

STUSB03E

USB Transceiver

General features

- Compliant to USB V2.0 for full-speed (12Mb/s) and low-speed (1.5Mbps) operation
- HBM = ±14kV on D+, D- lines; ±5kV on VBUS
- ESD Compliant to IEC-61000-4.2 (level 3) on D+, D- lines
- Separate I/O supply with operation down to 1.6V
- Integrated 3.3V output LDO
- Very low power consumption to meet USB 'suspend' current requirements
- Small QFN16 lead free package 3x3 mm²
- No power supply sequencing requirements
- Software controlled re-enumeration
- Integrated D+ pull-up resistor for FS operation

Description

The STUSB03E is a single chip transceiver that complies with the physical layer specifications of the Universal Serial Bus (USB) v2.0 standard. It has an integrated 5V to 3.3V regulator which allows direct powering from the V_{BUS} . The transceiver has an integrated voltage detector to

detect the presence of the V_{BUS} voltage and features an internal D+ pull-up resistor implemented in accordance with the 27% resistor ECN.

The STUSB03E also supports Sharing mode when V_{BUS} is not present, which allows the D+/D-lines to be shared with other serial protocols.

It supports both full-speed (12Mbps) and lowspeed (1.5Mbps) operation. It is also designed to operate down to 1.6V so that it is compatible with lower system voltages of most portable systems, which include PDAs, MP3 Player and Cell phones.

Order code

Part number	Package	Packaging
STUSB03EQR	QFN16 (3mm x 3mm)	3000 parts per reel

March 2007 Rev. 2 1/20

Contents

1	Typical application	. 3
2	Pin configuration	. 4
3	Functional tables	. 5
4	Maximum ratings	. 6
5	Electrical characteristics	. 7
6	Timing diagram	11
7	Test circuits	13
В	Functional description	15
9	Package mechanical data	16
10	Pavision history	10

STUSB03E Typical application

1 Typical application

Figure 1. Application circuit

Pin configuration STUSB03E

2 Pin configuration

Figure 2. Pin connections (Top View)

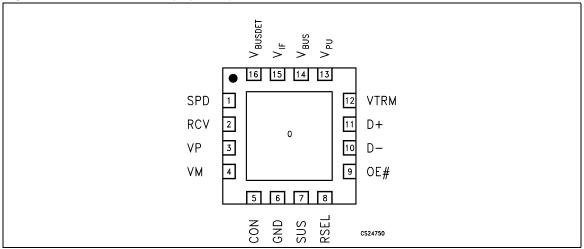


Table 1. Pin description

Pln N°	Symbol	I/O	Name and function
1	SPD	I	Speed selection input. A logic HIGH operates at edge rates for "fullspeed" operation. A logic LOW operates edge rates for "lowspeed" operation. See also CON pin.
2	RCV	0	Receive Data. Output for USB differential data. (see Table 2)
3	VP	I/O	If OE# = H, VP = Receiver output (+) If OE# = L, VP = Driver input (+) (see <i>Table 2</i>)
4	VM	I/O	If OE# = H, VM = Receiver output (-) If OE# = L, VM = Driver input (-) (see <i>Table 2</i>)
5	CON	I	CONNECT (input). Connects the internal pull-up resistor to D+ if SPD and RSEL are logic high. Controls status of V_{PU} pin if SPD or RSEL is logic low.
6	GND		Ground reference
7	SUS	I	Suspend (active-high). Turns off internal circuits to reduce supply current.
8	RSEL	1	Full speed pull-up resistor selection input. If RSEL = 0 the internal pull-up resistor connected to D+ is disabled and an external resistor connected to V _{PU} pin must be used.
9	OE#	I	Output Enable (active-low). Enables transceiver data transmission onto the bus. When not active, the transceiver is in the receive mode. (see <i>Table 2</i>)
10, 11	D-, D+	I/O	Differential data lines that conform to the USB v2.0 standard. (see <i>Table 2</i>)
12	VTRM	0	3.3V Reference Supply Output. Requires a 1.0µF decoupling capacitor for stability.
13	V _{PU}	0	Pull-up Supply Voltage Output. Used to connect 1.5K pull-up speed detect resistor when RSEL or SPD is logic low. If CON = 0, V_{PU} is high impedance. If CON = 1, V_{PU} = 3.3V ±10% (see <i>Table 4</i> .).
14	V _{BUS}	I	USB Bus Supply Voltage (4V to 5.5V). Supplies power to the USB transceiver and internal circuitry.
15	V _{IF}	1	System Interface Supply Voltage (1.6V to 3.6V). Provides reference supply voltage for system I/O interface signals.
16	V _{BUSDET}	0	V_{BUS} indicator output. When $V_{BUS} > 4.0V$, $V_{BUSDET} = High$; when $< 3.6V$, $V_{BUSDET} = Low (V_{IF} referred)$.
EXP	N.C.		Not connected.
4/20			

