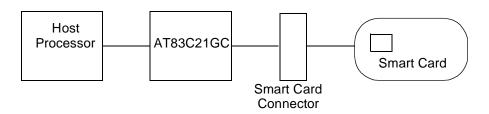
Features


- Smart Card Interface
 - Compliance with Standards
 - ISO/IEC 7816-1, 2, 3 and 4
 - EMV 2000
 - CB
 - Mondex®, Proton, ZKA, Other: Contact Gemplus®
 - Supported Smart Cards
 - Number of Smart Cards Supported: 1
 - Asynchronous Cards: T=0 and T=1
 - Synchronous/Memory Cards Using a Command Interpreter
 - EMV or Non EMV Cards
- Electrical Interface
 - Transmission Speed: 9.6 Kbps to 115 Kbps
 - Card Power Supply: 1.8V/3V/5V
 - ESD Protection On Card Pins: 4 KV Human Body Model
 - Card Presence or Insertion Detection
 - Short Circuit Current Limitation
- Host Interface
 - Physical Layer
 - Serial Asynchronous Link
 - Programmable Transmission Speed From 1,200 bps to 115,200 bps
 - Format: 8 bits, No Parity, 1 Stop Bit
 - Adjustable Signal Voltage
 - Protocol
 - Gemplus Block Protocol (GBP)
 - GBP Interface Library Kit Source Code
- Chip Power Supply
 - Voltage: V_{CC}- 2.85V to 5.4V
 - Consumption: 8 mA Typical, 150 mA Max Smart Card Powered
 - Power Down Mode
 - 100 µA Max Power Down Current
 - Power-down/Power-up by Host Command
- Additional Features
 - Operating Temperature Range: 0°C to +70°C (-40°C to +85°C)
 - Package: SS0P24
 - LED Management: The LED is On When the Card is Powered On

Description

AT83C21GC is designed to simplify the integration of smart card interfaces in electronic devices.

It manages the electrical interface and communication with ISO 7816 - 1/2/3/4 compatible smart cards and memory cards.

Figure 1. Basic Architecture of a Smart Card Reader

GemCore Serial Lite PRO

AT83C21GC

Summary

Rev. 4247BS-SCR-05/04

The connection with the host processor is achieved via a serial asynchronous link; the rate can be selected from a range from 1200 to 115,200 bps.

The software inside the GemCore chip handles a communication protocol with the host system called the Gemplus Block Protocol (GBP).

A complete set of documentation is available on the Gemplus web site: http://www.gemplus.com.

A GBP Interface Library Kit can be provided, upon request. It consists of the source code of the GBP communication layer between the host and GemCore. It is written in the C language. See the Gemplus developers' site at www.gemplus.com. Enquiries can also be posted to cardreader@atmel.com.

Ordering information

Part Number	Temperature Range	Package	Packing	
AT83C21GCxxx-ICSIL	Industrial	SSOP24	Stick	
AT83C21GCxxx-ICRIL	Industrial	SSOP24	Tape & Reel	

xxx: Firmware version

Pin Description

Figure 2. 24-pin SSOP Pinout

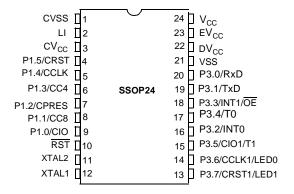


Table 1. Port Signal Description

Port	Signal Name	Internal Power Supply	ESD	Туре	Description
P1.0	CIO	CV _{CC}	4 kV	I/O	Smart Card Interface Function Card I/O – Pull-up medium is lower than 20ΚΩ
P1.1	CC8	CV _{cc}	4 kV	I/O	Smart Card Interface Function Card contact 8 – Pull-up medium must be less than $20 \text{K}\Omega$
P1.2	CPRES	V _{CC}	4 kV	I	Smart Card Interface Function Card presence
P1.3	CC4	CV _{CC}	4 kV	I/O	Smart Card Interface Function Card contact 4 – Pull-up medium must be less than $20 \text{K}\Omega$
P1.4	CCLK	CV _{CC}	4 kV	0	Smart Card Interface Function Card clock
P1.5	CRST	CV _{CC}	4 kV	0	Smart Card Interface Function Card reset – Pull-up medium must be less than 20KΩ
P3.0	RxD	EV _{CC}		I	UART Function Receive data input
P3.1	TxD	EV _{CC}		0	UART Function Transmit data output.
P3.2	INT0	DV _{CC}		I/O	Input/Output Function P3.2 is a bi-directional I/O port with internal pull-ups.
P3.3	INT1	EV _{CC}		I/O	Input/Output Function P3.3 is a bi-directional I/O port with internal pull-ups.
P3.4		EV _{CC}		I/O	Input/Output Function P3.4 is a bi-directional I/O port with internal pull-ups.
P3.5	CIO1	DV _{CC}		I/O	Alternate Card Function Card I/O: Pull-up medium must be less than 20K

4 AT83C21GC

Table 1. Port Signal Description (Continued)

iable II I	ort Olgital	Description	Continu	i i	
	Signal	Internal Power			
Port	Name	Supply	ESD	Туре	Description
P3.6	CCLK1	DV _{CC}		0	LED function These pins can be directly connected to the cathode of the standard LED without external current limiting resistors. The typical current of each output can be programmed by software to 2, 4 or 10 mA (LEDCON register).
P3.7	CRST1	DV _{cc}		I/O	Input/Output Function P3.7 is a bi-directional I/O port with internal pull-ups.
RST		V _{cc}		I/O	Reset Input Holding this pin low for 64 oscillator periods while the oscillatoris running resets the device. The Port pins are driven to their reset conditions when a voltage lower than $V_{\rm IL}$ is applied, whether or not the oscillator is running. This pin has an internal pull-up resistor which allows the device to be reset by connecting a capacitor between this pin and VSS. Asserting $\overline{\rm RST}$ when the chip is in Idle mode or Power-down mode returns the chip to normal operation. The output is active for at least 12 oscillator periods when an internal reset occurs.
XTAL1		V _{cc}		I	Input to the on-chip Inverting Oscillator Amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin.
XTAL2		V _{cc}		0	Output of the on-chip Inverting Oscillator Amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, XTAL2 may be left unconnected.
V _{cc}				PWR	Supply Voltage V _{CC} is used to power the internal voltage regulators and internal I/O's.
LI				PWR	DC/DC Input LI must be tied to V_{CC} through an external coil (typically 4, 7 μ H) and provide the current for the pump charge of the DC/DC converter.
CV _{CC}				PWR	Card Supply Voltage CV _{CC} is the programmable voltage output for the Card interface. It must be connected to an external decoupling capacitor.
DV _{CC}				PWR	Digital Supply Voltage DV _{CC} is used to supply the digital core and internal I/Os. It is internally connected to the output of a 3V regulator and must be connected to an external decoupling capacitor.
EV _{CC}		V _{cc}		PWR	Extra Supply Voltage EV _{CC} is used to supply the level shifters of UART interface I/O pins. It must be connected to an external decoupling capacitor. This reference voltage is generated internally (automatically or not), or it can be connected to an external voltage reference.
CVSS				GND	DC/DC Ground CVSS is used to sink high shunt currents from the external coil.
VSS				GND	Ground
	I		1	1	1

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

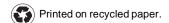
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com


Web Site

http://www.atmel.com

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved. Atmel, the Atmel logo, and combinations thereof are registered trademarks of Atmel Corporation or its subsidiaries. Gemplus is a registered trademark of Gemplus. Mondex is a registered trademark of Mondex International Limited.

Other terms and product names in this document may be the trademarks of others.

