

ST485ERB

±15 kV ESD protected, low power RS-485/RS-422 transceiver

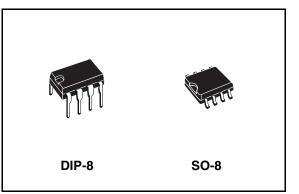
Features

- Low quiescent current: 300 µA
- Designed for RS-485 interface application
- -7 V to 12 V common mode input voltage range
- Driver maintains high impedance in 3-state or with the power OFF
- 70 mV typical input hysteresis
- 30 ns propagation delay, 5 ns skew
- Operate from a single 5 V supply
- Current limiting and thermal shutdown for driver overload protection
- ESD protection:
 - ± 15 kV (HBM)
 - ± 8 kV (IEC-1000-4-2 contact discharge)
- Allows up to 256 transceivers on the bus

Description

The ST485ERB is al low power transceiver for RS-485 and RS-422 communication. Each driver output and receiver input is protected against \pm 15 kV electrostatic discharge (HBM) \pm 8 kV (IEC-1000-4-2 contact discharge) shocks, without latch-up. These parts contain one driver and one receiver.

This transceiver draws 300 μ A (typ.) of supply current when unloaded or fully loaded with disabled drivers.


It operates from a single 5 V supply.

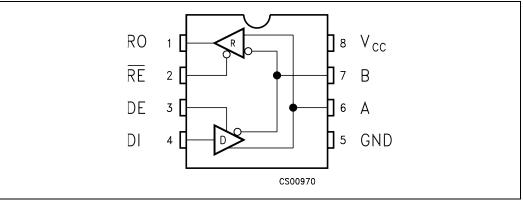
Driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state.

Table 1.	Device summary
----------	----------------

Order code	Temperature range	Package	Packaging
ST485ERBN	- 40 to 85 °C	40 to 85 °C DIP-8 50 parts per tube / 40 tube pe	
ST485ERBDR	- 40 to 85 °C	SO-8 (tape and reel)	2500 parts per reel

February 2009

The ST485ERB is designed for bi-directional data communications on multipoint bus transmission line (half-duplex applications).


www.st.com

Contents

1	Pin settings
2	Truth tables
3	Maximum ratings 5
4	Electrical characteristics
5	Test circuit and typical characteristics9
6	Package mechanical data 14
7	Revision history

1 Pin settings

Figure 1. Pin configuration

Pin n°	Symbol	Name and function
1	RO	Receiver output
2	RE	Receiver output enable
3	DE	Driver output enable
4	DI	Driver input
5	GND	Ground
6	A	Non-inverting receiver input and non-inverting driver output
7	В	Inverting receiver input and inverting driver output
8	V _{CC}	Supply voltage

2 Truth tables

Table 3.	Truth table	(driver)
Table J.	IT ULIT LADIE	unver

Inputs			Out	outs
RE DE DI			В	Α
Х	Н	Н	L	н
Х	Н	L	Н	L
Х	L	Х	Z	Z

Note: X = Don't care; Z = High impedance

Table 4. Truth table (recei

Inputs		Outputs	
RE	DE	A-B	RO
L	L	≥ +0.2V	н
L	L	≤ -0.2V	L
L	L	Inputs open	н
Н	L	Х	Z

Note: X = Don't care; Z = High impedance

3 Maximum ratings

	3 -		
Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	7	V
VI	Control input voltage (RE, DE)	-0.5 to (V _{CC} + 0.5)	V
V _{DI}	Driver input voltage (DI)	-0.5 to (V _{CC} + 0.5)	V
V _{DO}	Driver output voltage (A, B)	± 14	V
V _{RI}	Receiver input voltage (A, B)	± 14	V
V _{RO}	Receiver output voltage (RO)	-0.5 to (V _{CC} + 0.5)	V

Table 5. Absolute maximum ratings

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

4 Electrical characteristics

Table 6. ESD performance: transmitter outputs, receiver inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ESD	ESD protection voltage	Human body model	±15			kV
ESD	ESD protection voltage	IEC-1000-4-2	±8			kV