STUSB03E Functional tables

3 Functional tables

Table 2. Function selection

SUS	OE#	D+, D-	RCV	VP/VM	Function	
L	L	Driving	Active	Active	Normal transmit mode	
L	Н	Receiving	Active	Active	Normal receive mode	
Н	L	Hi-Z	L	Not Active	Low power state	
Н	Н	Hi-Z	L	Active	Receiving during suspend (low power state) (1)	

⁽¹⁾ During suspend VP and VM are active in order to detect out of band signalling conditions

Table 3. Sharing mode pin configuration

Input/output	Status	
V _{BUS}	Floating or connected to GND	
V _{IF}	1.6V to 3.6V input	
D+, D-,	High impedance	
VP, VM	High	
RCV	Low	
SPD	High impedance	
V _{BUSDET}	Low	
V _{PU}	High impedance	
#OE, SUS, CON	High impedance inputs	

Table 4. V_{PU} Status

SPD	RSEL	CON	V _{PU}
Н	Н	X	High impedance
Н	L	L	High impedance
Н	L	Н	3.3V ± 10%
L	Х	L	High impedance
L	Х	Н	3.3V ± 10%

Table 5. Truth table during normal Mode

OE# = L						
In	put		Output		Decult	
VP	VM	D+	D-	RCV	Result	
L	L	L	L	X	SE0	
L	Н	L	Н	L	Logic Low	
Н	L	Н	L	Н	Logic High	
Н Н		Х	X	X	Undefined	
OE# = H						
In	put		Output		DECLUT	
D+	D-	VP	VM	RCV	RESULT	
L	L	L	L	X	SE0	
L,	Н	L,	Н	L	Logic Low	
Н	L	Н	L	Н	Logic High	
Н	Н	Х	Х	Х	Undefined	

X = Undefined

Maximum ratings STUSB03E

4 Maximum ratings

Table 6. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{BUS}	Supply Voltage	6	V
V+	All other Inputs	-0.5 to 4.6	V
Io	Output Current (D+, D-)	±50	mA
Io	Output Current (all others)	±15	mA
I _I	Input Current	±50	mA
	D+, D-, HBM (Note 3)	±14	
ESD	V _{BUS} (Note 3)	±5	kV
	All other pins (Note 3)	±2	
T _{STG}	Storage Temperature Range	-65 to + 150	°C
T _{OPR}	Operating Temperature Range	-40 to + 85	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional Operation under these conditions is not implied.

Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.

