土80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

General Description

The MAX3050/MAX3057 interface between the CAN protocol controller and the physical wires of the bus lines in a controller area network (CAN). They are primarily intended for automotive systems requiring data rates up to 2 Mbps and feature $\pm 80 \mathrm{~V}$ fault protection against short circuits in high-voltage power buses. They provide differential transmit capability to the bus and differential receive capability to the CAN controller.
The MAX3050/MAX3057 have four modes of operation: high speed, slope control, standby, and shutdown. High-speed mode allows data rates up to 2Mbps. In slope-control mode, data rates are 40 kbps to 500 kbps , so the effects of EMI are reduced, and unshielded twisted or parallel cable can be used. In standby mode, the transmitters are shut off and the receivers are put into low-current mode. In shutdown mode, the transmitter and receiver are switched off.
The MAX3050 has an AutoShutdown ${ }^{\text {TM }}$ function that puts the device into a $15 \mu \mathrm{~A}$ shutdown mode when the bus or CAN controller is inactive for 4 ms or longer.
The MAX3050/MAX3057 are available in an 8-pin SO package and are specified for operation from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Applications
Automotive Systems
HVAC Controls
Telecom 72V systems

AutoShutdown is a trademark of Maxim Integrated Products, Inc.

Features

- $\pm 80 \mathrm{~V}$ Fault Protection for 42V Systems
- Four Operating Modes

High-Speed Operation Up to 2Mbps
Slope-Control Mode to Reduce EMI (40kbps to 500 kbps)
Standby Mode
Low-Current Shutdown Mode

- AutoShutdown when Device Is Inactive (MAX3050)
- Automatic Wake-Up from Shutdown (MAX3050)
- Thermal Shutdown
- Current Limiting
- Fully Compatible with the ISO 11898 Standard*
* Pending completion of testing.

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3050ASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX3057ASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO

Pin Configuration

Typical Operating Circuit

() ARE FOR 3050 ONLY.

土80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ to GND \qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
TXD, RS, RXD, $\overline{\text { SHDN }}$ to GND
CANH, CANL to GND \qquad -80 V to +80 V
RXD Shorted to GND.
Continuous
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
8-Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
.. 470 mW

Operating Temperature Range \qquad
\qquad $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, R \mathrm{RL}=60 \Omega, \mathrm{RS}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Is	Dominant (Note 1)		56	72	mA
		Dominant no load			6	
		Recessive (Note 1)		3.6	5.5	
		Recessive no load			5.5	
Quiescent Current Standby Mode	IQ	$V_{\text {RS }}=\mathrm{V}_{\text {CC }}$		125	260	$\mu \mathrm{A}$
Shutdown Supply Current	IQSHDN	$\overline{\text { SHDN }}=\mathrm{GND}$		15	30	$\mu \mathrm{A}$
Thermal-Shutdown Threshold				160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis				20		${ }^{\circ} \mathrm{C}$
TXD INPUT LEVELS						
High-Level Input Voltage	V_{IH}		2			V
Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$				0.4	V
High-Level Input Current	IIH	$\mathrm{V}_{\mathrm{TXD}}=\mathrm{V}_{\mathrm{CC}}$		1		$\mu \mathrm{A}$
Pullup Resistor	RINTXD			20		$\mathrm{k} \Omega$
CANH, CANL TRANSMITTER						
Recessive Bus Voltage	VCANH, VCANL	$\mathrm{V}_{\text {TXD }}=\mathrm{V}_{\text {CC }}$, no load	2		3	V
Off-State Output Leakage	ILO	$\begin{aligned} & -2 \mathrm{~V}<\mathrm{V}_{\mathrm{CANH}}, V_{\mathrm{CANL}}<+7 \mathrm{~V} \\ & \mathrm{SHDN}=\mathrm{GND}, \mathrm{~V}_{T X D}=V_{C C} \end{aligned}$	-2		+1	mA
		$\begin{aligned} & -80 \mathrm{~V}<V_{C A N H}, V_{C A N L}<+80 \mathrm{~V} \\ & \text { SHDN }=G N D, V_{T X D}=V_{C C} \end{aligned}$	-4		+4	
CANH Output Voltage	$\mathrm{V}_{\text {CANH }}$	$\mathrm{V}_{\text {TXD }}=0$	3.0		$\mathrm{V}_{C C}$	V
CANL Output Voltage	VCANL	$\mathrm{V}_{\text {TXD }}=0$	0		2.0	V
Differential Output (VCANH - VCANL)	$\Delta \mathrm{V}_{\mathrm{CANH}}$, VCANL	$\mathrm{V}_{\text {TXD }}=0$	1.5		5	V
		$\mathrm{V}_{T X D}=0, \mathrm{R}_{\mathrm{L}}=45 \Omega$	1.5			
		$\mathrm{V}_{\text {TXD }}=\mathrm{V}_{\text {CC }}$, no load	-500		+50	mV
CANH Short-Circuit Current	ISC	$V_{\text {CANH }}=-5 \mathrm{~V}$	-200			mA
CANL Short-Circuit Current	ISC	$\mathrm{V}_{\mathrm{CANL}}=18 \mathrm{~V}$			200	mA

