

Z90255 ROM and Z90251 OTP

32 KB Television Controller with OSD

Product Specification
PS001301-0800

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact

ZiLOG Worldwide Headquarters

910 E. Hamilton Avenue
Campbell, CA 95008
Telephone: 408.558.8500
Fax: 408.558.8300
www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Document Disclaimer

© 2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses or other rights are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Z90255 ROM and Z90251 OTP
 32 KB Television Controller with OSD

 iii

Table of Contents

1 Overview 1
1.1 Pin Assignment and Descriptions 5
1.2 Single-Purpose Pin Descriptions 7
1.3 Multiplexed Pin Descriptions 8
2 Memory Description 10
2.1 Standard Register File 10
2.2 Expanded Register File 11
2.3 Program Memory 11
3 Watch-Dog Timer (WDT) 15
4 Stop Mode and Halt Mode Operation 16
4.1 Power-Down Halt-Mode Operation 16
4.2 Stop Mode Operation 17
4.3 STOP Mode Recovery Register 18
5 On-Screen Display 22
5.1 OSD Position 22
5.2 Second Color Feature 25
5.3 Mesh and Halftone Effect 28
5.4 OSD Fade 33
5.5 Inter-Row Spacing 36
5.6 Character Generation 37
5.7 Character Size and Smoothing Effect 39
5.8 Fringing Effect. 40
5.9 Display Attribute Control 40
5.10 HV Interrupt Processing 49
6 Z90255 I2C Master Interface 53
7 Input/Output Ports 57
7.1 Port 4 Pin-Out Selection Register 59
7.2 Port 5 Pin-Out Selection Register 62
7.3 Port 6 Data Register 63
8 Infrared Interface 65
9 Pulse Width Modulators 68
9.1 PWM Mode Register 68
9.2 PWM1 through PWM11 70
9.3 Digital/Analog Conversion with PWM 79
10 Analog-to-Digital Converter 80
11 Electrical Characteristics 83
11.1 Absolute Maximum Ratings 83
11.2 DC Characteristics 84
11.3 AC Characteristics 85
11.4 Timing Diagram 86
12 Packaging 87
Ordering Information 88
ROM Code Submission 88
Customer Feedback Form 89

Z90255 ROM and Z90251 OTP
 32 KB Television Controller with OSD

List of Figures

1 Z90255-Based TV System Application 2
2 Z90255 Block Diagram 3
3 Z90255 and Z90251 Pin Assignments 5
4 Code Development Environment 10
5 Register File Map 12
6 Program Memory Map 14
7 Stop Mode Recovery Source/Level Select 21
8 Positive and Negative Sync Signals 23
9 Second Color Display 28
10 Mesh On 29
11 Video Fade (Example) 34
12 Character Pixel map in CGROM 37
13 Example of a Multiple Character Icon 38
14 Smoothing Effect on 2X Character Size 39
15 VRAM Data Path for 512 Character Set 42
$16 \mathrm{H}_{\text {SYNC }}$ and $\mathrm{V}_{\text {SYNC }}$ Specification 52
17 Bidirectional Port Pin Pad Multiplexed with I2C Port 53
18 Pulse Width Modulator Timing Diagram, 6 Bit 71
19 Pulse Width Modulator Timing Diagram, 14-Bit 72
20 Analog Signals Generated from PWM Signals 79
21 ADC Block Diagram 82
22 Timing Requirements of External Inputs 86
23 42-Lead Shrink Dual-in-line Package (SDIP) 87

Z90255 ROM and Z90251 OTP
 32 KB Television Controller with OSD

List of Tables

$1 \quad$ Z90255 Production Device Pin Assignment 6
2 Single-Purpose Pin Descriptions 7
3 Multiplexed Pin Descriptions 8
4 Register File Map 13
5 Watch-Dog Timer Mode Register OFh: Bank F 15
6 Stop Mode Recovery (SMR) Register OBh: Bank F (SMR) 19
$7 \quad$ Stop Mode Recovery Source 20
8 OSD Control Register 00h:Bank A (OSD_CNTL) 22
9 Vertical Position Register 01h:Bank A (VERT_POS) 24
10 Horizontal Position Register 02h:Bank A (HOR_POS) 25
11 Second Color Control Register 07h:Bank A (SNDCLR_CNTRL) 26
12 Second Color Register 08h:Bank A (SNDCLR) 26
13 Mesh Column Start Register 04h: Bank F (MC_St) 29
14 Mesh Column End Register 05h: Bank F (MC_End) 30
15 Mesh Row Enable Register 06h: Bank F (MR_En) 30
16 Mesh Control Register 07h: Bank F (MC_Reg) 31
17 BGR Mesh Colors 33
18 Fade Position Register 1 05h: Bank A (FADE_POS1) 35
19 Fade Position Register 2 06h: Bank A (FADE_POS2) 35
20 Row Space Register 04h: BankA (ROW_SPACE) 36
21 RGB Colors 40
22 Display Attribute Register 03h: Bank A (DISP_ATTR) 41
23 VRAM Structure and Memory Map 43
24 Color Palette Selection Bits 45
25 Color Index Register 09h: Bank C (CLR_IDX) 45
26 Color Palette 0 Register 09h: Bank A (CLR_P0) 46
27 Color Palette 1 Register OAh: Bank A (CLR_P1) 46
28 Color Palette 2 Register 0Bh: Bank A (CLR_P2) 47
29 Color Palette 3 Register 0Ch: Bank A (CLR_P3) 47
30 Color Palette 4 Register 0Dh: Bank A (CLR_P4) 47
31 Color Palette 5 Register 0Eh: Bank A (CLR_P5) 48
32 Color Palette 6 Register 0Fh: Bank A (CLR_P6) 48
33 Row Attribute Register (ROW_ATTR) 49
34 HV Interrupt Status Register 07h: Bank C (INT_ST) 50
35 Master I2C Control Register 0Ch: Bank C (I2C_CNTL) 54
36 Master I2C Command Register OBh: Bank C (I2C_CMD) 55