Table 7. Thermal data

Symbol	Parameter	Value	Unit
R_{thJA}	Thermal Resistance Junction-Ambient	59	°C/W

577

STUSB03E Electrical characteristics

5 Electrical characteristics

Table 8. DC electrical characteristics (system and USB interface) ($V_{IF} = 3.6V$, $V_{BUS} = 5V$ unless otherwise noted; $T_A = 25$ °C, specifications over temperature, -40 to 85°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{BUS}	USB Supply Voltage		4		5.5	V
V_{IF}	System I/F Supply Voltage		1.6		3.6	V
V _{IL}	Low Level Input Voltage (Note 4)				0.15V _{IF}	V
V _{IH}	High Level Input Voltage (Note 4)		0.85V _{IF}			V
V _{OL}	Low Level Output Voltage (Note 4)	I _{OL} = 20μA	0		100	mV
V _{OH}	High Level Output Voltage (Note 4)	I _{OH} = -20μA	V _{IF} -100		V _{IF}	mV
I _{IL}	Input Leakage Current (Note 4)		-5		5	μΑ
		D+, D- are idle, SUS = 1			5	μA
		D+, D- active, C _{LOAD} = 25pF, SPD=1, f=6MHz, OE#=1 (Note 5)			2	mA
		D+, D- active, $C_{LOAD} = 25pF$,			220	μA
I_IF	V _{IF} Supply Current (Note 7)	SPD=0, f=750kHz, OE#=1 (Note5)			220	μΛ
		D+, D- active, C _{LOAD} = 25pF, SPD=1, f=6MHz, OE#=0 (Note 5)			0.8	mA
		D+, D- active, C _{LOAD} = 25pF,			120	μA
		SPD=0, f=750kHz, OE#=0 (Note 5)				-
		D+, D- are idle, V _{BUS} = 5.25V Suspend Mode (SUS = 1), OE# = 1, SPD = 1			150	μΑ
		D+, D- are idle, $V_{BUS} = 5.25V$			5	mA
		SPD = 1, SUS = 0			5	IIIA
		D+, D- are idle, V _{BUS} = 5.25V SPD = SUS = 0			120 150 5 3.5	mA
		D+, D- active, $V_{BUS} = 5.25V$				
I_{BUS}	V _{BUS} Supply Current	$C_{LOAD} = 50pF, SPD = 1, f = 6 MHz$			8	
		OE# = SUS = 0 (Note 5)				
		D+, D- active, V _{BUS} = 5.25V				mA
		$C_{I,OAD} = 50 pF, f = 6 MHz,$			6	
		SUS = 0 OE# = SPD = 1 (Note 5)				
		D+, D- active, V _{BUS} = 5.25V				
		C _{LOAD} = 600pF, f = 750 KHz,			3.5	
		SUS = SPD = 0 (Note 5)				
I _{VPULEAK}	V _{PU} Leakage Current	$CON = 0, V_{PU} = 0V$	-5		5	μΑ
I _{VIFLEAK}	V _{IF} Leakage Current	$V_{IF} = 3.6V, V_{BUS} = 0V$	-5		5	μΑ
V _{PU}	Pull-Up Output Voltage	$I_{TERM} = 200\mu A, V_{BUS} = 4 \text{ to } 5.25V$	3		3.6	V
R_{SW}	V _{PU} Internal Switch Resistance	$I_{TERM} = 10$ mA, $V_{BUS} = 4$ to 5.25V	6		11	Ω
Vallonet	V _{BUS} Comparator threshold	Supply present	4			V
• BUSDET	1802 Comparator iniconord	Supply lost			3.6	٧

Note 1. Exceeding the absolute maximum rating may damage the device.

Note 7. RCV NOT LOADED

Note 2. The device is not guaranteed to function outside its operating rating.

Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.

Note 4. Specification applies to the following pins: SUS, SPD, RCV, CON, VP, VM, OE#, VBUSDET.

Note 5. Characterized specification(s), but not production tested.

Note 6. All AC parameters guaranteed by design but not production tested.