土80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{RS}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
DC BUS RECEIVER ($\mathrm{V}_{T X D}=\mathrm{V}_{C C}$; CANH and CANL externally driven; -2 V < $\mathrm{V}_{\text {CANH }}$, $\mathrm{V}_{\text {CANL }}<+7 \mathrm{~V}$, unless otherwise specified)					
Differential Input Voltage (Recessive)	VDIFF	-7 V < VCANH, $\mathrm{V}_{\text {can }}<+12 \mathrm{~V}$	-1.0	+0.5	V
Differential Input Voltage (Dominant)	V DIFF	$-7 \mathrm{~V}<\mathrm{V}_{\text {CANH }}, \mathrm{V}_{\text {canL }}<+12 \mathrm{~V}$	0.9	3.3	V
Differential Input Hysteresis	V ${ }_{\text {IIFF(HYST) }}$			150	mV
CANH Input Wake-Up Voltage Threshold	$\begin{aligned} & \mathrm{V}_{\mathrm{CANH}} \\ & (\overline{\mathrm{SHDN}}) \end{aligned}$	$\overline{\text { SHDN }}=\mathrm{GND}, \mathrm{V}_{T X D}=\mathrm{V}_{C C}(\mathrm{MAX3050})$	6	9	V
RXD High-Level Output Voltage	VOH	$\mathrm{I}=-100 \mu \mathrm{~A}$	$\begin{aligned} & 0.8 \times \\ & V_{C C} \end{aligned}$		V
RXD Low-Level Output Voltage	VoL	$\mathrm{I}=10 \mathrm{~mA}$		0.8	V
		$\mathrm{I}=5 \mathrm{~mA}$		0.4	
CANH and CANL Input Resistance	RI		5	25	k Ω
Differential Input Resistance	RDIFF		10	100	k Ω
MODE SELECTION (RS)					
Input Voltage for High Speed	VSLP			$\begin{aligned} & 0.3 \times \\ & V_{C C} \end{aligned}$	V
Input Voltage for Standby	V STBY		$\begin{gathered} 0.75 \times \\ V_{C C} \end{gathered}$		V
Slope-Control Mode Voltage	VSLOPE	RRS $=24 \mathrm{k} \Omega$ to $180 \mathrm{k} \Omega$	$\begin{aligned} & 0.4 \times \\ & V_{C C} \end{aligned}$	$0.6 \times$ VCC	V
Slope-Control Mode Current	ISLOPE	RRS $=24 \mathrm{k} \Omega$ to $180 \mathrm{k} \Omega$	-200	-10	$\mu \mathrm{A}$
Standby Mode	IstBy		-10	+10	$\mu \mathrm{A}$
High-Speed Mode Current	IHS	$V_{R S}=0$		-500	$\mu \mathrm{A}$
SHUTDOWN					
$\overline{\text { SHDN }}$ Input Pullup Resistor	RINSSHDN	MAX3057	500	900	$\mathrm{k} \Omega$
$\overline{\text { SHDN }}$ Input Voltage High			2		V
$\overline{\text { SHDN }}$ Input Voltage Low				0.5	V

