Features

- ARM7TDMI® ARM® Thumb® Processor Core
- Two 16-bit Fixed-point OakDSPCore[®] Cores
- 256 x 32-bit Boot ROM
- 88K Bytes of Integrated Fast RAM for Each DSP
- Flexible External Bus Interface with Programmable Chip Selects
- Dual Codec Interface
- Multi-level Priority, Individually Maskable, Vectored Interrupt Controller
- Three 16-bit Timers/Counters
- Additional Watchdog Timer
- Two USARTs with FIFO and Modem Control Lines
- Industry Standard Serial Peripheral Interface (SPI)
- Up to 23 General-purpose I/O Pins
- On-chip DRAM Controller
- JTAG Debug Interface
- Software Development Suites Available for ARM7TDMI and OakDSPCore
- Supported by a Wide Range of Ready-to-use Application Software, including Multitasking Operating System, Networking, Modems and Voice Processing Functions
- Available in 160-lead PQFP Package
- 3.3V Power Supply

Description

The Atmel AT75C310 Smart Internet Appliance Processor (SIAP) is a high-performance processor specially designed for Internet appliance applications, such as Internet telephony (Voice-over-Internet Protocol – VoIP). The AT75C310 is built around an ARM7TDMI microcontroller core running at 20 MIPS with two DSP co-processors running at 40 MIPS each – all three processors delivering unmatched performance for low power consumption.

In a typical standalone VoIP phone, one DSP handles the voice processing functions (voice compression, acoustic echo cancellation, etc.), while the other one deals with the telephony functions (dialing, line echo cancellation, callerID detection, high-speed modem, etc.). In such an application, the power of the ARM7TDMI allows it to run the VoIP protocol stack as well as all the system control tasks.

Atmel provides the AT75C310 with three levels of software modules:

- a special port of the Linux[®] kernel as the proposed operating system;
- a comprehensive set of tunable DSP algorithms for modems and voice processing, specially tailored to be run by the DSP subsystems;
- a broad range of application level software modules such as H323 telephony or POP-3/SMTP mail services.

Smart Internet Appliance Processor (SIAP[™])

AT75C310

Summary

AT75C310 Pin Configuration

Table 1. AT75C310 Pinout in PQFP160 Package

Pin	PQFP160
1	VDD
2	D11
3	NCE3
4	VSS
5	NDOE
6	D12
7	D13
8	NWE0
9	D14
10	VSS
11	VDD
12	NWE1
13	D15
14	NDWE
15	VDD
16	VDD
17	VSS
18	VSS
19	VDD
20	MOSI
21	MISO
22	SPCK
23	NPCSS
24	RXDA
25	TXDA
26	VSS
27	VDD
28	NRTSA
29	NCTSA
30	NDTRA
31	NDSRA/BOOTN
32	VSS
33	VDD
34	NDCDA
35	TXDB
36	RXDB
37	VDD
38	PB7/NCE1
39	VSS
40	VSS

Pin	PQFP160
41	VSS
42	PB6/NWDOVF
43	PB5/NRIA
44	PB4
45	VSS
46	VDD
47	PB3
48	RESET
49	VDD
50	IRQ0
51	PB2/TIOB1
52	PB9
53	PB1/TIOA1
54	PB8/NCE2
55	PB0/TCLK1
56	VDD
57	XREF80
58	VSS
59	XTALIN
60	XTALOUT
61	VSS
62	XREF96
63	VDD
64	TST
65	NTRST
66	TCK
67	TMS
68	TDI
69	TDO
70	VSS
71	PA0/OakAIN0
72	PA1/OakAIN1
73	PA2/OakAOUT0
74	PA3/OakAOUT1
75	VSS
76	VDD
77	PA4/OakBIN0
78	PA5/OakBIN1
79	PA6/OakBOUT0
80	PA7/OakBOUT1