STUSB03E Electrical characteristics

Table 9. DC electrical characteristics (system and USB interface)

 $(V_{IF} = 3.6V, V_{BUS} = 5V \text{ unless otherwise noted; } T_A = 25^{\circ}C)$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{BUS}	USB Supply Voltage		4		5.5	V
V _{IF}	System I/F Supply Voltage		1.6		3.6	V
V_{IL}	Low Level Input Voltage (Note 4)				0.15V _{IF}	V
V _{IH}	High Level Input Voltage (Note 4)		0.85V _{IF}			V
V _{OL}	Low Level Output Voltage (Note 4)	I _{OL} = 20μA			0.1	V
V _{OH}	High Level Output Voltage (Note 4)	I _{OH} = 20μA	0.9V _{IF}			V
I _{IL}	Input Leakage Current (Note 4)		-5		5	μΑ
		D+, D- are idle, SUS = 1			5	μΑ
		D+, D- active, C _{LOAD} = 25pF, SPD=1, f=6MHz, OE#=1 (Note 5)		1.3		mA
I _{IF}	V _{IF} Supply Current (Note 7)	D+, D- active, C _{LOAD} = 25pF, SPD=0, f=750kHz, OE#=1 (Note5)		180		μΑ
		D+, D- active, C _{LOAD} = 25pF, SPD=1, f=6MHz, OE#=0 (Note 5)		0.4		mA
		D+, D- active, C _{LOAD} = 25pF, SPD=0, f=750kHz, OE#=0 (Note 5)		67		μΑ
		D+, D- are idle, V _{BUS} = 5.25V Suspend Mode (SUS = 1), OE# = 1, SPD = 1		88	100	μΑ
		D+, D- are idle, V _{BUS} = 5.25V SPD = 1, SUS = 0		4.7		mA
		D+, D- are idle, $V_{BUS} = 5.25V$ SPD = SUS = 0		3		mA
I _{BUS}	V _{BUS} Supply Current	D+, D- active, $V_{BUS} = 5.25V$ $C_{LOAD} = 50$ pF, $SPD = 1$, $f = 6$ MHz OE# = SUS = 0 (Note 5)		5.5		
		D+, D- active, $V_{BUS} = 5.25V$ $C_{LOAD} = 50pF$, $f = 6$ MHz, SUS = 0 OE# = SPD = 1 (Note 5)		5.2		mA
		D+, D- active, $V_{BUS} = 5.25V$ $C_{LOAD} = 600pF$, $f = 750$ KHz, SUS = SPD = 0 (Note 5)		3		
I _{VPULEAK}	V _{PU} Leakage Current	CON = 1, V _{PU} = 0V	-5		5	μΑ
I _{VIFLEAK}	V _{IF} Leakage Current	$V_{IF} = 3.6V, V_{BUS} = 0V$	-5		5	μΑ
V_{PU}	Pull-Up Output Voltage	$I_{TERM} = 200\mu A, V_{BUS} = 4 \text{ to } 5.25V$		3.3		V
R _{SW}	V _{PU} Internal Switch Resistance	I_{TERM} = 10mA, V_{BUS} = 4 to 5.25V		9		Ω
V _{BUSDET}	V _{BUS} Comparator threshold	Supply present	4			V
DOODLI		Supply lost			3.6	•

Note 1. Exceeding the absolute maximum rating may damage the device.

Note 2. The device is not guaranteed to function outside its operating rating.

Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.

Note 4. Specification applies to the following pins: SUS, SPD, RCV, CON, VP, VM, OE#, VBUSDET.

Note 5. Characterized specification(s), but not production tested.

Note 6. All AC parameters guaranteed by design but not production tested.

Note 7. RCV NOT LOADED

STUSB03E Electrical characteristics

Table 10. ESD performance

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	IEC-1000-4-2 (D+, D-)	Air Discharge (10 pulses)		±8		
ESD	1EC-1000-4-2 (D+, D-)	Contact Discharge (10 pulses)		±6		KV
	IEC-1000-4-2 (Valic ONV)	Air Discharge (10 pulses)		±5		rν
		Contact Discharge (10 pulses)		±5		

Table 11. DC electrical characteristics (transceiver)

