low	V _S = 5V, T _A = 25°C	0.8	1.4		V
V _{RTHH}	Receiver Input Theshold High	$V_{\rm S} = 5V, T_{\rm A} = 25^{\circ}{\rm C}$		2	2.4	V
V _{HYST}	Receiver Input Hysteresis	$V_{\rm S} = 5V$	0.2	0.6	1.0	V
R _I	Receiver Input Resistance	$V_{\rm S} = 5V, T_{\rm A} = 25^{\circ}{\rm C}$	3	5	7	kΩ
RS-232 Tra	nsmitter Outputs		•			
V _o	Transmitter Output Voltage Swing	All transmitters loaded with $3k\Omega$ to GND	±5	±8		V
R _o	Output Resistance	$V_S = V_+ = V = 0V,$ $V_O = \pm 2V$	300			Ω
I _{os}	Output Short Circuit Current			±11	±60	mA
	aracteristics	L			I	
DR	Maximum Data Rate	$C_{L} = 50 pF$ to 1000pF, $R_{L} = 3k\Omega$ to $7k\Omega$	230			kbps
T _{RPLH} T _{RPHL}	Receiver Propagation Delay	C _L = 150pF		0.08	1	μs

3

-**MS202**

Symbol	Parameter	Conditions	Min (<i>Note 5</i>)	Тур	Max (<i>Note 5</i>)	Units
T _{DPLH} T _{DPHL}	Transmitter Propagation Delay	$R_L = 3k\Omega, C_L = 2500pF$ All transmitters loaded		2.4		μs
V _{SLEW}	Transition Region Slew Rate	$T_A = 25$ °C, $V_S = 5V$ $C_L = 50$ pF to 1000pF, $R_L = 3k\Omega$ to 7kΩ Measured from +3V to -3V or vice versa	3	6	30	V/µs

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Note 2: Human Body Model, 1.5kΩ in series with 100pF


Note 3: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_J_{MAX}) - T_A$)/ θ_{JA} . All numbers apply for packages soldered directly onto a PC board.

Note 4: Typical Values represent the most likely parametric norm.

Note 5: All limits are guaranteed by testing or statistical analysis

Note 6: Machine model, 0Ω in series with 200pF

Typical Characteristics

Application Information

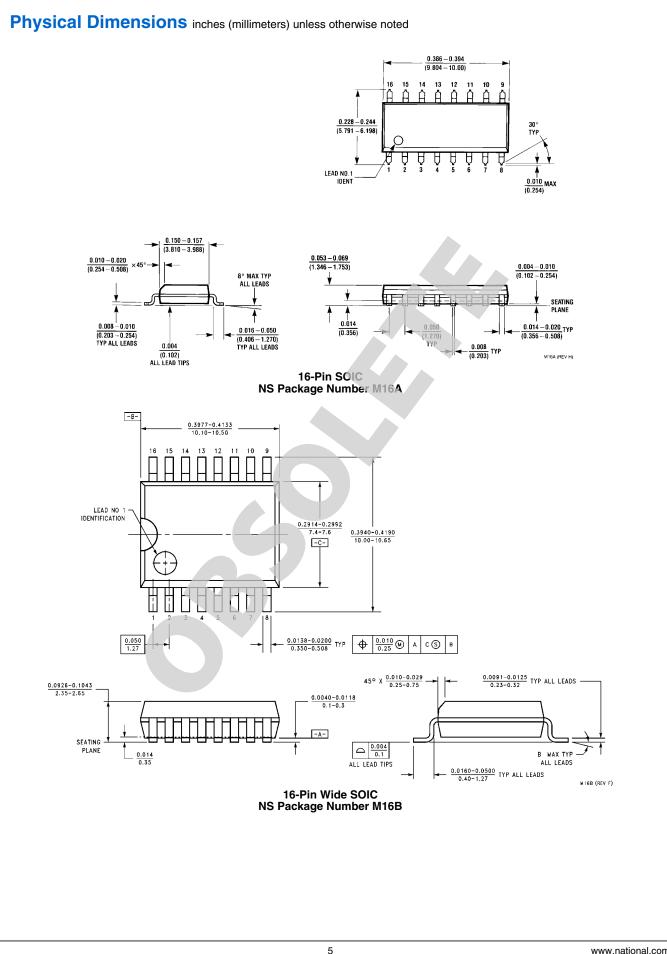
CAPACITOR SELECTION

The recommended capacitors are $0.1\mu F$. However, larger capacitors for the charge pump may be used to minimized ripples on V+ and V- pins.

POWER SUPPLY DECOUPLING

In some applications that are sensitive to power supply noise from the charge pump, place a decoupling capacitor, Cbp,

14 All Transmitters Loaded Data Rate = 120kbps 12 R_L = 3kΩ RATE (V/µs) 10 +Slew Rate 8 SLEW 6 Slew Rate 4 2 0 500 1000 1500 2000 2500 LOAD CAPACITANCE (pF) 20062903


Transmitter Slew Rate vs. Load Capacitance

from V_S to GND. Use at least a $0.1\mu F$ capacitor or the same size as the charge pump capacitors (C1 – C4).

CHARGED PUMP

The dual internal charged-pump provides the $\pm 10V$ to the to transmitters. Using capacitor C1, the charge pump converts +5V to +10V then stores the +10V in capacitor C3. The charge pump uses capacitor C2 to invert the +10V to -10V. The -10V is then stored in capacitor C4.

www.national.com

www.national.com

LMS202

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: ipn.feedback@nsc.com