土80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

TIMING CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V} \pm 10 \%, R_{L}=60 \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $T_{\text {MAX }}$. Typical values are at $\mathrm{V}_{C C}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Figures 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TIMING						
Minimum Bit Time	$t_{\text {BIT }}$	$\mathrm{V}_{\mathrm{RS}}=0$ (2Mbps)	0.5			$\mu \mathrm{s}$
		RRS $=24 \mathrm{k} \Omega$ (500 kbps)	2			
		RRS $=100 \mathrm{k} \Omega$ (125kbps)	8			
		RRS $=180 \mathrm{k} \Omega$ (62.5kbps)	25			
Delay TXD to Bus Active	tontXD	$V_{R S}=0$			40	ns
Delay TXD to Bus Inactive	tofFTXD	$V_{R S}=0$			75	ns
Delay TXD to Receiver Active	tonRXD	$\mathrm{V}_{\mathrm{RS}}=0$ (2Mbps)			120	ns
		RRS $=24 \mathrm{k} \Omega$ (500 kbps)			0.4	$\mu \mathrm{s}$
		RRS $=100 \mathrm{k} \Omega$ (125kbps)			1.6	
		RRS $=180 \mathrm{k} \Omega$ (62.5kbps)			5.0	
Delay TXD to Receiver Inactive	toffrxd	$\mathrm{V}_{\mathrm{RS}}=0$ (2Mbps)			130	ns
		RRS $=24 \mathrm{k} \Omega$ (500 kbps)			0.45	$\mu \mathrm{s}$
		RRS $=100 \mathrm{k} \Omega$ (125kbps)			1.6	
		$\mathrm{R}_{\mathrm{RS}}=180 \mathrm{k} \Omega$ (62.5 kbps)			5.0	
Differential Output Slew Rate	SR	RRS $=24 \mathrm{k} \Omega$ (500 kbps)		14		V/us
		RRS $=100 \mathrm{k} \Omega$ (125kbps)		7		
		RRS $=180 \mathrm{k} \Omega$ (62.5 kbps)		1.6		
Bus Dominant to RXD Low		Standby mode			10	$\mu \mathrm{s}$
Time to Wake Up: CANH > 9V	twake	$\overline{\text { SHDN }}=\mathrm{GND}, \mathrm{V}_{\text {TXD }}=\mathrm{V}_{C C}(\mathrm{MAX} 3050)$			10	$\mu \mathrm{s}$
Time to Sleep Mode when Bus Is Recessive	tSHDN	$\mathrm{C} \overline{\text { SHDN }}=100 \mathrm{nF}(\mathrm{MAX} 3050)$	10		47	ms

Note 1: As defined by ISO, bus value is one of two complementary logical values: dominant or recessive. The dominant value represents the logical 1 and the recessive represents the logical 0. During the simultaneous transmission of the dominant and recessive bits, the resulting bus value is dominant. For MAX3050 and MAX3057 values, see the truth table in the Transmitter and Receiver sections.

土80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

Figure 1. AC Test Circuit

Figure 2. Timing Diagram for Dynamic Characteristics

Figure 3. Time to Wake Up (twake) (MAX3050)

ェ80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

$\left(V_{C C}=5 V, R_{L}=60 \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

土80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

Typical Operating Characteristics (continued)
$\left(V_{C C}=5 V, R_{L}=60 \Omega, C_{L}=100 \mathrm{pF}, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

Pin Description

PIN	NAME	FUNCTION
1	TXD	Transmit Data Input. TXD is a CMOS/TTL-compatible input from a CAN controller.
2	GND	Ground
3	VCC	Supply Voltage. Bypass VCC to GND with a 0.1 μ F capacitor.
4	RXD	Receive Data Output. RXD is a CMOS/TTL-compatible output from the physical bus lines CANH and CANL.
5	$\overline{\text { SHDN }}$	Shutdown Input. Drive $\overline{\text { SHDN }}$ low to put into shutdown mode (MAX3057). Place a capacitor from $\overline{\text { SHDN }}$ to ground to utilize the AutoShutdown feature of MAX3050. See the Shutdown and AutoShutdown sections for a full explanation of $\overline{\text { SHDN }}$ behavior.
6	CANL	CAN Bus Line Low. CANL is fault protected to $\pm 80 \mathrm{~V}$.
7	CANH	CAN Bus Line High. CANH is fault protected to $\pm 80 \mathrm{~V}$.
8	RS	Mode Select Pin. Drive RS low or connect to GND for high-speed operation. Connect a resistor from RS to GND to control output slope. Drive RS high to put into standby mode. See the Mode Selection section.

土80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

Detailed Description

The MAX3050/MAX3057 interface between the protocol controller and the physical wires of the bus lines in a CAN. They are primarily intended for automotive applications requiring data rates up to 2 Mbps and feature $\pm 80 \mathrm{~V}$ fault protection against shorts in high-voltage systems. This fault protection allows the devices to withstand up to $\pm 80 \mathrm{~V}$ with respect to ground with no damage to the device. The built-in fault tolerance allows the device to survive in industrial and automotive environments with no external protection devices. The devices provide differential transmit capability to the bus and differential receive capability to the CAN controller (Figure 4).
The device has four modes of operation: high speed, slope control, standby, and shutdown. In high-speed mode, slew rates are not limited, making 2Mbps transmission speeds possible. Slew rates are controlled in slopecontrol mode, minimizing EMI and allowing use of unshielded twisted or parallel cable. In standby mode, receivers are active and transmitters are in high impedance. In shutdown mode, transmitters and receivers are turned off.