($V_{IF} = 3.6V$, $V_{BUS} = 5V$ unless otherwise noted; $T_A = 25$ °C, specifications over temperature, -40 to 85°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{LO}	Hi-Z State Data Line Leakage (Suspend Mode)	V _I = 0 to 3.3 V, SUS = 1	-10		10	μΑ
V_{DI}	Differential Input Sensitivity	I(D+) - (D-)I	0.2			V
V _{CM}	Differential Common Mode Range	Includes V _{DI} range	0.8		2.5	٧
V _{SE}		Low to high transition	0.8	1.6	2.0	V
V SE	Single Ended Receiver Threshold	High to low transition	0.8	1.1	2.0	V
V _{RHYS}	Receiver Hysteresis	V _{CM} = 0.8 V		100		mV
V _{OL}	Static Output Low	$R_L = 1.5 \text{ K}\Omega \text{ at } 3.6 \text{V (see test circuit)}$	0		0.3	٧
V _{OH}	Static Output High	$R_L = 15 \text{ K}\Omega$ at GND (see test circuit)	2.8		3.6	٧
CI	Transceiver Capacitance	Pin to GND		25		рF
Z _{DRV}	Driver Output Resistance	Steady state drive	8		24	Ω
	D. Data line mull un registeres	BUS idle	900		1575	Ω
	D+ Data line pull-up resistance	Receive mode	1425		3090	52

Table 12. DC electrical characteristics (transceiver)

 $(V_{IF} = 3.6V, V_{BUS} = 5V \text{ unless otherwise noted; } T_A = 25^{\circ}C)$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{LO}	Hi-Z State Data Line Leakage (Suspend Mode)	V _I = 0 to 3.3 V, SUS = 1	-2		2	μΑ
V_{DI}	Differential Input Sensitivity	I(D+) - (D-)I	0.2			٧
V _{CM}	Differential Common Mode Range	Includes V _{DI} range	0.8		2.5	V
V _{SE}	Single Ended Receiver Threshold	Low to high transition	0.8	1.6	2.0	V
V SE		0.8	1.1	2.0	V	
V _{RHYS}	Receiver Hysteresis	V _{CM} = 0.8 V		50		mV
V _{OL}	Static Output Low	$R_L = 1.5 \text{ K}\Omega \text{ at } 3.6\text{V}$ (see <i>Test circuits</i>)			0.3	V
V _{OH}	Static Output High	$R_L = 15 \text{ K}\Omega \text{ at GND}$ (see <i>Test circuits</i>)	2.8		3.6	V
CI	Transceiver Capacitance (3)	Pin to GND		25		pF
Z_{DRV}	Driver Output Resistance	Steady state drive		16		Ω
R _{PU_D+}	D. Data line pull un registance	BUS idle		1300		Ω
	D+ Data line pull-up resistance	Receive mode		2200	200	

⁽³⁾ Pins D+, D-

Electrical characteristics STUSB03E

Table 13. AC electrical characteristics

 $(V_{IF} = 3.6V, V_{BUS} = 5V \text{ unless otherwise noted; } T_A = 25^{\circ}C.)$ (Note 6)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
T _R	Transition Rise Time (LOW SPEED)	C _L = 50pF (<i>Figure 5</i>)	75			20	
		C _L = 600pF			300	ns	
T _F	Transition Fall Time (LOW CDEED)	C _L = 50pF (<i>Figure 5</i>)	75			20	
'F	Transition Fall Time (LOW SPEED)	C _L = 600pF			300	ns	
T _{RFM}	Rise/Fall Time Matching (LOW SPEED)	(T _R , T _F)	80		125	%	
V _{CRS}	Output Signal Crossover Voltage (LOW SPEED)		1.3		2	٧	
T _R	Transition Rise Time (FULL SPEED)	C _L = 50pF (<i>Figure 5</i>)	4		20	ns	
T _F	Transition Fall Time (FULL SPEED)	C _L = 50pF (<i>Figure 5</i>)	4		20	ns	
T _{RFM}	Rise/Fall Time Matching (FULL SPEED)	(T _R , T _F)	90		111.11	%	
V _{CRS}	Output Signal Crossover Voltage (FULL SPEED)		1.3		2	٧	
t _{TA_OI}	Output to input turnaround time	Figure 4.	0		5	ns	
t _{TA_IO}	Output to input turnaround time	Figure 4.	0		5	ns	
t _{PZH,} t _{PZL}	Driver enable delay	FS, Figure 3.	50			ns	
t _{PLZ,} t _{PHZ}	Driver disable delay	FS, Figure 3.	50			ns	
t _{PLH} t _{PHL}	VP VM to D. D. Bronogation Dolay	FS, C _L = 50pF			55	ns	
	VP, VM to D+, D- Propagation Delay	LS, C _L =600pF			300	ns	
$t_{PLH} t_{PHL}$	D+, D- to RCV Propagation Delay	FS, input slope = 15 ns			18	ns	
$t_{PLH} t_{PHL}$	D+, D- to VP, VM Propagation Delay	FS, input slope = 15 ns			24	ns	