Z90255 ROM and Z90251 OTP
 32 KB Television Controller with OSD

37 Master I2C Data Register OAh: Bank C (I2C_DATA) 55
38 Master I ${ }^{2} \mathrm{C}$ Bus Interface Commands 56
39 Port configuration Register 00h: Bank F (PCON) 57
40 Port 2 Mode Register F6h: P2M 58
41 Port 2 Data Register 02h: P2 58
42 Port 4 Pin-Out Selection Register 08h: Bank C (PIN_SLT) 59
43 Port 4 Data Register 05h: Bank C (PRT4_DTA) 60
44 Port 4 Direction Control Register 06h: Bank C (PRT4_DRT) 61
45 PWM Mode Register ODh: Bank B (P_MODE) 62
46 Port 5 Data Register 0Ch: Bank B (PRT5_DTA) 62
47 Port 5 Direction Control Register 0Eh: Bank B (PRT5_DRT) 63
48 Port 6 Data Register 03h: Bank F (PRT6_DTA) 63
49 Port 6 Direction Control Register 02h: Bank F (PRT6_DRT) 64
50 Timer Control Register 0 01h: Bank C (TCRO) 65
51 Timer Control Register 1 02h: Bank C (TCR1) 66
52 IR Capture Register 0 03h: Bank C (IR_CPO) 67
53 IR Capture Register 1 04h: Bank C (IR_CP1) 68
54 PWM Mode Register ODh: Bank B (P_MODE) 68
55 Port 4 Pin-Out Selection Register 08h: Bank C (PIN_SLT) 69
56 PWM 1 Data Register 02h: Bank B (PWM1) 73
57 PWM 2 Data Register 03h: Bank B (PWM2) 73
58 PWM 3 Data Register 04h: Bank B (PWM3) 73
59 PWM 4 Data Register 05h:Bank B (PWM4) 74
60 PWM 5 Data Register 06h: Bank B (PWM5) 74
61 PWM 6 (6-bit)Data Register 07h: Bank B (PWM6) 75
62 PWM 7 Data Register 08h: Bank B (PWM7) 75
63 PWM 8 Data Register 09h: Bank B (PWM8) 75
64 PWM 9 Data Register OAh: Bank B (PWM9) 76
65 PWM 10 Data Register OBh: Bank B (PWM10) 76
66 PWM 6 (14-bit) High Data Register 08h: Bank F (PWM6H) 77
67 PWM 6 (14-bit) Low Data Register 09h: Bank F (PWM6L) 77
68 PWM 11 High Data Register 00h: Bank B (PWM11H) 77
69 PWM 11 Low Data Register 01h: Bank B (PWM11L) 78
70 3-Bit ADC Data Register 00h: Bank C (3ADC_DTA) 81
71 4-Bit ADC Data Register 01h: Bank F (4ADC_DTA) 81
72 Operational Limits 83
73 DC Characteristics 84
74 AC Characteristics 85
75 Package Dimensions 87

Z i L O G

Z90255 ROM and Z90251 OTP 32 KB TV Controller with On-Screen Display

1 Overview

The Z90255 and Z90251 are the ROM and OTP versions of a Television Controller with On-Screen Display (OSD) that contains 32 KB of program memory.

- \quad The $\mathbf{Z 9 0 2 5 1}$ is the one-time programmable (OTP) controller used to develop code or prototypes for specific television applications or initial limited production. Program ROM and Character Generation ROM (CGROM) in the Z90251 are both programmable.
- The Z90255 incorporates the ROM code developed by the customer with the Z90251. Customer code is masked into both program ROM and CGROM.

An application-specific controller designed to provide complete audio and video control of television receivers and video recorders, the Z90255 provides advanced OSD features. Figure 1 illustrates a typical TV system application using the Z90255. Figure 2 is a block diagram of the $Z 90255$ architecture.

Figure 1 Z90255-Based TV System Application

Figure 2 Z90255 Block Diagram
Note: PWM 6 can be either a 6 -bit or 14-bit output.

The Z90255 takes full advantage of Zilog's Z8 expanded register file space to offer greater flexibility in creating a user-friendly On-Screen Display (OSD).
Three basic addressing spaces are available: Program memory, Video RAM (VRAM) and the Register file. The register file is composed of 300 bytes of general-purpose registers, 16 control and status registers, one I/O port register and three reserved registers.

The OSD module supports 10 rows by 24 columns of characters. Each character color can be specified. There are eight foreground colors and eight background colors. When the foreground and background colors are the same, the background is transparent.

If Row, Second color and Character set are defined, an analog bar line can be displayed for volume control, signal levels, and tuning.

The OSD can display four character sizes:

- $\quad 1 \mathrm{X}(14 \times 18$ pixels)
- $2 \mathrm{2X}$ (28×36 pixels)
- Double width (28×18 pixels)
- Double height (14×36 pixels)

Inter-row spacing can be programmed within 0 to 15 Horizontal scan lines. Using multiple characters with zero inter-row spacing allows the creation of large psuedo icons.

A 14-bit Pulse Width Modulator (PWM) port provides necessary voltage resolution for a voltage synthesizer tuning system. Ten 6-bit PWM ports are used to control audio (base, treble, balance and volume) and video (contrast, brightness, color, tint and sharpness) signal levels.

There are 27 I/O pins grouped into four ports. These I/O pins can be configured through software to provide timing, status signals, serial and parallel input and output.

For real-time events, such as counting, timing and data communication, two onchip counter/timers are implemented. The Z90255 is packaged in a 42-pin SDIP and provides an ideal, reliable solution for high-volume consumer television applications.

1.1 Pin Assignment and Descriptions

Figure 3 shows the pin numbers for production and OTP device format.

Figure 3 Z90255 and Z90251 Pin Assignments

Notes: 1 The pins on the Z90255 and Z90251 are assigned to perform the functions identified in Tables 1, 2 and 3.
2 PWM 6 can be either 6-bit or 14-bit PWM outputs.
3 All signals with an overbar are active Low.

Table 1 Z90255 Production Device Pin Assignment

Name	Pin Function	Package 42-Pin SDIP	Direction	POR
V_{CC}	+5 Volts	34	Power	Power
GND, AGND	0 Volts	30, 13	Power	Power
IRIN	Infrared Remote Capture Input	36	1	I
PWM11	14-bit Pulse Width Modulator Output	1	0	N/A
PWM10-PWM ${ }^{1}$	6-Bit Pulse Width Modulator Output	20, 19, 18, 17, 2, 3, 4, 5, 6, 7	0	N/A
P5 (6-0)	Bit Programmable I/O Ports	1, 2, 3, 4, 5, 6, 7	I/O	1
P2 (7-0)	Bit-Programmable I/O Ports	42, 41, 40, 39, 38, 37, 35, 21	I/O	1
HLFTN	Halftone Output	21	0	N/A
SDATA0, SDATA1	$1^{2} \mathrm{C}$ Data, Bidirectional (Send/Receive) Serial Data Lines	40, 42 ${ }^{2}$	I/O	N/A
SCLK0, SCLK1	$1^{2} \mathrm{C}$ Clock	39, 41^{2}	I/O	N/A
P6 (3-0)	Bit-Programmable I/O Ports	16, 12, 10, 9	I/O	1
P4 (7-0)	Bit-Programmable I/O Ports	20, 19, 18, 17, 15, 14, 11, 8	1/O	1
XTAL1	Crystal Oscillator Input	31	1	I
XTAL2	Crystal Oscillator Output	32	0	0
OSDX1	Dot-Clock Oscillator Input	28	1	1
OSDX2	Dot-Clock Oscillator Output	29	0	0
$\mathrm{H}_{\text {SYNC }}$	Horizontal Synchronization	26	1	I
$V_{\text {SYNC }}$	Vertical Synchronization	27	1	I
VBLANK	Video Blanking	25	0	0
R,G,B	Video Red, Green, Blue	24, 23, 22	0	0
ADC3-ADC0	4-Bit Analog-to-Digital Converter Input	9, 10, 11, 12	AI	I
$\overline{\text { RESET }}$	System Reset	33	I/O	I