 V_{CC} = 5 V ± 5 %, T_A = T_{MIN} to $T_{MAX},$ unless otherwise specified. Typical values are referred to T_A = 25 $^\circ C$

 Table 7.
 DC electrical characteristics

Symbol	Parameter	Test conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
V _{OD1}	Differential driver output (no load)				5	V
V _{OD2}	Differential driver output (with load)	$R_L = 27\Omega$ (RS-485) (<i>Figure 2</i>) $R_L = 50\Omega$ (RS-422) (<i>Figure 2</i>)	1.5		5 5	V V
ΔV _{OD}	Change in magnitude of driver differential output voltage for complementary output states	R _L = 27Ω or 50Ω (<i>Figure 2</i>)			0.2	v
V _{OC}	Driver common-mode output voltage	R _L = 27Ω or 50Ω (<i>Figure 2</i>)			3	V
ΔV _{OC}	Change in magnitude of driver common-mode output voltage for complementary output states	R _L = 27Ω or 50Ω (<i>Figure 2</i>)			0.2	v
V _{IH}	Input high voltage	RE, DE, DI	2.0			V
V _{IL}	Input low voltage	RE, DE, DI			0.8	V
I _{IN1}	Input current	RE, DE, DI			±2	μA
I _{IN2}	Input current (A, B)	$\label{eq:VCM} \begin{array}{l} V_{CM} = 0V \text{ or } 5.25V, \ V_{DE} = 0V \\ V_{IN} = 12V \\ V_{IN} = -7V \end{array}$			1 -0.8	mA mA
V _{TH}	Receiver differential threshold voltage	V _{CM} = -7 to 12V	-0.2		0.2	V
ΔV_{TH}	Receiver input hysteresis	$V_{CM} = 0V$		70		mV
V _{OH}	Receiver output high voltage	I _O = -4mA, V _{ID} = 200mV	3.5			V
V _{OL}	Receiver output low voltage	I _O = 4mA, V _{ID} = -200mV			0.4	V
I _{OZR}	3-State (high impedance) output current at receiver	V _O = 0.4 to 2.4V			± 1	μA
R _{IN}	Receiver input resistance	V _{CM} = -7 to 12V	24			kΩ

Symbol	Parameter	Test conditions ⁽¹⁾	Min.	Тур.	Max.	Unit		
Icc	No load supply current ⁽²⁾	$V_{RE} = 0V \text{ or } V_{CC}$ $V_{DE} = V_{CC}$ $V_{DE} = 0V$		400 300	900 500	μΑ μΑ		
I _{OSD1}	Driver short-circuit current, V _O =High	$V_{O} = -7$ to 12V ⁽³⁾	35		250	mA		
I _{OSD2}	Driver short-circuit current, V _O =Low	$V_{O} = -7$ to 12V ⁽³⁾	35		250	mA		
I _{OSR}	Receiver short-circuit current	$V_{O} = 0V$ to V_{CC}	7		95	mA		

Table 7. DC electrical characteristics (continued)

1. All currents into device pins are positive; all cuttents out of device pins are negative; all voltages are referenced to device ground unless specified.

2. Supply current specification is valid for loaded transmitters when $V_{DE} = 0 V$

3. Applies to peak current. See typical Operating Characteristics.

(V_{CC} = 5 V \pm 5 %, T_A = T_{MIN} to T_MAX, unless otherwise specified. Typical values are referred to T_A = 25 °C)

Symbol	Parameter	Test conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
t _{PLH} t _{PHL}	Propagation delay input to output	$R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$ (see <i>Figure 4</i> and <i>Figure 6</i>)	10	30	60	ns
t _{SK}	Output skew to output	$R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$ (see <i>Figure 4</i> and <i>Figure 6</i>)		5	10	ns
t _{TLH} t _{THL}	Rise or fall time	$R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$ (see <i>Figure 4</i> and <i>Figure 6</i>)	3	15	40	ns
t _{PZH}	Output enable time	C _L = 100pF, S2 = Closed (see <i>Figure 5</i> and <i>Figure 7</i>)		70	90	ns
t _{PZL}	Output enable time	C _L = 100pF, S1 = Closed (see <i>Figure 5</i> and <i>Figure 7</i>)		70	90	ns
t _{PLZ}	Output disable time	C _L = 15pF, S1 = Closed (see <i>Figure 5</i> and <i>Figure 7</i>)		70	90	ns
t _{PHZ}	Output disable time	C _L = 15pF, S2 = Closed (see <i>Figure 5</i> and <i>Figure 7</i>)		70	90	ns
C _{AB}	Output AB capacitance			43		pF

 Table 8.
 Driver switching characteristics

1. All currents into device pins are positive; all cuttents out of device pins are negative; all voltages are referenced to device ground unless specified.