Note 1. Exceeding the absolute maximum rating may damage the device.

Note 2. The device is not guaranteed to function outside its operating rating.

Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.

Note 4. Specification applies to the following pins: SUS, SPD, RCV, CON, RCV, VP, VM, OE#.

Note 5. Characterized specification(s), but not production tested.

Note 6. All AC parameters guaranteed by design but not production tested.

STUSB03E Timing diagram

6 Timing diagram

Figure 3. Driver enable and disable delay

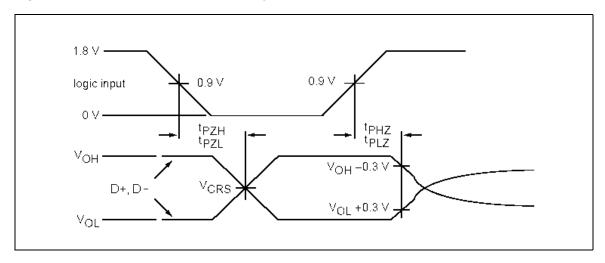


Figure 4. Turnaround time

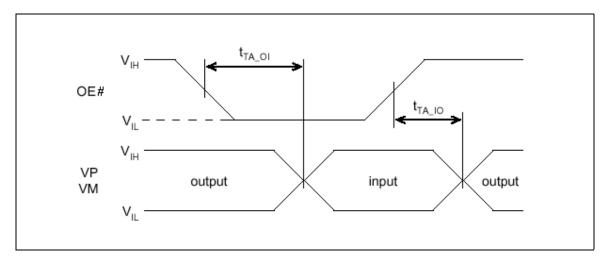
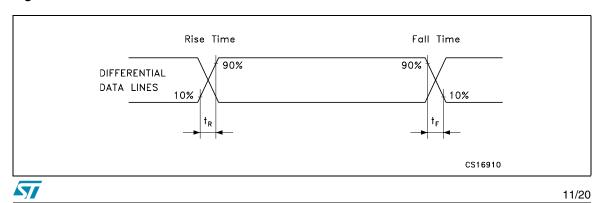



Figure 5. Rise and fall times

Timing diagram STUSB03E

Figure 6. Receiver propagation delay

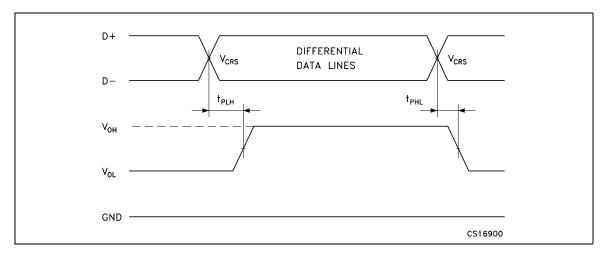
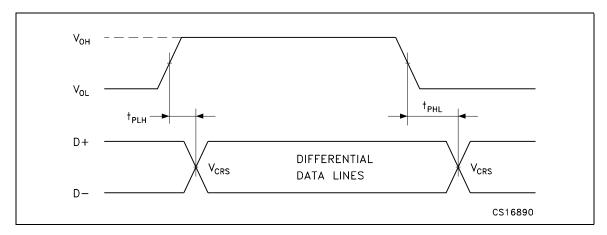
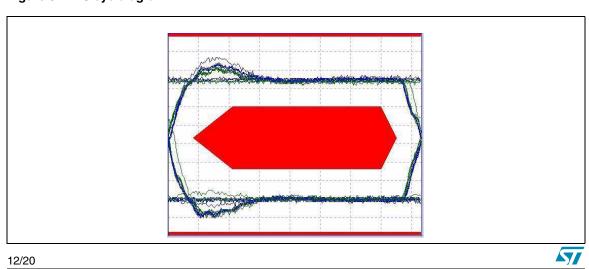