Note: 1 PWM 6 can be either 6-bit or 14-bit PWM outputs.
2 When Pins 39-42 are configured for $I^{2} C$, pins 39 and 40 comprise one channel, and pins 41 and 42 comprise another channel

Z90255 ROM and Z90251 OTP
 32 KB Television Controller with OSD

1.2 Single-Purpose Pin Descriptions

Table 2 lists the single-purpose pin acronyms, pin names, and descriptions.
Table 2 Single-Purpose Pin Descriptions

Acronym	Pin Name(s)	Description
AGND	Analog Ground	Analog Ground
B	Blue	CMOS output of the blue video signal B. Video blue can be programmed for either polarity.
G	Green	CMOS output of the green video signal G. Video green can be programmed for either polarity.
GND	Ground	Ground
H	Horizontal Sync	Input pin for external horizontal synchronization signal
IRIN	IR Capture Input	Infrared Remote capture input
OSDX1, OSDX2	On-Screen Display Dot	These oscillator input and output pins for on-screen display circuits are connected to an inductor and two capacitors to generate the character dot clock. The dot clock frequency determines the character pixel width and phase synchronized to HSYNC
P21, P22, P23	Port 2 bits 1-3	Bidirectional digital port, configured to read digital data or to send output to an attached device.
P40, P42, P43	Port 4 bit 0, bits 2 and 3	Bidirectional digital port, configured to read digital data or to send output to an attached device.
P63	Port 6 bit 3	P63 input can be read directly at 03H. A negative edge event is latched to IRQ3. An IRQ3-vectored interrupt occurs if appropriately enabled. A typical application places the device in Stop mode when P63 goes Low (IRQ3 interrupt routine). When P63 subsequently goes High, a Stop-Mode Recovery is initiated.
RESET	System Reset	CMOS output of the red video signal R. Video red can be programmed for either polarity.
Red	System reset	

Table 2 Single-Purpose Pin Descriptions (Continued)

Acronym	Pin Name(s)	Description		
$V_{\text {BLANK }}$	Video Blank	CMOS output, programmable polarity. This pin is used as a super-impose control port to display characters from video RAM. The signal controls Y-signal output of CRTs and turns off the incoming video display while the characters in video RAM are super-imposed on the screen. The output ports of color data directly drive three electron guns on the CRT; at the same time VBLANK output turns off the Y signal.		
$V_{\text {CC }}$	Power Supply	Power supply		
$V_{\text {SYNC }}$	Vertical Sync	Input pin for external vertical synchronization signal. XTAL1, XTAL2Time-Based Input Output		These pins connect to the internal parallel-resonant clock
:---				
crystal oscillator circuit with two capacitors to GND.				
XTAL1 can be used as an external clock input.				

1.3 Multiplexed Pin Descriptions

Table 3 lists the Multiplexed Pin acronyms, pin names, and descriptions.
Table 3 Multiplexed Pin Descriptions

Acronym	Pin Name(s)	Description
P20/HLFTN	Port 2 bit 0 or Halftone Output	Port 2 bit 0 can be programmed as an input or output
line.		

Table 3 Multiplexed Pin Descriptions (Continued)

Acronym	Pin Name(s)	Description
P61/ADC2	Port 6 bit 1 or Analog-to-Digital Converter Channel 2	Port 6 bit 1 can be programmed as an input or output line.
P41/ADC1	Port 4 bit 1 or Analog-to-Digital Converter Channel 1	Port 4 bit1 can be programmed as an input or output line.
P44/PWM7	Port 4 bit 4 or Pulse Width Modulator 7	These port pins can be programmed as input or output ports. Each PWM channel has 6-bit resolution.
P45/PWM8	Port 4 bit 5 or Pulse Width Modulator 8	
P46/PWM9	Port 4 bit 6 or Pulse Width Modulator 9	
P47/PWM10	Port 4 bit 7 or Pulse Width Modulator 10	
PWM11/P56	Pulse Width Modulator 11 or Port 5 bit 6	The PWM signal-generator channel has 14-bit resolution. Port 5 bit 6 and port 5 bit 5 can be programmed as inputs or outputs.
PWM6/P55	Pulse Width Modulator 6 or Port 5 bit 5	
PWM6/P55	Pulse Width Modulator 6 or Port 5 bit 5	These port pins can be programmed as input or output ports. Each PWM signal-generator channel has 6-bit resolution.
PWM5/P54	Pulse Width Modulator 5 or Port 5 bit 4	
PWM4/P53	Pulse Width Modulator 4 or Port 5 bit 3	
PWM3/P52	Pulse Width Modulator 3 or Port 5 bit 2	
PWM2/P51	Pulse Width Modulator 2 or Port 5 bit 1	The PWM signal-generator channel has 6-bit resolution. Port 5 bit 1 and Port 5 bit 0 can be programmed as an input or output port.
PWM1/P50	Pulse Width Modulator 1 or Port 5 bit 0	The PWM signal-generator channel has 6-bit resolution. Port 5 bit 0 can be programmed as an input or output port.
Note: PWM6 can be either 6-bit or 14-bit output.		

The Z90251 requires Zilog's Z90259ZEM Emulator with its proprietary Zilog Developmental Studio (ZDS) software for programming. To view how code is working, the emulator uses a ZOSD board which connects directly to a television screen. Refer to Figure 4.

Figure 4 Code Development Environment

2 Memory Description

A total of 300 bytes of general purpose register memory is implemented in the Z90255. These registers are composed of 236 registers from the standard register file and 64 registers from the expanded register file.

2.1 Standard Register File

The Z90255 Standard Register File consists of two I/O port registers (02h and 03h), 236 general purpose registers ($04 \mathrm{~h}-\mathrm{EFh}$) and 15 (F1h-FFh) control and status registers. Registers 00h, 01h, and FOh are reserved. Figure 5 is the register file map. Instructions can access registers directly or indirectly with an 8bit address field. This also allows short 4-bit addressing using the Register Pointer. In the 4-bit mode, the register file is divided into sixteen working register groups. The upper nibble of the Register Pointer (FDh) addresses the starting location of the active working-register group.
Note: Registers EOh-EFh are only accessed through a workingregister and indirect addressing mode.

2.2 Expanded Register File

The register file has been expanded to provide additional system control registers, additional general purpose registers, and expanded mapping of peripheral devices and I/O ports in the register address area.