(V_{CC} = 5 V \pm 5 %, T_A = T_{MIN} to T_MAX, unless otherwise specified. Typical values are referred to T_A = 25 °C)

Symbol	Parameter Test conditions ⁽¹⁾		Min.	Тур.	Max.	Unit
t _{PLH} t _{PHL}	Propagation delay input to output	$R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100 pF$ (see <i>Figure 4</i> and <i>Figure 8</i>)	20	130	210	ns
t _{SKD}	Differential receiver skew	$R_{\text{DIFF}} = 54\Omega, C_{\text{L1}} = C_{\text{L2}} = 100\text{pF}$ (see <i>Figure 4</i> and <i>Figure 8</i>) 13			ns	
t _{PZH}	Output enable time	C _{RL} = 15pF, S1 = Closed (see <i>Figure 2</i> and <i>Figure 9</i>)		20	50	ns
t _{PZL}	Output enable time	C _{RL} = 15pF, S2 = Closed (see <i>Figure 2</i> and <i>Figure 9</i>)		20	50	ns
t _{PLZ}	Output disable time	C _{RL} = 15pF, S1 = Closed (see <i>Figure 2</i> and <i>Figure 9</i>)		20	50	ns
t _{PHZ}	Output disable time	C _{RL} = 15pF, S2 = Closed (see <i>Figure 2</i> and <i>Figure 9</i>)		20	50	ns
f _{MAX}	Maximum data rate		2.5			Mbps

 Table 9.
 Receiver switching characteristics

1. All currents into device pins are positive; all cuttents out of device pins are negative; all voltages are referenced to device ground unless specified

5 Test circuit and typical characteristics

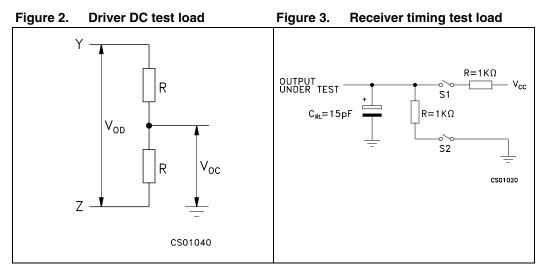
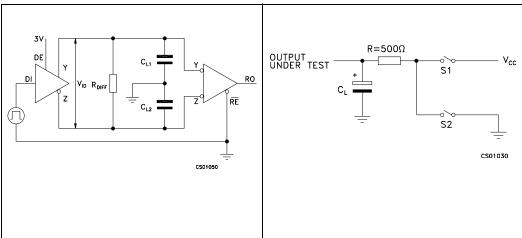
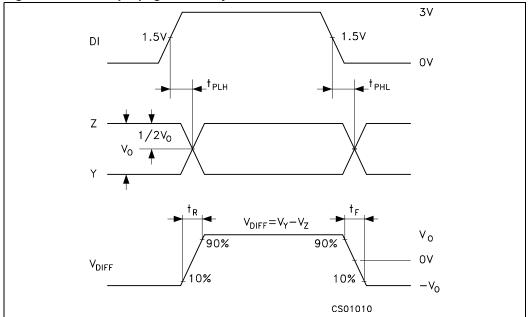
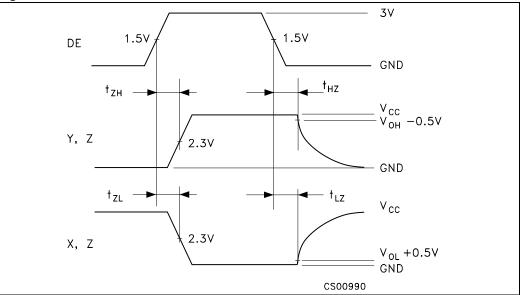
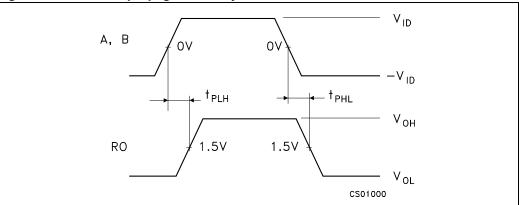
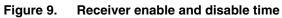
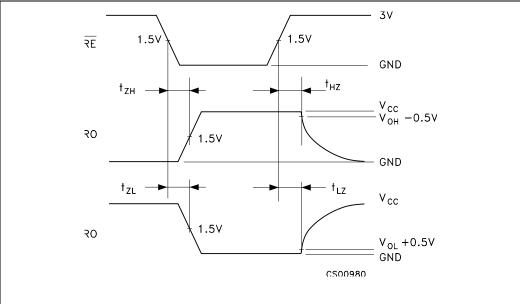