The transceivers are designed to operate from a single +5 V supply and draw 56 mA of supply current in dominant state and 3.6 mA in recessive state. In standby mode, supply current is reduced to $125 \mu \mathrm{~A}$. In shutdown mode, supply current is $15 \mu \mathrm{~A}$.
CANH and CANL are output short-circuit current limited and are protected against excessive power dissipation by thermal-shutdown circuitry that places the driver outputs into a high-impedance state.

Fault Protection
The MAX3050/MAX3057 feature $\pm 80 \mathrm{~V}$ fault protection. This extended voltage range of CANH and CANL bus lines allows use in high-voltage systems and communication with high-voltage buses. If data is transmitting at 2 Mbps , the fault protection is reduced to $\pm 70 \mathrm{~V}$.

Transmitter
The transmitter converts a single-ended input (TXD) from the CAN controller to differential outputs for the bus lines (CANH, CANL). The truth table for the transmitter and receiver is given in Table 1.

Figure 4. Functional Diagram

土80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

Table 1. Transmitter and Receiver Truth Table

TXD	RS	$\overline{\text { SHDN }}$	CANH	CANL	BUS STATE	RXD
0	$V_{R S}<0.75 \times \mathrm{V}_{C C}$	$\mathrm{~V} \overline{\mathrm{SHDN}}>1.5 \mathrm{~V}$	High	Low	Dominant *	0
1 or float	$\mathrm{V}_{\mathrm{RS}}<0.75 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V} \overline{\mathrm{SHDN}}>1.5 \mathrm{~V}$	$5 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$	$5 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$	Recessive *	1
X	$\mathrm{V}_{\mathrm{RS}}>0.75 \times \mathrm{V}_{\mathrm{CC}}$	X	Floating	Floating	Floating	1
X	X	$\mathrm{V} \overline{\mathrm{SHDN}}<0.5 \mathrm{~V}$	Floating	Floating	Floating	1

$X=$ Don't care.
*As defined by ISO, bus value is one of two complementary logical values: dominant or recessive. The dominant value represents the logical 0 and the recessive represents the logical 1. During the simultaneous transmission of the dominant and recessive bits, the resulting bus value is dominant.

High Speed Connect RS to ground to set the MAX3050/MAX3057 to high-speed mode. When operating in high-speed mode, the MAX3050/MAX3057 can achieve transmission rates of up to 2Mbps. Line drivers are switched on and off as quickly as possible. However, in this mode, no measures are taken to limit the rise and fall slope of the data signal, allowing for potential EMI emissions. If using the MAX3050/MAX3057 in high-speed mode, use shielded twisted-pair cable to avoid EMI problems.

Slope Control

Connect a resistor from RS to ground to select slopecontrol mode (Table 2). In slope-control mode, the gates of the line drivers are charged with a controlled current, proportional to the resistor connected to the RS pin. Transmission speed ranges from 40 kbps to 500 kbps . Controlling the rise and fall slope reduces EMI and allows the use of an unshielded twisted pair or a parallel pair of wires as bus lines. The transfer function for selecting the resistor value is given by:
$\operatorname{RRS}(k \Omega)=12000 /$ speed (in kbps)
See the Slew Rate vs. RRS graph in the Typical Operating Characteristics section.

Receiver
The receiver reads differential input from the bus lines (CANH, CANL) and transfers this data as a singleended output (RXD) to the CAN controller. It consists of a comparator that senses the difference $\Delta \mathrm{V}=(\mathrm{CANH}$ CANL) with respect to an internal threshold of 0.7 V . If this difference is positive (i.e., $\Delta \mathrm{V}>0.7 \mathrm{~V}$), a logic low is
present at the RXD pin. If negative (i.e., $\Delta \mathrm{V}<0.7 \mathrm{~V}$), a logic high is present.
The receiver always echoes the transmitted data.
The CANH and CANL common-mode range is -7 V to +12 V . RXD is logic high when CANH and CANL are shorted or terminated and undriven. If the differential receiver input voltage (CANH - CANL) is less than or equal to 0.5 V , RXD is logic high. If (CANH - CANL) is greater than or equal to 0.9 V , RXD is logic low.

Standby

If a logic high level is applied to RS, the MAX3050/ MAX3057 enter a low-current standby mode. In this mode, the transmitter is switched off and the receiver is switched to a low-current state. If dominant bits are detected, RXD switches to a low level. The microcontroller should react to this condition by switching the transceiver back to normal operation (through RS). Due to the reduced power mode, the receiver is slower in standby mode, and the first message may be lost at higher bit rates.

