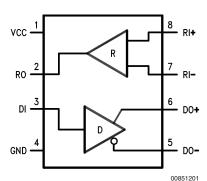


DS8921/DS8921A/DS8921AT Differential Line Driver and Receiver Pair General Description The DS8921, DS8921A and

The DS8921, DS8921A are Differential Line Driver and Receiver pairs designed specifically for applications meeting the ST506, ST412 and ESDI Disk Drive Standards. In addition, these devices meet the requirements of the EIA Standard RS-422.

The DS8921, DS8921A receivers offer an input sensitivity of 200 mV over a \pm 7V common mode operating range. Hysteresis is incorporated (typically 70 mV) to improve noise margin for slowly changing input waveforms.


The DS8921, DS8921A drivers are designed to provide unipolar differential drive to twisted pair or parallel wire transmission lines. Complementary outputs are logically ANDed and provide an output skew of 0.5 ns (typ.) with propagation delays of 12 ns.

The DS8921, DS8921A are designed to be compatible with TTL and CMOS.

Features

- 12 ns typical propagation delay
- Output skew 0.5 ns typical
- Meet the requirements of EIA Standard RS-422
- Complementary Driver Outputs
- High differential or common-mode input voltage ranges of ±7V
- ±0.2V receiver sensitivity over the input voltage range
- Receiver input hysteresis-70 mV typical
- DS8921AT industrial temperature operation: (-40°C to +85°C)

Connection Diagram

Order Number DS8921M, DS8921N, DS8921AM, DS8921AN, DS8921ATM, or DS8921ATN See NS Package Number M08A or N08E

Truth Table

Receiver		Driver			
Input	V _{OUT}	Input	V _{OUT}	V _{out}	
$V_{ID} \ge V_{TH}$ (MAX)	1	1	1	0	
$V_{ID} \le V_{TH}$ (MIN)	0	0	0	1	
Open	1				

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	7V
Driver Input Voltage	-0.5V to +7V
Output Voltage	5.5V
Receiver Output Sink	
Current	50 mA
Receiver Input Voltage	±10V
Differential Input Voltage	±12V
Maximum Package Power	Dissipation @ +25°C
M Package	730 mW
N Package	1160 mW
Derate M Package	9.3 mW/°C above
	+25°C
Derate N Package	5.8 mW/°C above
	+25°C

Storage Temperature	
Range	–65°C to +165°C
Lead Temperature	+260°C
(Soldering, 4 sec.)	+260°C
Maximum Junction	
Temperature	+150°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage	4.5	5.5	V
Temperature (T _A)			
DS8921/DS8921A	0	70	°C
DS8921AT	-40	+85	°C

DS8921/DS8921A Electrical Characteristics (Notes 2, 3, 4)

Symbol	Conditions	Min	Тур	Max	Units
ECEIVER			· · ·		
, ТН	$-7V \le V_{CM} \le +7V$	-200	±35	+200	mV
V _{HYST}	$-7V \le V_{CM} \le +7V$	15	70		mV
R _{IN}	$V_{\rm IN} = -7V, +7V$	4.0	6.0		kΩ
	(Other Input = GND)				
IN	V _{IN} = 10V			3.25	mA
	$V_{IN} = -10V$			-3.25	mA
/ _{он}	I _{OH} = -400 μA	2.5			V
V _{OL}	I _{OL} = 8 mA			0.5	V
I _{sc}	$V_{CC} = MAX, V_{OUT} = 0V$	-15		-100	mA
DRIVER					
V _{IH}		2.0			V
V _{IL}				0.8	V
IIL	$V_{\rm CC} = MAX, V_{\rm IN} = 0.4V$		-40	-200	μA
ІН	$V_{CC} = MAX, V_{IN} = 2.7V$			20	μA
1	$V_{\rm CC} = MAX, V_{\rm IN} = 7.0V$			100	μA
V _{CL}	$V_{\rm CC}$ = MIN, $I_{\rm IN}$ = -18 mA			-1.5	V
V _{он}	$V_{\rm CC}$ = MIN, $I_{\rm OH}$ = -20 mA	2.5			V
V _{OL}	$V_{CC} = MIN, I_{OL} = +20 mA$			0.5	V
OFF	$V_{\rm CC} = 0V, V_{\rm OUT} = 5.5V$			100	μA
$V_T - \overline{VT} $				0.4	V
V _T		2.0			V
IV _{os} – V _{os} I				0.4	V
sc	$V_{CC} = MAX, V_{OUT} = 0V$	-30		-150	mA
DRIVER and RECI	EIVER				
I _{cc}	V _{CC} = MAX, V _{OUT} = Logic 0			35	mA