The lower nibble of the Register Pointer (FDh) addresses the Expanded Register File (ERF) Bank. The Oh value in the lower nibble identifies the Standard Register File to be addressed. Any other value from 1h to Fh selects an ERF Bank. When an ERF Bank is selected, register addresses from 00h to OFh access the sixteen ERF Bank registers, which in effect replace the first sixteen locations of the Z90255 Standard Register File. Only ERF Bank 4, ERF Bank 5, ERF Bank 6, ERF Bank 7, ERF Bank A, ERF Bank B, ERF Bank C and ERF Bank F are implemented in the Z90255 controller (Table 4).

2.3 Program Memory

The Z 90255 has 32 KB of program memory. Refer to Figure 6 . The first 12 bytes of the program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to interrupt and program control routine addresses which are passed to the specified vector address. The IRQ0 vector is permanently assigned to the IR interrupt request. The IRQ1 vector is permanently assigned to the $\mathrm{V}_{\text {SYNC }}$ and $\mathrm{H}_{\text {SYNC }}$ interrupt request. Program memory starts at address 000 Ch after being reset.

Figure 5 Register File Map

Z90255 ROM and Z90251 OTP 32 KB Television Controller with OSD

Table 4 Register File Map

BANK 4	BANK 5	BANK 6	BANK 7
Address Description	Address Description	Address Description	Address Description
00h-0Fh Gen. Pur. Reg.			

BANK A	BANK B
Address Description	Address Description
00h OSD Control Register(OSD_CNTL)	00h PWM11-High Data Register(PWM11H)
01h Vertical Position Register(VERT_POS)	01h PWM11-Low Data Register(PWM11L)
02h Horizontal Position Register(HOR_POS)	02h PWM1 Data Register(PWM1)
03h Display Attribute Register(DISP_ATTR)	03h PWM2 Data Register(PWM2)
04h Row Space Register (ROW_SPACE)	04h PWM3 Data Register(PWM3)
05h Fade Position1 Register(FADE_POS1)	05h PWM4 Data Register(PWM4)
06h Fade Position2 Regisiter(FADE_POS2)	06h PWM5 Data Register(PWM5)
07h Second Color Control Register(SNDCLR_CNTRL)	07h PWM6(6-bit) Data Register(PWM6_6)
08h Second Color Position Register(SNDCLR_POS)	08h PWM7 Data Register(PWM7)
09h Color Palette0 Register(CLR_P0)	09h PWM8 Data Register(PWM8)
0Ah Color Palette1 Register(CLR_P1)	0Ah PWM9 Data Register(PWM9)
OBh Color Palette2 Register(CLR_P2)	0Bh PWM10 Data Register(PWM10)
OCh Color Palette3 Register(CLR_P3)	0Ch Port 5 Data Register(PRT5_DTA)
ODh Color Palette4 Register(CLR_P4)	ODh PWM Mode Register(P_MODE)
0Eh Color Palette5 Register(CLR_P5)	0Eh Port 5 Direction Register(PRT5_DRT)
0Fh Color Palette6 Register(CLR_P6)	OFh
BANK C	BANK F
Address Description	Address Description
00h 3-bit ADC Data Register(3ADC_DTA)	00h Port Configuration Register(PCON)
01h Timer Control Register0(TCRO)	01h 4-bit ADC Data Register (4ADC_DTA)
02h Timer Control Register1(TCR1)	02h Port6 Direction Register(PRT6_DRT)
03h IR Capture Register0(IR_CP0)	03h Port6 Data Register (PRT6_DTA)
04h IR Capture Register1(IR_CP1)	04h Mesh Column Start Register(MC_ST)
05h Port4 Data Register(PRT4_DTA)	05h Mesh Column End Register(MC_END)
06h Port4 Direction Register(PRT4_DRT)	06h Mesh Row Enable Register(MR_EN)
07h Interrupt Status Register(INT_ST)	07h Mesh Control Register(MC_REG)
08h Port4 Pin_out Selection Register(PIN_SLT)	08h PWM6 High Data Register(PWM6H_14)
09h Color Index Register(CLR_IDX)	09h PWM6 Low Data Register (PWM6L_14)
OAh I2C Data Register(${ }^{2} \mathrm{C}$ _DATA)	0Ah
0Bh I2C Command Register($\mathrm{I}^{2} \mathrm{C}$ _CMD)	OBh Stop Mode Register(SMR)
0 Ch I2C Control Register(${ }^{2} \mathrm{C}$ _CNTL)	0Ch
ODh	ODh
0Eh	0Eh
0Fh	OFh WDT Mode Register(WDTMR)

14

Figure 6 Program Memory Map

3 Watch-Dog Timer (WDT)

The Watch-Dog Timer (WDT) is driven by an internal RC oscillator. Therefore accuracy is dependent on the tolerance of the RC components. Table 5 describes the Watch-Dog Timer Mode register bits.

Table 5 Watch-Dog Timer Mode Register 0Fh: Bank F

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	1	0	1

Note: R = Read W = Write X = Indeterminate

Bit// Field	Bit Position	R/W	Value	Description
reserved	$7-4$	W	0	Must be 0
WDT During Stop	3	W	0	Off
			1	On POR
WDT During Halt	2	W	0	Off
			1	On POR
WDT TAP	1,0	W	00	6 msec
			01	12 msec POR
			10	24 msec
			96 msec	

WDT During Halt Mode (T2)

Bit 2 determines if the WDT is active during Halt Mode. A 1 value indicates active during Halt. The default is 1. A WDT timeout during Halt Mode resets control registers and ports to their default reset conditions.

Bit 3 determines if the WDT is active during Stop mode. A 1 value indicates active during Stop mode. A WDT timeout during Stop mode resets control registers and ports to their default reset conditions.

Bits 4,5, 6 and 7 are reserved and must be cleared to 0 .
The WDTMR register is accessible only during the first 60 processor cycles from the execution of the first instruction after Power-On Reset, Watch-Dog Reset, or a

Z90255 ROM and Z90251 OTP
 32 KB Television Controller with OSD

Stop-Mode Recovery. After this point, the register cannot be modified by any means, intentional or otherwise.

The WDT is permanently enabled after Reset. To ensure that the WDT is set properly, use the following instructions as the first two instructions:

```
DI
```

WDT
The Watch-Dog timer must then be constantly refreshed within the required timeout by executing the WDT Instruction.
Note: Executing the WDT instruction affects the Z (zero), S (sign), and V (overflow) flags.

A system reset overrides all other operating conditions and puts the microcontroller into a known state. To initialize the chip's internal logic, the Reset input must be held Low for at least 5 XTAL clock cycles. The control registers and ports are reset to default conditions after a POR, a reset from the Reset pin, or a WDT timeout while in Run Mode and Halt Mode. The control registers and ports are not reset to their default conditions after Stop Mode Recovery and WDT timeout while in Stop Mode.

The program counter is loaded with 000 Ch . I/O ports and control registers are configured to their default reset states.