Figure 4. Drive/receiver timing test Figure 5. Driver timing test load circuit

57


Figure 6. Driver propagation delay



57

Figure 10. Receiver output current vs. output Figure 11. Receiver output current vs. output low voltage

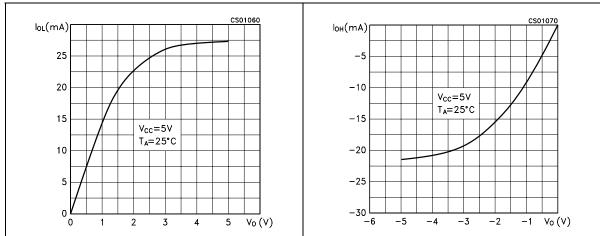
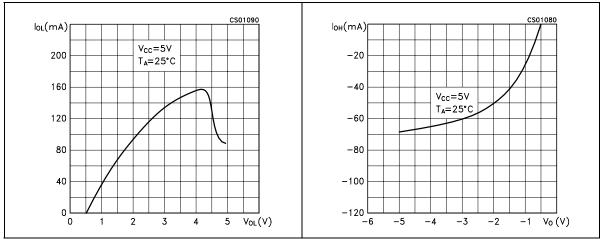
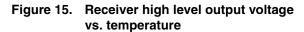
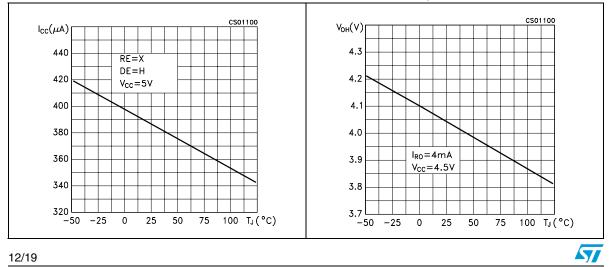
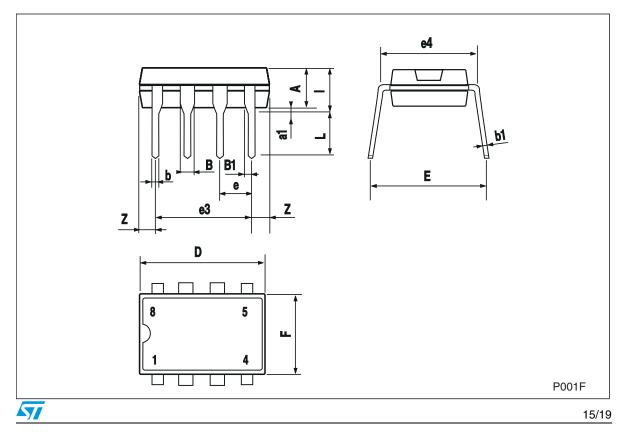





Figure 12. Driver output current vs. output low Figure 13. Driver output current vs. output voltage

