

DS89C21 Differential CMOS Line Driver and Receiver Pair

General Description

The DS89C21 is a differential CMOS line driver and receiver pair, designed to meet the requirements of TIA/EIA-422-A (RS-422) electrical characteristics interface standard. The DS89C21 provides one driver and one receiver in a minimum footprint. The device is offered in an 8-pin SOIC package.

The CMOS design minimizes the supply current to 6 mA, making the device ideal for use in battery powered or power conscious applications.

The driver features a fast transition time specified at 2.2 ns, and a maximum differential skew of 2 ns making the driver ideal for use in high speed applications operating above 10 MHz.

The receiver can detect signals as low as 200 mV, and also incorporates hysteresis for noise rejection. Skew is specified at 4 ns maximum.

The DS89C21 is compatible with TTL and CMOS levels (DI and RO).

Features

- Meets TIA/EIA-422-A (RS-422) and CCITT V.11 recommendation
- LOW POWER design—15 mW typical
- Guaranteed AC parameters: - Maximum driver skew 2.0 ns - Maximum receiver skew 4.0 ns
- Extended temperature range: -40°C to +85°C
- Available in SOIC packaging
- Operates over 20 Mbps
- Receiver OPEN input failsafe feature

Connection Diagram

Truth Tables

Driver						
Input	Outputs					
DI	DO	DO*				
Н	Н	L				
L	L	Н				

Receiver

Inputs	Output
RI–RI*	RO
$V_{DIFF} \ge +200 \text{ mV}$	Н
$V_{DIFF} \leq -200 \text{ mV}$	L
OPEN†	Н

†Non-terminated

DS011753 © 2004 National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

DS89C21

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC})	7V
Driver Input Voltage (DI)	–1.5V to V _{CC} + 1.5V
Driver Output Voltage (DO,	
DO)	-0.5V to +7V
Receiver Input Voltage-V	
CM	
(RI, RI [*])	±14V
Differential Receiver Input	±14V
Voltage – V_{DIFF} (RI, RI [*])	
Receiver Output Voltage	
(RO)	–0.5V to V $_{\rm CC}$ +0.5V
Receiver Output Current	
(RO)	±25 mA
Storage Temperature	
Range	

(T _{STG})	–65°C to +150°C					
Lead Temperature (T_L)	+260°C					
(Soldering 4 sec.)						
Maximum Junction						
Temperature	150°C					
Maximum Package Power Dissipation @+25°C						
M Package	714 mW					
Derate M Package	5.7 mW/°C above					
	+25°C					

Recommended Operating Conditions

	Min	мах	Units
Supply Voltage (V _{CC})	4.50	5.50	V
Operating Temperature (T _A)	-40	+85	°C
Input Rise or Fall Time (DI)		500	ns

. . .

...

.. ..

Electrical Characteristics (Notes 2, 3)

Over recommended supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter	Conditions		Pin	Min	Тур	Max	Units
DRIVER CHARACTERISTICS								
V _{IH}	Input Voltage HIGH				2.0		V _{cc}	V
V _{IL}	Input Voltage LOW			DI	GND		0.8	V
I _{IH} , I _{IL}	Input Current	$V_{IN} = V_{CC}, \text{ GND}, 2.$	0V, 0.8V			0.05	±10	μA
V _{CL}	Input Clamp Voltage	I _{IN} = -18 mA					-1.5	V
V _{OD1}	Unloaded Output Voltage	No Load		DO,		4.2	6.0	V
V _{OD2}	Differential Output Voltage	R _L = 100Ω		DO*	2.0	3.0		V
ΔV_{OD2}	Change in Magnitude of V OD2					5.0	400	mV
	for Complementary Output States							
V _{OD3}	Differential Output Voltage	R _L = 150Ω			2.1	3.1		V
V _{OD4}	Differential Output Voltage	$R_{L} = 3.9 \text{ k}\Omega$				4.0	6.0	V
V _{oc}	Common Mode Voltage	R _L = 100Ω				2.0	3.0	V
ΔV_{OC}	Change in Magnitude of V _{OC}					2.0	400	mV
	for Complementary Output States							
IOSD	Output Short Circuit Current	V _{OUT} = 0V			-30	-115	-150	mA
I _{OFF}	Output Leakage Current	$V_{\rm CC} = 0V$	$V_{OUT} = +6V$			0.03	+100	μA
			$V_{OUT} = -0.25V$			-0.08	-100	μA
RECEIVER	CHARACTERISTICS			-				
V_{TL}, V_{TH}	Differential Thresholds	$V_{IN} = +7V, 0V, -7V$		RI,	-200	±25	+200	mV
V _{HYS}	Hysteresis	V _{CM} = 0V		RI*	20	50		mV
R _{IN}	Input Impedance	$V_{IN} = -7V$, $+7V$, Other = 0V			5.0	9.5		kΩ
I _{IN}	Input Current	Other Input = 0V,	V _{IN} = +10V			+1.0	+1.5	mA
		$V_{CC} = 5.5V$ and	$V_{IN} = +3.0V$		0	+0.22		mA
		$V_{\rm CC} = 0V$	$V_{IN} = +0.5V$			-0.04		mA
			$V_{IN} = -3V$		0	-0.41		mA
			$V_{IN} = -10V$			-1.25	-2.5	mA