Figure 7. Driver propagation delay ($C_L = 50pF$)

Minimum Timing LS and maximum timing FS

Figure 8. FS eye diagram

STUSB03E Test circuits

7 Test circuits

Figure 9. Load for VP, VM, RCV

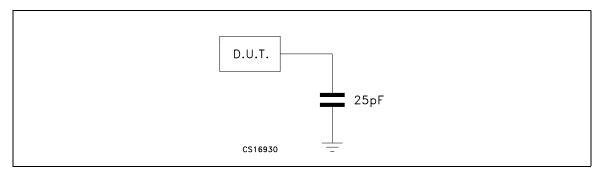
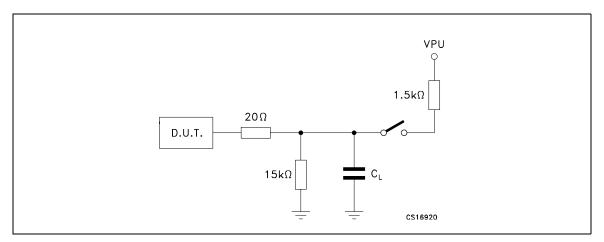
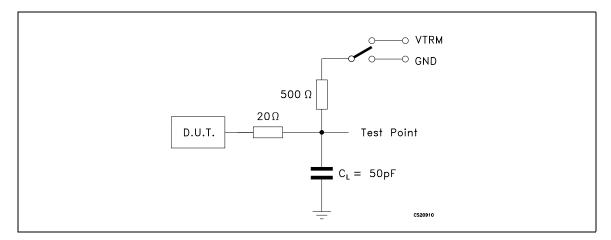
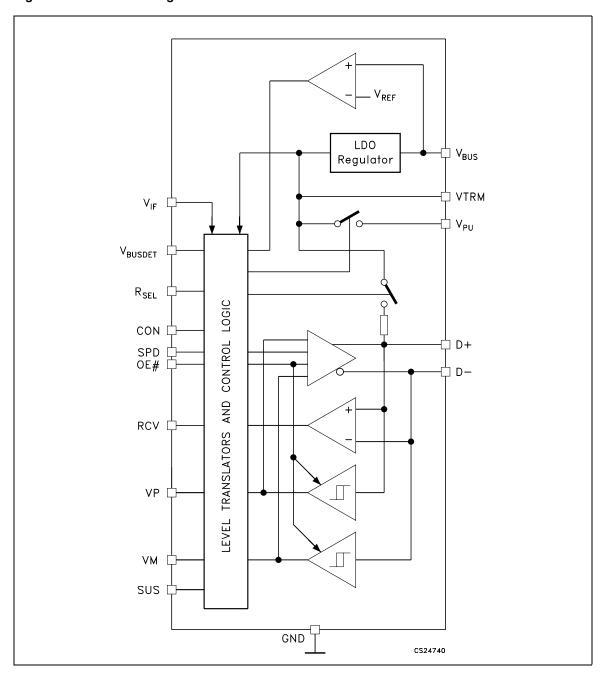