www.national.com

DS8921/DS8921A/DS8921AT

Receiver Switching Characteristics

Symbol	Conditions	Min	Тур	Max			Units
				8921	8921A	8921AT	
Г _{рLH}	C _L = 30 pF		14	22.5	20	20	ns
	(Figures 1, 2)						
Г _{рНL}	C _L = 30 pF		14	22.5	20	20	ns
	(Figures 1, 2)						
T _{pLH} -T _{pHL} I	C _L = 30 pF		0.5	5	3.5	5	ns
	(Figures 1, 2)						

Driver Switching Characteristics

SINGLE ENDED CHARACTERISTICS (Figures 3, 4)

Symbol	Conditions	Min	Тур	Мах			Units
				8921	8921A	8921AT	
T _{pLH}	C _L = 30 pF		10	15	15	15	ns
	(Figures 3, 4)						
Т _{рнL}	C _L = 30 pF		10	15	15	15	ns
	(Figures 3, 4)						
T _{TLH}	C _L = 30 pF		5	8	8	9.5	ns
	(Figures 7, 8)						
T _{THL}	C _L = 30 pF		5	8	8	9.5	ns
	(Figures 7, 8)						
Skew	CL = 30 pF		1	5	3.5	3.5	ns
	(Figures 3, 4)						

Driver Switching Characteristics(Note 6)

DIFFERENTIAL CHARACTERISTICS (Figures 3, 5)

Symbol	Conditions	Min	Тур	Мах			Units
				8921	8921A	8921AT	
T _{pLH}	C _L = 30 pF		10	15	15	15	ns
	C _L = 30 pF (<i>Figures 3, 5, 6</i>)						
T _{pHL}	C _L = 30 pF		10	15	15	15	ns
	(Figures 3, 5, 6)						
IT _{pLH} -T _{pHL} I	C _L = 30 pF		0.5	6	2.75	2.75	ns
	(Figures 3, 5, 6)						

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The Table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pins are shown as positive values; all currents out of the device are shown as negative; all voltages are referenced to ground unless otherwise specified. All values shown as max or min are classified on absolute value basis.

Note 3: All typical values are V_{CC} = 5V, $T_A = 25^{\circ}C$.

Note 4: Only one output at a time should be shorted.

Note 5: Difference between complementary outputs at the 50% point.

Note 6: Differential Delays are defined as calculated results from single ended rise and fall time measurements. This approach in establishing AC performance specifications has been taken due to limitations of available Automatic Test Equipment (ATE).

The calculated ATE results assume a linear transition between measurement points and are a result of the following equations:

$$T_{cr} = \frac{(T_{fb} \times T_{rb}) - (T_{ra} \times T_{fa})}{T_{rb} - T_{ra} - T_{fa} + T_{fb}}$$

Where: T_{cr} = Crossing Point

 $T_{ra},\,T_{rb},\,T_{fa}$ and T $_{fb}$ are time measurements with respect to the input. See Figure 6 .

DS8921/DS8921A/DS8921AT

AC Test Circuits and Switching Diagrams 3V DI OV ٧_{cc} С R2 2K DO OUTPUT DO ALL DIODES 1N914 OR EQUIVALENT C_L INCLUDES PROBE AND JIG CAPACITANCE R1 ş 5K 00851203 FIGURE 1. INPUT +2.5V VID -2.5V DO DO R0 1.3V TpLH TpHL 00851204 FIGURE 2. DI DO INPUT NOTE: R1 = 100 Ohms, C1 = C2 = C3 = 30 Pf 00851205 FIGURE 3. DI 3V DI OV DO DO 50% DO DO TpLH DO TpHL DO TpHL DO TpLH 00851206 FIGURE 4.

www.national.com

CF

FIGURE 5.

^trb ^tfa

^tra ^trb

FIGURE 6.

. T_{tlh}

FIGURE 7.

80%

FIGURE 8.