Resetting the microcontroller does not Affect the contents of the general-purpose registers.

The Watch-Dog Timer (WDT) is a retriggerable, one-shot timer that resets the microcontroller if it reaches its terminal count. When operating in the Run, Halt or Stop Modes, a WDT reset is functionally equivalent to a hardware POR reset.

4 Stop Mode and Halt Mode Operation

4.1 Power-Down Halt-Mode Operation

The Halt Mode suspends instruction execution and turns off the internal CPU clock. The on-chip oscillator circuit remains active so the internal clock continues to run and is applied to the counter/timer(s) and interrupt logic.

To enter the Halt Mode, the instruction pipeline must be flushed first to avoid suspending execution in mid-instruction. To do this, the application program must
execute a NOP instruction (opcode $=$ FFh) immediately before the Halt instruction (opcode 7Fh), that is,

FF NOP ;clear the instruction pipeline
7F Halt ;enter Halt Mode
The Halt Mode is exited by interrupts, generated either externally or internally. When the interrupt service routine is completed, the user program continues from the instruction after Halt.

The Halt Mode can also be exited via a POR/Reset activation or a Watch-Dog Timer (WDT) timeout. In this case, program execution restarts at the reset-restart address 000Ch.

To reduce power consumption further in the Halt Mode, the Z90255 and Z90251 allow dynamic internal clock scaling. Clock scaling can be accomplished on the fly by reprogramming bit 0 and/or bit 1 of the Stop-Mode Recovery register (SMR).
Note: Internal clock scaling directly effects Counter/Timer operation: adjustment of the prescaler and downcounter values might be required.

4.2 Stop Mode Operation

The Stop Mode provides the lowest possible device standby current. This instruction turns off the on-chip oscillator and internal system clock.

To enter the Stop Mode, the instruction pipeline must be flushed first to avoid suspending execution in mid-instruction. To do this, the application program must execute a NOP instruction (opcode=FFh) immediately before the Stop instruction (opcode $=6 \mathrm{Fh}$), that is,

FF NOP ;clear the instruction pipeline
 6F Stop ;enter Stop Mode

The Stop Mode is exited by any one of the following resets: Power-On Reset activation, WDT timeout, or a Stop-Mode Recovery source. When reset is generated, the processor always restarts the application program at address 000Ch.

POR/Reset activation is present on the Z90255 and Z90251 and is implemented as a reset pin and/or an on-chip power on reset circuit.

When the WDT is configured to run during Stop mode, the WDT timeout generates a Reset ending Stop Mode.

Z90255 ROM and Z90251 OTP
 32 KB Television Controller with OSD

Stop-Mode Recovery (SMR) by the WDT increases the Stop Mode standby current (ICC2). This is because the internal RC oscillator is running to support this recovery mode.

The Z90255 and Z90251 have Stop-Mode Recovery (SMR) circuitry. Two SMR methods are implemented, a single-fixed input pin or a flexible, programmable set of inputs. The Z8-base product specification should be reviewed to determine the SMR options available.

In simple cases, a Low level applied to input pin P27 triggers an SMR. To use this mode, pin P27 (I/O Port 2, bit 7) must be configured as an input before entering Stop Mode. The Low level on P27 must meet a minimum pulse width TWSM. Some microcontrollers provide multiple SMR input sources. The SMR source is selected via the SMR Register.

Note: Using specialized SMR modes (P27 input or SMR register based) or the WDT timeout (only when in the Stop Mode) provides a unique reset operation. Some control registers are initialized differently for a SMR/WDT triggered POR than a standard reset operation.

Note: The Stop Mode current (ICC2) is minimized when

- V_{CC} is at the low end of the device operating range
- WDT is Off in Stop Mode
- Output current sourcing is minimized
- All inputs (digital and analog) are at the low or high rail voltages

4.3 STOP Mode Recovery Register

The STOP Mode Recovery Register register selects the clock divide value and determines the mode of Stop Mode Recovery. All bits are Write-Only, except bit 7 which is Read-Only. Bit 7 is a flag bit that is hardware set in a Stop Mode Recovery condition, and reset by a power-on cycle. Bit 6 controls whether a Low level or a High level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2,3 , and 4 , of the SMR register, specify the source of the Stop-Mode Recovery signal. Bits 0 and 1 control internal clock divider circuitry. The SMR is located in bank F of the expanded register file at address OBh.

Table 6 contains Stop Mode Recovery (SMR) Register bit descriptions.

Table 6 Stop Mode Recovery (SMR) Register OBh: Bank F (SMR)

Bit	7	6	5	4		3	2	1	0
R/W	R	W	W	W		W	W	W	W
Reset	0	0	1	0		0	0	0	0
Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate									
Bit/ Field			Bit Position	R/W	Value	Description			
Stop flag			7	R	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	POR Stop Recovery			
Stop Recovery level			6	W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Low POR High			
Stop Delay			5	W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Off On POR			
Stop Mode Recover Source			4-2	W	000 001 010 011 100 101 110 111	POR P63 P62 Mu Mu P2 P2 P2	nd /o NOT NOT R 0-3 R 0-7	rnal	
External Clock Divide by 2			1	W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { SCLK/TCLK }=\text { XTAL/2 POR } \\ & \text { SCLK/TCLK }=\text { XTAL } \end{aligned}$			
SCLK/TCLK Divide by 16			0	W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Off POR On			

SCLK/TCLK Divide-by-16 Select (bit O)

This bit controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to reduce device power consumption selectively during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources counter/timers and interrupt logic).

External Clock Divide-by-Two (bit 1)

This bit can eliminate the oscillator divide-bytwo circuitry. When this bit is 0 , the System Clock (SCLK) and Timer Clock (TCLK) are equal to the external clock frequency divided by two. The SCLK/TCLK is equal to the external clock frequency when this bit is set ($\mathrm{D} 1=1$). Using this bit together with D7 of PCON helps lower EMI (D7 (PCON) =0, D1 (SMR) =1). The default setting is zero.

These three bits specify the wake-up source of the Stop-Mode recovery.

Figure 7 illustrates Stop Mode Recovers Source/Level Select.

Table 7 Stop Mode Recovery Source

	Bits	Operation	
$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	Description of Action
0	0	0	POR and/or external reset recovery
0	0	1	P63 transition
0	1	0	P62 transition (not in Analog Mode)
1	0	1	P27 transition
1	1	0	Logical NOR of P20 through P23
1	1	1	Logical NOR of P20 through P27

Stop Mode Recovery Delay Select (bit 5)

This bit, if High, enables the $T_{\text {POR }}$ Reset delay after Stop Mode Recovery. The default configuration of this bit is 1 . If the fast wake up is selected, the Stop Mode Recovery source is kept active for at least 5 TpC .

21

Stop Mode Recovery Level Select (bit 6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the microcontroller from Stop Mode. A 0 indicates Low-level recovery. The default is 0 on POR.