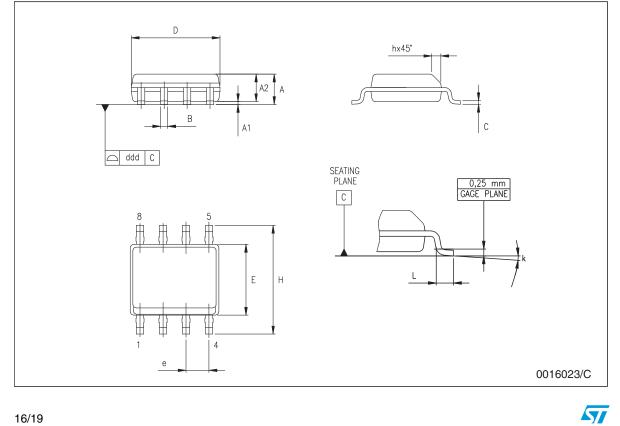
CS01120 CS01130 $V_{OL}(V)$ $V_{OD}(V)$ 0.40 4.5 NO LOAD 0.35 4.0 0.30 3.5 V_{cc}=4.5V 0.25 3.0 $R_L = 50\Omega$ I_{RO}=4mA V_{CC}=4.5V 0.20 2.5 $R_L = 27\Omega$ 0.15 2.0 0.10 -50 1.5 -50 -25 100 T」(°C) 50 100 T_J(°C) -25 25 75 75 0 50 0 25

Figure 16. Receiver low level output voltage vs. temperature

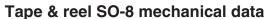

Figure 17. Differential driver output voltage vs. temperature

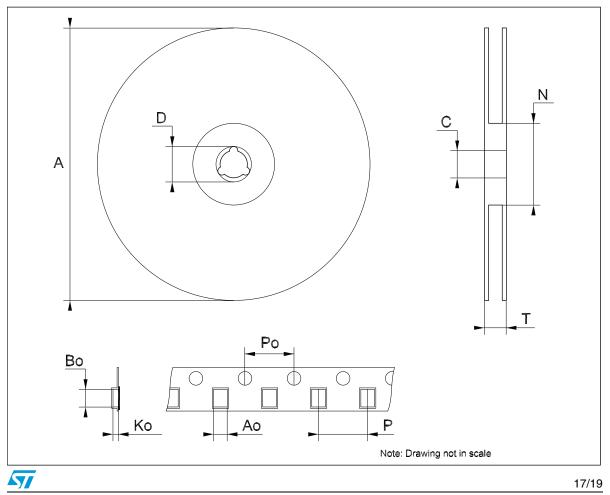
6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.


14/19

	Plastic DIP-8 mechanical data						
Dim.		mm.					
Din.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А		3.3			0.130		
a1	0.7			0.028			
В	1.39		1.65	0.055		0.065	
B1	0.91		1.04	0.036		0.041	
b		0.5			0.020		
b1	0.38		0.5	0.015		0.020	
D			9.8			0.386	
Е		8.8			0.346		
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			7.1			0.280	
I			4.8			0.189	
L		3.3			0.130		
Z	0.44		1.6	0.017		0.063	


Downloaded from $\underline{Elcodis.com}$ electronic components distributor


	SO-8 mechanical data						
Dim.		mm.			inch.		
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.04		0.010	
A2	1.10		1.65	0.043		0.065	
В	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.010	
D	4.80		5.00	0.189		0.197	
E	3.80		4.00	0.150		0.157	
е		1.27			0.050		
Н	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k	8° (max.)						
ddd			0.1			0.04	

16/19

Dia	mm.			inch.			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
Ν	60			2.362			
Т			22.4			0.882	
Ao	8.1		8.5	0.319		0.335	
Bo	5.5		5.9	0.216		0.232	
Ko	2.1		2.3	0.082		0.090	
Po	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

7 Revision history

Date	Revision	Changes
21-Mar-2006	3	Order codes has been updated and new template.
01-Aug-2006	4	Mistake in cover page description 300 mA ==> 300 μ A.
25-Oct-2006	5	Order codes updated.
02-Dec-2008	6	Modified: device name Table 1 on page 1.
16-Feb-2008	7	Modified <i>Note: on page 5</i> .

Table 10.Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