Thermal Shutdown

If the junction temperature exceeds $+160^{\circ} \mathrm{C}$, the device is switched off. The hysteresis is approximately $20^{\circ} \mathrm{C}$, disabling thermal shutdown once the temperature reaches $+140^{\circ} \mathrm{C}$.

Shutdown (MAX3057)
Drive $\overline{\text { SHDN }}$ low to enter shutdown mode. In shutdown mode, the device is switched off. The outputs are high impedance to $\pm 80 \mathrm{~V}$. The MAX3057 features a pullup at $\overline{\mathrm{SHDN}}$. If shutdown is forced low and then left floating, the device switches back to normal operating mode.

Table 2. Mode Selection Truth Table

CONDITION FORCED AT PIN RS	MODE	RESULTING CURRENT AT RS	
$V_{R S}<0.3 \times V_{C C}$	High speed	$\\|_{R S}<500 \mu \mathrm{~A}$	
$0.4 \times V_{C C}<V_{R S}<0.6 \times V_{C C}$	Slope control	$10 \mu \mathrm{~A}<\\|_{R S}<200 \mu \mathrm{~A}$	
$\mathrm{~V}_{\mathrm{RS}}>0.75 \times \mathrm{V}_{\mathrm{CC}}$	Standby	$\\|_{\mathrm{RS}}<10 \mu \mathrm{~A}$	

t80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

AutoShutdown (MAX3050)

To manage power consumption, AutoShutdown puts the device into shutdown mode after the device has been inactive for a period of time. The value of an external capacitor (C $\overline{\mathrm{SHDN}}$) connected to $\overline{\text { SHDN }}$ determines the threshold of inactivity time, after which the AutoShutdown triggers. Floating $\overline{\text { SHDN }}$ allows the MAX3050 to automatically change from active mode to shutdown.
Use a 100 nF capacitor as C $\overline{\text { SHDN }}$ for a typical threshold of 20 ms . Change the capacitor value according to the following equation to change the threshold time period.

$$
\mathrm{C}_{\mathrm{SHDN}}(\mathrm{nF})=\frac{0.02 \times \operatorname{time}(\mu \mathrm{s})}{\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\overline{\mathrm{SHDN}}}\right)}
$$

$\mathrm{V} \overline{\mathrm{SHDN}}$ is the threshold of $\overline{\text { SHDN }}$ guaranteed to be less than 2V in the Electrical Characteristics table. Drive $\overline{\text { SHDN }}$ high to turn the MAX3050 on and disable AutoShutdown.
When the MAX3050 is in shutdown mode, only the wake-up comparator is active, and normal bus communication is ignored. The remote master of the CAN system wakes up the MAX3050 with a signal greater than 9 V on CANH. Internal circuitry in the MAX3050 puts the device in normal operation by driving SHDN high.
The MAX3057 does not have the AutoShutdown feature.

Driver Output Protection

The MAX3050/MAX3057 have several features that protect them from damage. Thermal shutdown switches off the device and puts CANH and CANL into high impedance if the junction temperature exceeds $+160^{\circ} \mathrm{C}$. Thermal protection is needed particularly when a bus line is short circuited. The hysteresis for the thermal shutdown is approximately $20^{\circ} \mathrm{C}$.
Additionally, a current-limiting circuit protects the transmitter output stage against short-circuits to positive and negative battery voltage. Although the power dissipation increases during this fault condition, this feature prevents destruction of the transmitter output stage.

Figure 5. FFT Dominant Bus at 2Mbps

Figure 6. FFT Recessive Bus at 2Mbps

Figure 7. FFT Dominant Bus at 500kbps

土80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

Figure 8. FFT Recessive Bus at 500kbps

Figure 9. FFT Dominant Bus at 62.5 kbps

Figure 10. FFT Recessive Bus at 62.5 kbps

Applications Information

Reduced EMI and Reflections
In slope-control mode, the CANH and CANL outputs are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. In general, a transmitter's rise time relates directly to the length of an unterminated stub, which can be driven with only minor waveform reflections. The following equation expresses this relationship conservatively:
Length = tRISE / (15ns/ft)
where tRISE is the transmitter's rise time.
The MAX3050 and MAX3057 require no special layout considerations beyond common practices. Bypass $V_{C C}$ to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor mounted close to the IC with short lead lengths and wide trace widths.

Chip Information
TRANSISTOR COUNT: 1214
PROCESS: BiCMOS

土80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