This bit is set by the device when Stop Mode is entered. A 0 in this bit (cold) indicates that the device reset by POR/WDT Reset. A 1 in this bit (warm) indicates that the device awakens by a SMR source.

Figure 7 Stop Mode Recovery Source/Level Select

Note: If P62 is used as an SMR source, the digital mode of operation must be selected before entering Stop Mode.

5 On-Screen Display

The On-Screen Display (OSD) module generates and displays a 10 row by 24 columns of 512 characters at 14×18-dots resolution. The color of each character can be specified independently.

The televison OSD controller uses $H_{\text {SYNC }}$ and $\mathrm{V}_{\text {SYNC }}$ signals to synchronize its internal circuitry to the video signal, then outputs RGB and Video Blank (Vblank) signals. The VBLANK signal is used to multiplex the OSD signal and video signal onto the screen. The result is that the On-Screen Display is superimposed over the TV picture.

The display results from the successful timing of several components:

- OSD Positioning
- Second Color Feature
- Mesh and Halftone Effect
- OSD Fade
- Inter-Row Spacing
- Character Generation

5.1 OSD Position

OSD Positioning is controlled by programming the following registers:

- OSD Control Register (Table 8)
- Vertical Position Register (Table 9)
- Horizontal Position Register (Table 10)

OSD Control Register

Table 8 OSD Control Register 00h:Bank A (OSD_CNTL)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	0	x						

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit// Field	Bit Position	R/W	Value	Description

Bit 4, Sync Polarity, provides the polarity of the $H_{S Y N C}$ and $V_{\text {SYNC }}$ signals. $H_{\text {SYNC }}$ and $V_{\text {SYNC }}$ must have the same polarity (see Figure 8). This feature is designed to provide flexibility for TV chassis designers.

Figure 8 Positive and Negative Sync Signals
Bit 3, Character Size, sets the size of the characters that are displayed. Character sizes $1 \mathrm{X}, 2 \mathrm{X}$, double width and double height are supported. The default value is 1X.

To change the size of the characters in a row, alter the value of the bit during the previous horizontal interrupt. The character size of the first row is programmed during vertical interrupt ($\mathrm{V}_{\text {SYNC }}$) processing. Character size is a row attribute.
Bits 2, 1, and 0, Vertical Retrace Blanking, set a time period when the OSD is disabled while the electron gun returns from the bottom to the top of the screen, and all VBLANK and RGB output are disabled. The blanking period is determined by counting horizontal pulses according to the following formula:

```
Blanking Period=(4 x (Vertical Retrace Blanking)+2) x THL
```

THL: one horizontal period
The retrace blanking bits, OSD_CNTL $(2,1,0)$ must be set to deactivate the electron guns during the retrace period.

Vertical Position Register

The Vertical Position Register (Table 6) sets the vertical placement of the OSD on the screen. The unit of measure for placement is the number of scan lines from the top of the TV field.

Table 9 Vertical Position Register 01h:Bank A (VERT_POS)

Bit	$\mathbf{7}$		$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
R/W								
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
reserved	7	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Return 0 No effect
Character double height	6	R/W	0 1	Normal when bit 3 of OSD_CNTL is 0 . 2 X when bit 3 of OSD_CNTL is 1 . Double height when bit 3 of OSD_CNTL is 0 . Double width when bit 3 of OSD_CNTL is 1 .
Vertical Position	5,4,3,2,1,0	R/W		Vertical position control

The value required for this register can be computed using the following equation:

```
VERT_POS = (V VOS - 6) / 4
```

VERT_POS represents the contents of bits 5,4,3,2,1,0 of the Vertical Position Register (VERT_POS). The default value is 0 . When the value is 0 , the OSD is at the top-most OSD position on the screen, with an offset of 06 h scan lines above the OSD area.

VERT_POS is the number of scan lines from the $\mathrm{V}_{\text {SYNC }}$ to the OSD start position. $V_{\text {PoS }}$ must be a positive integer with a minimum value of Ah incrementing by 4.

Horizontal Position Register

The Horizontal Position Register sets the horizontal start position of the OSD (Table 7). The unit of measure for placement is the number of pixels from the left of the display screen.

Table 10 Horizontal Position Register 02h:Bank A (HOR_POS)

Bit	7		$\mathbf{6}$		$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
\mathbf{l}								
R/W								
Reset	0	1	0	0	0	0	1	1

Note: R = Read W = Write X = Indeterminate

Register Field	Bit Position	R/W	Data	Description
Progressive mode	7-------	R/W	0	Normal
			1	Support progressive sync inputs
Reserved	$-6-----$	R		Return 1
		W	No effect	
Horizontal position	$5,4,3,2,1,0$	R/W	Horizontal position control	

When working with Progressive mode, fringing does not work with 2X mode or double height mode, nor does Mesh work the same way as in Interlace mode.
The value required for this register can be computed using the following equation:

```
HOR_POS = (HPOS - 1) / 4
```

HOR_POS represents the contents of bits 5, 4, 3, 2, 1, 0 of the Horizontal Position Register (HOR_POS). The default value is 3 h . When the value is 3 h , the OSD is at the left-most OSD position on the screen.
$\mathrm{H}_{\mathrm{POS}}$ is the number of pixels from the left of the screen to the OSD start position. $H_{\text {POS }}$ must be a positive integer with a minimum value of 5 incrementing by 4 .

5.2 Second Color Feature

Second Color feature is the logical division of each column into two parts along each row for changing foreground color. The number of each half-column is called the Second Color Position.

The Second Color feature can be used to implement an analog bar for volume control, tuning, etc. The change step for color is half the character size. Refer to Tables 8 and 9 .

Second Color Control Register

The Second Color Position is the place where the foreground color changes to the color defined in the Second Color Control Register.

Table 11 Second Color Control Register 07h:Bank A (SNDCLR_CNTRL)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	0	0	0	0	0	0	0	0

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

| Bit/
 Field | Bit
 Position | R/W | Value | Description |
| :--- | :--- | :--- | :--- | :--- | | Second Color Enable | 7 | R/W | 0
 1 | Disables the second color feature
 Enables the second color feature |
| :--- | :--- | :--- | :--- | :--- |
| Second Color | $6,5,4$ | R/W | R, G, B respectively. Defines the
 second color after the second color
 position defined in SNDCLR register. | |
| Row Address | $3,2,1,0$ | R/W | Defines one of the 10 rows (from 0, the
 first row, to 9, the 10th row). | |

Second Color Register

Table 12 Second Color Register 08h:Bank A (SNDCLR)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	x	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/l Field	Bit Position	R/W	Value	Description
Reserved	7	R	0	Return 1
		W	1	No effect

Note: Column increment is 0.5 . Offset is 03 h . System software requires that the offset be added to the increment for the second color in the bar display. The bar position must be defined before the second color is enabled.