Pin	PQFP160
81	VDD
82	PA8/TCLK0
83	PA9/TIOA0
84	VSS
85	PA10/TIOB0
86	PA11/SCLKA
87	VSS
88	PA12/NPCS1
89	VDD
90	VSS
91	VDD
92	NREQ
93	FIQ
94	NGNT
95	VSS
96	VDD
97	SCLKA
98	FSA
99	STXA
100	SRXA
101	A0
102	A1
103	A2
104	A3
105	VDD
106	A4
107	A5
108	A6
109	A7
110	VDD
111	VSS
112	A8
113	A9
114	A10
115	A11
116	A12
117	A13
118	A14
119	A15
120	VSS

Pin	PQFP160
121	VSS
122	A16
123	A17
124	VDD
125	VSS
126	A18
127	A19
128	A20
129	A21
130	VDD
131	VSS
132	D0
133	NCAS0
134	D1
135	D2
136	NCAS1
137	D3
138	VSS
139	NRAS0
140	D4
141	NRAS1
142	VSS
143	VDD
144	D5
145	SRXB
146	STXB
147	D6
148	FSB
149	VDD
150	VSS
151	D7
152	SCLKB
153	D8
154	NSOE
155	VDD
156	VSS
157	NCE0
158	D9
159	D10
160	VDD

2

AT75C310 Pin Description

Table 2. AT75C310 Pin Description

Block	PQFP Pin Name	Туре	Function
	A[21:0]	0	Address Bus
Campus Bus	D[15:0]	I/O	Data Bus
Common Bus	NREQ	I	Bus Request
	NGNT	0	Bus Grant
	NRAS[1:0]	0	Row Address Strobe
Dynamic Memory	NCAS[1:0]	0	Column Address Strobe
Controller	NDWE	0	DRAM Write Enable
	NDOE	0	DRAM Output Enable
	NCE[3:0]	0	Chip Selects
Static Memory Controller	NWE[1:0]	0	Byte Select/Write Enable
Controllor	NSOE	0	SRAM Output Enable
I/O Port A	PA[12:0]	I/O	General Purpose I/O Lines. Multiplexed with Peripheral I/Os
I/O Port B	PB[9:0]	I/O	General Purpose I/O Lines. Multiplexed with Peripheral I/Os
	OakAIN[1:0]	I	OakDSPCore A User Inputs
DSP Subsystem A	OakAOUT[1:0]	0	OakDSPCore A User Outputs
DCD Cubayatam D	OakBIN[1:0]	I	OakDSPCore B User Inputs
DSP Subsystem B	OakBOUT[1:0]	0	OakDSPCore B User Outputs
	TCLK0	I	Timer 0 External Clock
Timer/Counter 0	TIOA0	I/O	Timer 0 Signal A
	TIOB0	I/O	Timer 0 Signal B
	TCLK1	I	Timer 1 External Clock
Timer/Counter 1	TIOA1	I/O	Timer 1 Signal A
	TIOB1	I/O	Timer 1 Signal B
Watchdog	NWDOVF	0	Watchdog Overflow
	MISO	I/O	Master In/Slave Out
	MOSI	I/O	Master Out/Slave In
Serial Peripheral Interface	SPCK	I/O	Serial Clock
	NPCSS	I/O	Chip Select/Slave Select
	NPSC1	0	Optional SPI Chip Select 1

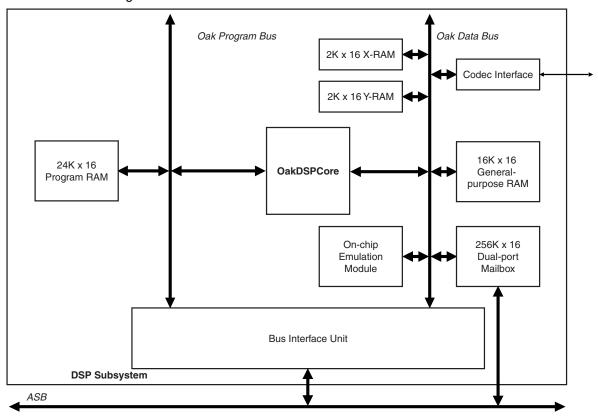


Table 2. AT75C310 Pin Description (Continued)