www.national.com

Electr	ical Characteristics (No	tes 2, 3) (Continued)							
Over reco	ommended supply voltage and operat	ting temperature range	s, unless otherwise sp	ecified.					
Symbol	Parameter	Conditions		Pin	Min	Тур	Max	Units	
RECEIVER CHARACTERISTICS									
V _{OH}	Output HIGH Voltage	I _{OH} = –6 mA	$V_{DIFF} = +1V$	RO	3.8	4.9		V	
			V _{DIFF} = OPEN]	3.8	4.9		V	
V _{OL}	Output LOW Voltage	$I_{OL} = +6 \text{ mA}, V_{DIFF} = -1V$]		0.08	0.3	V	
I _{OSR}	Output Short Circuit Current	V _{OUT} = 0V]	-25	-85	-150	mA	
DRIVER AND RECEIVER CHARACTERISTICS									
I _{cc}	Supply Current	No Load	$DI = V_{CC}$ or GND	V _{cc}		3.0	6	mA	
			DI = 2.4V or 0.5V	1		3.8	12	mA	
	•								

Switching Characteristics (Note 3)

Over recommended supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter		Conditions	Min	Тур	Мах	Units	
DIFFERENTIAL DRIVER CHARACTERISTICS								
t _{PLHD}	Propagation Delay LOW to HIGH	$R_L = 100\Omega$	(Figures 2, 3)	2	4.9	10	ns	
t _{PHLD}	Propagation Delay HIGH to LOW	С _L = 50 рF		2	4.5	10	ns	
t _{SKD}	Skew, lt _{PLHD} –t _{PHLD} I				0.4	2.0	ns	
t _{TLH}	Transition Time LOW to HIGH		(Figures 2, 4)		2.2	9	ns	
t _{THL}	Transition Time HIGH to LOW				2.1	9	ns	
RECEIVER CHARACTERISTICS								
t _{PLH}	Propagation Delay LOW to HIGH	C _L = 50 pF	(Figures 5, 6)	6	18	30	ns	
t _{PHL}	Propagation Delay HIGH to LOW	V _{DIFF} = 2.5V		6	17.5	30	ns	
t _{sk}	Skew, lt _{PLH} -t _{PHL} I	$V_{CM} = 0V$			0.5	4.0	ns	
t _r	Rise Time		(Figure 7)		2.5	9	ns	
t _f	Fall Time	1			2.1	9	ns	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

Note 3: All typicals are given for V_{CC} = 5.0V and T _A = 25°C.

Note 4: f = 1 MHz, t_r and $t_f \le 6$ ns.

Note 5: ESD Rating: HBM (1.5 kΩ, 100 pF) all pins \ge 2000V. EIAJ (0Ω, 200 pF) \ge 250V

LIAG (022, 200 pl) 2 200

Parameter Measurement Information

FIGURE 1. V_{OD} and V_{OC} Test Circuit

3

DS89C21

Parameter Measurement Information (Continued)

FIGURE 2. Driver Propagation Delay Test Circuit

FIGURE 3. Driver Differential Propagation Delay Timing

FIGURE 4. Driver Differential Transition Timing

www.national.com

Parameter Measurement Information (Continued)