Bit 6, HVSYNC Interrupt Option, defines the procedure for processing when a second interrupt is issued before the first interrupt has completed processing. If bit 6 is set to 0 , bit 6 is not pending the other interrupt ($\mathrm{H}_{\text {SYNC }}$ or $\mathrm{V}_{\text {SYNC }}$) while one is in service. If bit 6 is set to 1 , bit 6 is pending the other interrupt ($\mathrm{H}_{\text {SYNC }}$ or $V_{\text {SYNC }}$) while one is in service.
Figures 9 is an example of second color display in the eighth row of the OSD. Each of the small grid squares represents one pixel. Each column has two areas for second color display. In this example, the second color is at Position 6. The second color position for the first column has a value of 3 because the OSD is offset from the left of the TV screen at a distance equal to 03 h . Each column is the size of one display character. Each Second color column is a half character column. The screen position offset is added to Second color position. Because the offset is 03 h , the Second color postions begin with $3=(3+0), 4=(3+1), 5=$ $(4+1)$, and so forth.

Figure 9 Second Color Display

5.3 Mesh and Halftone Effect

Mesh is a grid-like area that contains an alternating pixel display of OSD and transparent zones. See Figure 10. The transparent zones allow the TV signal display to appear in part while the mesh display is active.
Halftone effect is a transparent area that appears slightly darker than the regular picture carried by the TV signal.

Mesh and halftone effects both serve as backgrounds for menus, action bars, and other On-Screen Displays. The mesh feature is only for interlaced-mode video systems.

Mesh can be controlled in two ways: through hardware or through software for alternating pixel display in different fields.

Figure 10 Mesh On
General descriptions of the registers used to control the mesh are contained in Tables 13 through 16.

Table 13 Mesh Column Start Register 04h: Bank F (MC_St)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	x	x	x	0	0	0	0	0

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	$7,6,5$	R	Return 1	
Mesh Window Start	$4,3,2,1,0$	R/W	Defines the start character number in the mesh window.	

Table 14 Mesh Column End Register 05h: Bank F (MC_End)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x	x	x	0	0	0	0	0

Note: R = Read W = Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description	Reserved	$7,6,5$	R	Return 1 No effect
:---	:---	:---	:---					
Mesh Window End	$4,3,2,1,0$	R/W	Defines the character number after the mesh window display.					

MC_St and MC_End define the width and horizontal position of the mesh window.

Table 15 Mesh Row Enable Register 06h: Bank F (MR_En)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	0	0	0	0	0	0	0	0

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
$V_{\text {BLANK }}$ Delay	7, 6, 5, 4	R/W	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	No Delay Delay by 0.5 Dot-Clock Period Delay by 1.0 Dot-Clock Period Delay by 1.5 Dot-Clock Period Delay by 2.0 Dot-Clock Period Delay by 2.5 Dot-Clock Period Delay by 3.0 Dot-Clock Period Delay by 3.5 Dot-Clock Period Delay by 4.0 Dot-Clock Period Delay by 4.5 Dot-Clock Period Delay by 5.0 Dot-Clock Period Delay by 5.5 Dot-Clock Period Delay by 6.0 Dot-Clock Period Delay by 6.5 Dot-Clock Period Delay by 7.0 Dot-Clock Period Delay by 7.5 Dot-Clock Period
Foreground Character for Halftone Effect	3	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Not included Included
Reserved	2, 1	R/W		Must be 0
Mesh Window Row	0	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No mesh OSD for Next Row Mesh OSD for Next Row

Bits 7, 6,5, and 4, VBLANK Delay, set the amount of time that the VBLANK signal is properly aligned with the OSD RGB output with delay from external circuitries.

Bit 3, Character Foreground for Halftone Effect, defines whether displaying a foreground color for character display is included. If bit 3 is set to 0 , halftone is disabled for pixels with foreground color. If bit 3 is set to 1 , halftone is active for pixels with both foreground and background colors.

Bit 0 , Mesh Window Row, sets the mesh effect to On or Off for the next row of the OSD.

Table 16 Mesh Control Register 07h: Bank F (MC_Reg)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Halftone Effect Output Delay on P20	7	R/W	$\begin{aligned} & \hline x x / x \\ & 00 / 0 \\ & 00 / 1 \\ & 01 / 0 \\ & 01 / 1 \\ & 10 / 0 \\ & 10 / 1 \\ & 11 / 0 \\ & 11 / 1 \end{aligned}$	Bits 5, 4 in ROW_SPACE/ bit 7 No Delay Delay by 0.5 Dot-Clock Period Delay by 1.0 Dot-Clock Period Delay by 1.5 Dot-Clock Period Delay by 2.0 Dot-Clock Period Delay by 2.5 Dot-Clock Period Delay by 3.0 Dot-Clock Period Delay by 3.5 Dot-Clock Period
Mesh Color	6, 5, 4	R/W		Defines the mesh color. B,G,R respectively.
P20 for Halftoning	3	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Normal Mesh effect Use P20 Output for Halftoning
Software Field Number Polarity of Halftone Effect Output	2	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Even Field/Positive Halftone Effect Output Odd Field/Negative Halftone Effect Output
Software Mesh	1	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Hardware Defines Field Number Software Defined Field Number
Mesh Enable	0	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Mesh is Disabled Mesh is Enabled

When working with Progressive mode, mesh does not work the same way as in Interlace mode.

Bit 7, Halftone Output Delay on P20, is the amount of time that output of the halftone signal is delayed to compensate for the amount of delay of OSD RGB from external circuitries.

Bits 6, 5, and 4, Mesh Color, define the color of the mesh window. The colors are specified in Blue, Green, Red order, as shown in Table 17.

Table 17 BGR Mesh Colors

\mathbf{B}	\mathbf{G}	\mathbf{R}	Color
0	0	0	Black
0	0	1	Red
0	1	0	Green
0	1	1	Yellow
1	0	0	Blue
1	0	1	Magenta
1	1	0	Cyan
1	1	1	White

Bit 3,P20 for Halftone, selects mesh or halftone effect. If bit 3 is set to 1 , P20 outputs halftone. If reset to $0, \mathrm{P} 20$ is a normal I/O pin.
Bit 2, Software Field Number/Polarity of Halftone Output, has several possible values. The value of this bit remains the same for the entire mesh window; it does not change from row to row.

If bit 3 is set to 1 (halftone), bit 2 defines the polarity of halftone output. If bit 3 is reset to 0 and bit 1 is set to 1 , then bit 2 defines the field number (even or odd).

Bit 1, Software Mesh, defines whether hardware or software sets the current field number. When the value equals 0 , hardware defines field number. When the value equals 1 , software defines the field number.
Bit 0 , Mesh Enable, disables or enables using mesh. This field is used in conjunction with MR_En (0). The value of Mesh Enable is changed only when Mesh Window Row equals 0 (the current OSD row is not part of a mesh window). If the value is changed when the current row is part of the mesh window, partial or missing characters are likely to be displayed.