Block	PQFP Pin Name	Туре	Function
	RXDA	I	Receive Data
	TXDA	0	Transmit Data
	NRTSA	0	Ready to Send
	NCTSA	I	Clear To Send
USART A	NDTRA	0	Data Terminal Ready
	NDSRA/BOOTN	I	Data Set Ready
	NDCDA	I	Data Carrier Detect
	NRIA	I	Ring Indicator
	SCLKA	I/O	Serial Clock
USART B	RXDB	I	Receive Data
USARI B	TXDB	0	Transmit Data
	NTRST	I	JTAG Test Reset
	TCK	I	JTAG Test Clock
JTAG Interface	TMS	I	JTAG Test Mode Select
	TDI	I	JTAG Test Data Input
	TDO	0	JTAG Test Data Output
	SCLKA	I/O	Codec Serial Clock
Cadaa latariaaa A	FAS	I/O	Frame Sync Pulse
Codec Interface A	STXA	0	Transmit Data to Codec
	SRXA	I	Receive Data from Codec
	SCLKB	I/O	Codec Serial Clock
Cadaa latariaaa D	FSB	I/O	Frame Sync Pulse
Codec Interface B	STXB	0	Transmit Data to Codec
	SRXB	I	Receive Data from Codec
	RESET	1	Master Reset
	FIQ/LOWP	I	Fast Interrupt/Low Power
	IRQ0	I	External Interrupt request
Miscellaneous	XREF96	I	External 96 MHz PLL Reference
iviiscellarieous	XREF80	1	External 80 MHZ PLL Reference
	XTALIN	I	External Crystal Input
	XTALOUT	0	External Crystal Output
	TST	1	Test Mode

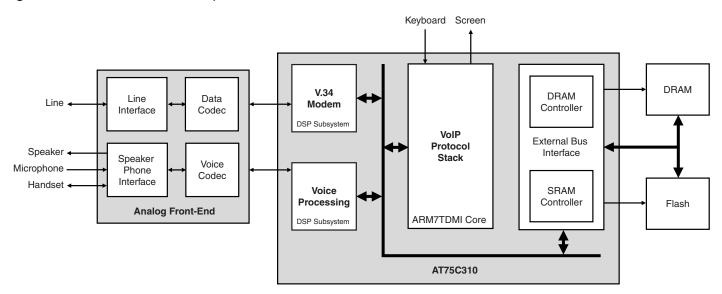

Block Diagram

Figure 1. AT75C310 Block Diagram

Application Example

Figure 2. Standalone Internet Telephone

Functional Description

ARM7TDMI Core

The ARM7TDMI is a three-stage pipeline, 32-bit RISC processor. The processor architecture is Von Neumann load/store architecture which is characterized by a single data and address bus for instructions and data. The CPU has two instruction sets: the ARM and the Thumb instruction set. The ARM instruction set has 32-bit wide instructions and provides maximum performance. Thumb instructions are 16 bits wide and give maximum code density. Instructions operate on 8-, 16- and 32-bit data types.

The CPU has seven operating modes. Each operating mode has dedicated banked registers for fast exception handling. The processor has a total of 37 32-bit registers, including six status registers.

DSP Subsystem

The AT75C310 has two identical DSP subsystems.

Each DSP subsystem is composed of:

- An OakDSPCore running at 40 MIPS
- 2K x 16 of X-RAM
- 2K x 16 of Y-RAM
- 16K x 16 of general purpose data RAM
- 24K x 16 of loadable program RAM
- One 256 x 16 dual-port mailbox
- One codec interface

The DSP subsystem is fully autonomous. The local X- and Y-RAM allow it to reach its maximum processing rate, and a local large data RAM enables complex DSP algorithms to be implemented. The large size of the loadable program RAM permits the use of functions as complex as a V.34 modem or a low bit-rate vocoder.

During boot time, the ARM7TDMI core has the ability to maintain the OakDSPCore in reset state and to upload DSP boot code. When the OakDSPCore reverts to an active state, this boot code can be used to get the complete DSP application code from the ARM7TDMI through the mailbox.

When the OakDSPCore is running the dual-port mailbox is used as the communication channel between the ARM7TDMI and the OakDSPCore.

One programmable codec interface is directly connected to each OakDSPCore. It allows the connection of most industrial voice, multimedia or data codecs.

Boot ROM

The ARM7TDMI has the ability to boot either from an external memory or from the on-chip 256 x 32-bit boot ROM.