Figure 10. Load for D+, D-


Figure 11. Enable and disable time circuit

Switch = GND for t_{PZH} and t_{PHZ} ; V = VTRM for t_{PZL} and t_{PLZ}

Test circuits STUSB03E

Figure 12. Functional diagram

STUSB03E Functional description

8 Functional description

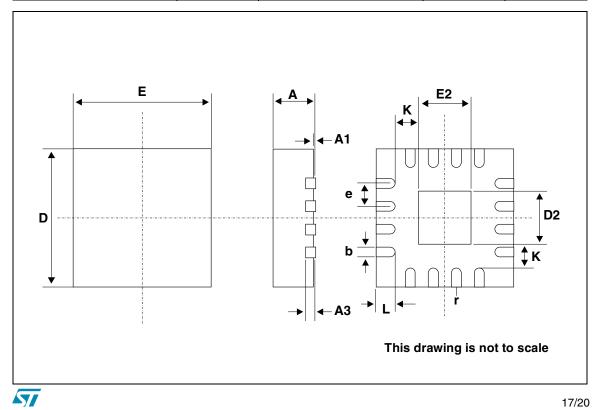
The STUSB03E is designed to provide USB connectivity in mobile systems where available system supply voltages are not able to satisfy USB requirements. The STUSB03E can operate down to supply voltages of 1.6V and still meet USB physical layer specifications. As shown in the circuit above, the STUSB03E takes advantage of the USB supply voltage, V_{BUS} , to operate the transceiver. The system voltage, V_{IF} is used to set the reference voltage used by the digital I/O lines interfacing to the system controller. Internal circuitry provides translation between the USB and system voltage domains. V_{IF} will typically be the main supply voltage rail for the controller.

In addition, a 3.3V, 10% termination supply voltage, V_{PU} , is provided to support speed selection. V_{PU} can be disabled or enabled under software control via the CON input. This allows for software-controlled connect or disconnect states. A 1.5K resistor is required to be connected between this pin and the D- line when operating in low speed mode. In full speed mode either an internal pull-up resistor or an external one connected between V_{PU} pin and D+ line can be used; the desired configuration is chosen by tying R_{SEL} pin to V_{IF} or GND.

The use of ESD transient protection devices is not required for operation, but is recommended.

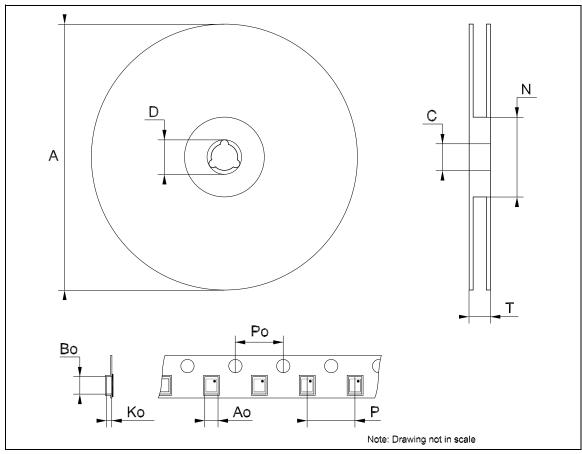
5/

Package mechanical data STUSB03E


9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

QFN16 (3mmx3mm) MECHANICAL DATA


DIM.	mm.			inch			
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
Α	0.80	0.90	1.00	0.032	0.035	0.039	
A1		0.02	0.05		0.001	0.002	
А3		0.20			0.008		
b	0.18	0.25	0.30	0.007	0.010	0.012	
D		3.00			0.118		
D2	1.55	1.70	1.80	0.061	0.067	0.071	
E		3.00			0.118		
E2	1.55	1.70	1.80	0.061	0.067	0.071	
е		0.50			0.020		
K		0.20			0.008		
L	0.30	0.40	0.50	0.012	0.016	0.020	
r	0.09			0.006			

Package mechanical data STUSB03E

Tape & Reel QFNxx/DFNxx (3x3) MECHANICAL DATA

DIM.	mm.			inch		
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			18.4			0.724
Ao		3.3			0.130	
Во		3.3			0.130	
Ko		1.1			0.043	
Ро		4			0.157	
Р		8			0.315	

STUSB03E Revision history

10 Revision history

Table 14. Revision history

Date	Revision	Changes	
31-Oct-2006	1	First Release.	
14-Mar-2007	2	Update tape & reel.	

577

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

57