20%

T_{THL}

TpLH

t_{rb}

^tfa

^tra ^tfb

> 80% 20%-

¦____→ TpHL

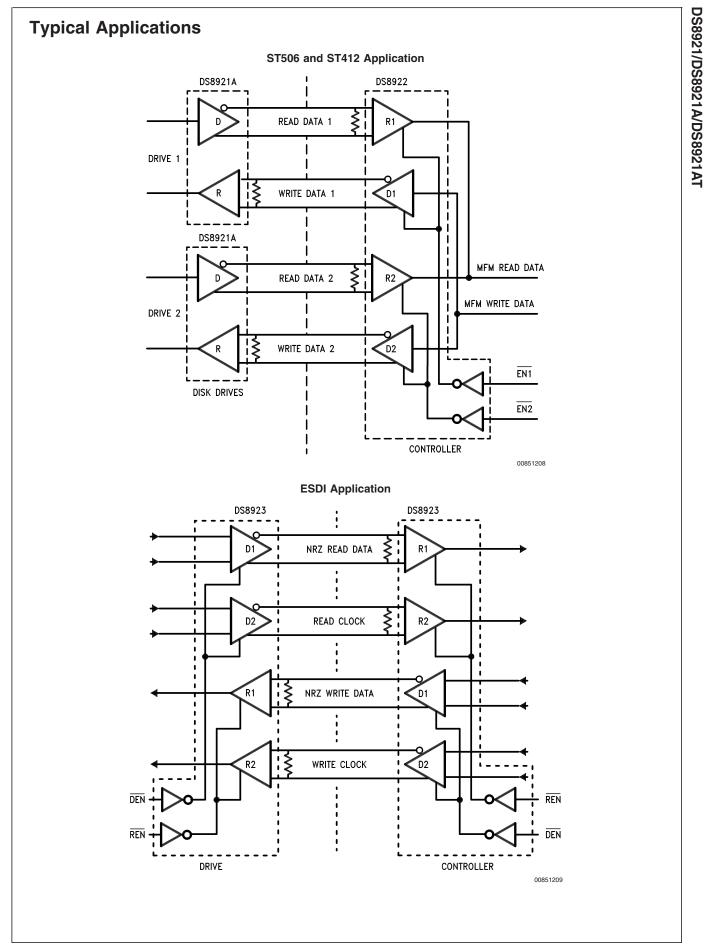
00851207

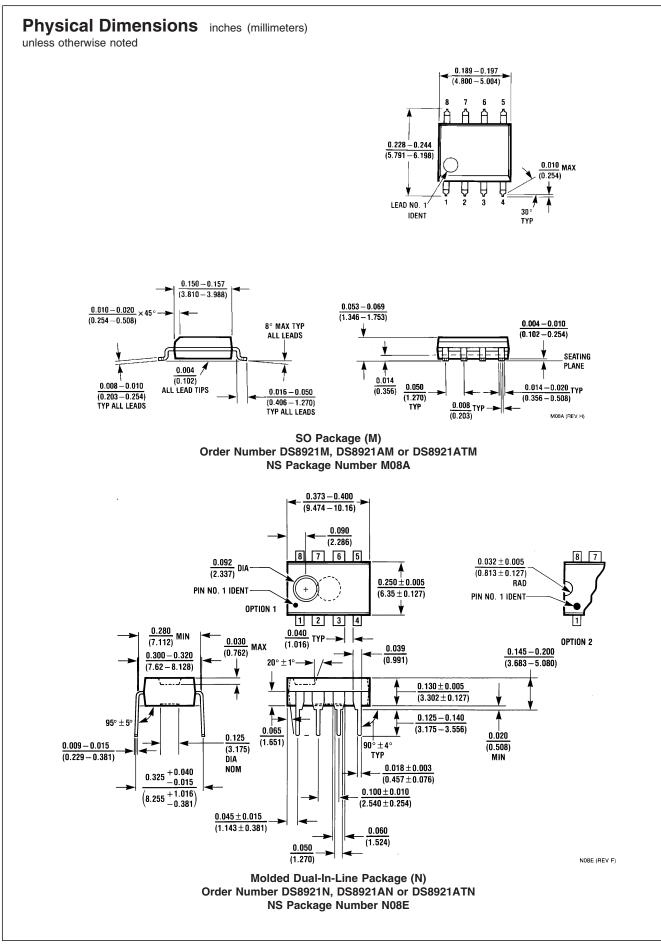
00851202

80%

20%

T{THL}


00851210


80%

-^Ttlh

00851211

20%

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

•	

Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

National Semiconductor

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560