Boot Code Operation

The internal boot sequence allows programming of the ARM7TDMI program RAM through a serial port. When the download is complete, a branch is executed to the downloaded code.

EBI: External Bus Interface

The EBI generates the signals that control access to external memory or memory-mapped peripherals. The EBI is fully programmable and can address up to 64M bytes. The interface to external devices is composed of common address and data buses and separate control lines to allow the connection of static or dynamic devices.

The main features are:

- External memory mapping
- Up to two chip select lines
- 8- or 16-bit data bus
- Byte write or byte select lines
- Remap of boot memory
- Support for both static and dynamic memories
- Two different read protocols for static memories
- Support for early read/early write for dynamic memories
- Programmable wait state generation
- Programmable data float time

AIC: Advanced Interrupt Controller

The AT75C310 has an 8-level priority interrupt controller. The interrupt controller outputs are connected to the NFIQ (fast interrupt request) and the NIRQ (normal interrupt request) of the ARM7TDMI core. The processor's NFIQ can only be asserted by the external fast interrupt request input (FIQ). The NIRQ line can be asserted by the interrupts generated by the on-chip peripherals or by the external interrupt request line IRQ0.

An 8-level priority encoder allows the application to define the priority between the different interrupt sources. Interrupt sources are programmed to be level sensitive or edge sensitive. External sources can be programmed to be positive- or negative-edge triggered, or low- or high-level sensitive.

PIO: Parallel I/O Controller

The AT75C310 has 23 programmable I/O lines. They can all be programmed as inputs or outputs. To optimize the use of available package pins, most of them are multiplexed with external signals of on-chip peripherals.

The PIO lines are controlled by two separate and identical PIO controllers called PIOA and PIOB.

The PIO controllers enable the generation of an interrupt on input change and insertion of a simple glitch filter on each PIO line.

Some I/O lines have enough drive capability to power a LED.

USART: Universal Synchronous/ Asynchronous Receiver/ Transmitter

The AT75C310 provides two identical full-duplex, universal synchronous/asynchronous receiver/transmitters that interface to the APB and are connected to the peripheral data controller.

The main features are:

- Programmable baud rate generator
- Parity, framing and overrun error detection
- Line break generation and detection
- Automatic echo, local loopback and remote loopback
- Multi-drop mode: address detection and generation
- Interrupt generation
- Dedicated peripheral data controller channels
- 6-, 7-, 8- and 9-bit character length
- In addition to the Tx and Rx signals, the USART A provides several modem control lines.

SPI: Serial Peripheral Interface

The AT75C310 includes an SPI that provides communication with external devices in master or slave mode.

The SPI has four external chip selects that can be connected to up to 15 devices. The data length is programmable from 8- to 16-bit.

Timer/Counter

The AT75C310 features three identical 16-bit timer/counters. They can be independently programmed to perform a wide range of functions, including frequency measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation.

The triple timer/counter block has three external clock inputs, five internal clock inputs and two multi-purpose signals that can be configured by the user. Each timer drives an internal interrupt signal that can be programmed to generate processor interrupts via the advanced interrupt controller.

Watchdog Timer

The AT75C310 has an internal watchdog timer that can be used to prevent system lock-up if the software becomes trapped in a deadlock.

Special Functions

The AT75C310 provides registers that implement the following special functions:

- Chip identification
- Reset status

Application Software

The AT75C310 is supported by a comprehensive range of software modules. As a result of the widespread use of the ARM7TDMI and the OakDSPCore, a wide range is available, either directly from Atmel or from third parties.

The application software modules are in three categories: OS level, DSP level and application level.

OS Level

8

The AT75C310 is supplied with a customized port of the Linux kernel. It features device drivers for all the on-chip peripherals, including the DSP subsystems, and supports virtual file system usage. It also supports the native TCP/IP facilities that have made Linux a success in Internet applications. This kernel is available in source code under the terms of the Gnu Public License.

Many other operating systems exist for the ARM7TDMI core.

AT75C310 =

DSP Level A wide range of DSP functions is available for the OakDSPCore. Among others, Atmel sup-

plies modules for a V.34 modem, G723.1 and G729A voice codecs, silence compression and

echo cancellation.

Many third parties also provide ready-to-use libraries for the OakDSPCore.

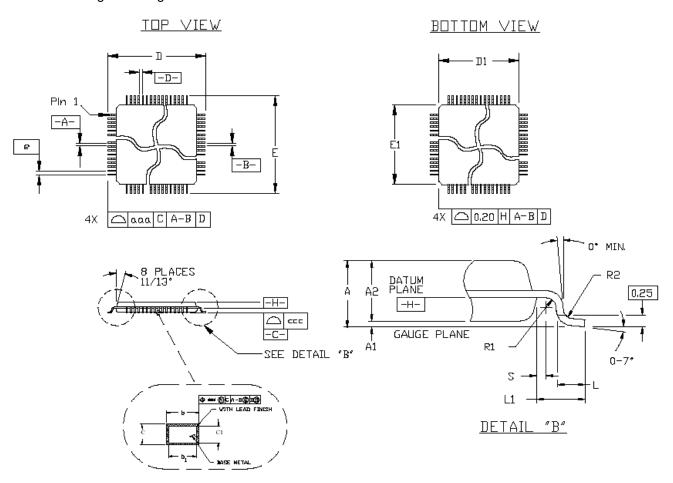
Application Level A rich software toolkit is available with support for popular communication protocols (H323,

POP-3/SMTP, etc.), connection processes, multimedia applications, full-feature telephony and

audio software suites.

Development Tools

Both the ARM7TDMI and the OakDSPCore are industry-standard cores. They are supported by a comprehensive range of state-of-the-art development tools, including assemblers, C-compilers, source level debuggers and hardware emulators.


Packaging

The AT75C310 is supplied in a 160-lead PQFP package. This provides the best compromise between external connectivity and cost.

An alternative 240-lead PQFP package is also available. In addition to a larger I/O capability, it provides the application developer with the possibility of using advanced development tools for the DSP subsystem software.

Although this 240-lead PQFP package is more dedicated to development, it can also be used in production for systems that require a high level of connectivity: it offers up to 48 general-purpose I/Os and a full-width system bus (24 address bits and 32 data bits).

Figure 3. PQFP Package Drawing

For package data, see Table 3, Table 4 and Table 5 below.

Package Data

Table 3. Common Dimensions (mm)

Symbol	Min	Nom	Max
С	0.11		0.23
c1	0.11		0.17
L	0.65	0.88	1.03
L1		1.95 REF	
R2	0.13		0.3
R1	0.13		
S	0.4		
Tolerances of Form and Position			
aaa		0.25	
bbb		0.20	
ccc			0.10

Table 4. Dimensions Specific to 160-lead Package (mm)

Α	A 1	A2		A2 b b1		D	D1	E	E1	E	ddd				
Max	Min	Min	Nom	Max	Min	Max	Min	Nom	Max	BSC	BSC	BSC	BSC	BSC	BSC
4.07	0.25	3.17	3.42	3.67	0.22	0.38	0.22	0.3	0.33	31.90	28.00	31.90	28.00	0.65	0.12

Table 5. 160-lead PQFP Package Electrical Characteristics

Body	R (mΩ)		R (m Ω) C_s (pF)		C _m (pF)		L _s (nH)		L _m (nH)	
Size	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
28 x 28	42	64	1.2	1.6	0.5	0.7	5.6	8.6	3.5	5.7

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel SarL Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-555 FAX (41) 26-426-5500

Asia

Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset

Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

Atmel Smart Card ICs

Scottish Enterprise Technology Park East Kilbride, Scotland G75 0QR TEL (44) 1355-357-000 FAX (44) 1355-242-743

Atmel Grenoble

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex France TEL (33) 4-7658-3000 FAX (33) 4-7658-3480

> Fax-on-Demand North America: 1-(800) 292-8635 International: 1-(408) 441-0732

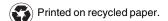
e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 2001.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.


ARM, ARM7TDMI and Thumb are trademarks of ARM Limited.

OakDSPCore is a trademark of DSP Group, Inc.

SIAP is a trademark of Atmel Corporation.

Linux is a trademark of Linus Torvalds.

Terms and product names in this document may be trademarks of others.