5.4 OSD Fade

Fading is the gradual disappearance of the OSD. Fading occurs vertically, up or down. Figure 11 shows the fade-down effect.

Fade control registers can only be updated during $\mathrm{v}_{\text {SYNC }}$, not during row interrupt. Otherwise, unexpected results can occur.

Figure 11 Video Fade (Example)

This feature is controlled through the FADE_POS1 (Table 18), FADE_POS2 (Table 19), and ROW_SPACE registers (Table 20).

Table 18 Fade Position Register 1 05h: Bank A (FADE_POS1)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	1	1	1	1	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value
Reserved	$7,6,5,4$	R	Rescription 1
		W	No effect
Row Number of the Screen	$3,2,1,0$	R/W	OSD Row number for fading

Bits 3, 2, 1, and 0 define the boundary row for the fade area. The portion of the OSD above or below the row number fades up or down, as set in Fade Direction, ROW_SPACE (6).

The fade starts at the scan line set in FADE_POS2 $(4,3,2,1,0)$ within the row number set in FADE_POS1 ($3,2,1,0$).

Table 19 Fade Position Register 2 06h: Bank A (FADE_POS2)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	1	1	1	0	0	0	0	0

Note: $\mathrm{R}=$ Read $\mathrm{W}=\mathrm{W}$ rite $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	$7,6,5$	R		Return 1 No effect
Scan Line Number	$4,3,2,1,0$	R/W		Scan Line Number of a row

5.5 Inter-Row Spacing

Inter-Row Spacing can be from 0 to 15 horizontal scan line (HL). A setting of 0 HL is called Continuous Row Display. A horizontal interrupt is generated at the start of each row. Software must program the spacing between the current row and the next row during the current horizontal interrrupt.

The time required to process a row must not exceed the display time of the row. Refer to Table 20.

Table 20 Row Space Register 04h: BankA (ROW_SPACE)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Fade On/Off	7	R/W	0	Fade feature disabled Fade feature enabled
Fade Direction	6	R/W	0	Fade area below the defined fade position Fade area above the defined fade position
Halftone Effect Output Delay On P20	5,4	R/W		Works with bit 7 in MC_Reg
Inter-Row Space	$3,2,1,0$	R/W		Inter row spacing

Bit 7, Fade ON/OFF, disables or enables the fade effect.
Bit 6, Fade Direction, controls the direction of the fade effect. When Fade
Direction is set to 0 , the bottom of the TV screen is faded out. Fading occurs beginning with the row number set in FADE_POS1 ($3,2,1,0$) and the scan line number set in FADE_POS2 $(4,3,2,1,0)$. When the Fade Direction is set to 1 , the top of the screen is faded out.

Bits 5 and 4, Halftone Effect Delay on P20, work with MC_REG (7).
Bits 3, 2, 1, and 0, Inter-Row Space, specify the number of HL to add between displayed rows.

5.6 Character Generation

Character generation provides the content of the OSD. The Z90255 supports 14pixel (horizontal) by 18-pixel (vertical) character display with 512 character sets.

Character Cell Resolution

Characters are mapped pixel-by-pixel in Character Generation Read-Only Memory (CGROM).

Figure 12 Character Pixel map in CGROM

Figure 12 is an example of a 512 character set where the character pixel map represents the first and last characters. It is 14 pixels horizontal and 18 pixels vertical. Each row in the map is 7 bits long, half the width of the character scan line.

Even numbered rows in the map correspond to pixels on the left half of the character scan line; odd rows in the map correspond to pixels on the right half of the character scan line.

The Hex Add column is a hexadecimal number that serves as an address for the group of pixels from the starting point of the scan line. Addressing begins at 0000 h and ends at 0023 h for the first character. There is an address gap between characters. The starting address for the second character is 0040 h .
Each bit in the map sets the foreground/background designation of the corresponding pixel:

> 0 background pixel
> 1 foreground pixel

The patterns formed by the bits comprise the characters that are displayed when the scan line is output to the screen.

Each of these character pixel maps is one character; 512 characters can be mapped.

Several characters can be combined to form a large icon. Figures 13 is an example of a large icon. Each block marked by the darker grid lines is 14×18 pixels, one character.

Figure 13 Example of a Multiple Character Icon

5.7 Character Size and Smoothing Effect

The Z90255 supports four character sizes: 1X, 2X, double width, and double height. The 2 X size duplicates each pixel horizontally and vertically to reach double size. Figure 14 shows a character at 1X, 2X without smoothing, and 2X with smoothing.

Smoothing means enhancing a character to improve its appearance. This effect can be applied to 2 X and double width characters, and is enabled and disabled in DISP_ATTR: 03h: Bank A (4).

Check the effect of smoothing on 2 X and double width characters before finalizing OSD programming.

Figure 14 Smoothing Effect on 2X Character Size

5.8 Fringing Effect

Fringing means surrounding a character with a different color than the foreground and background colors. Refer back to Figure 8. Fringing adds visual appeal to the character presentation.
The fringing effect is enabled or disabled in DISP_ATTR: 03h: Bank A (5). The fringing color is set in INT_ST: 07h: Bank C (7) to either 0, the character background color, or to 1, a RGB color specified in INT_ST: 07h: Bank C $(6,5,4)$. The eight RGB colors available for fringing and background are defined in Table 21.

The fringing feature is NOT available in Progressive Mode.
Table 21 RGB Colors

R	G	B	Color
0	0	0	Black
0	0	1	Blue
0	1	0	Green
0	1	1	Cyan
1	0	0	Red
1	0	1	Magenta
1	1	0	Yellow
1	1	1	White

5.9 Display Attribute Control

Display Attribute Control determines screen display characteristics for the entire screen, not just the OSD area. The background that covers the entire screen is called the Master Background. Its color setting can be used to generate a blue screen when the TV signal is not present. Table 22 shows the Display Attribute Register.

Table 22 Display Attribute Register 03h: Bank A (DISP_ATTR)

Bit	$\mathbf{7}$		$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
R/W								
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Character Display	7	R/W	0 1	Disable Character Display Enable Character Display
Master Background Enable	6	R/W	0 1	No Master Background Incoming video is swapped with the background color
Fringe Effect Enable	5	R/W	0 1	Fringe Effect is Disabled Fringe Effect is Enabled
Smoothing Effect Enable	4	R/W	0 1	Smoothing enabled Smoothing disabled
RGB Polarity	3	R/W	0	Positive Negative
Red Master Background	2	R/W		See Table 21
Green Master Background	1	R/W		See Table 21
Blue Master Background	0	R/W		See Table 21

Bit 7, Display Enable, disables or enables using foreground and background color, and therefore character display. When this bit is set to 0 , effective space characters are sourced from the video RAM. Background On/Off and row background color are programmed independently. When bit 7 is set to 1 , the actual video RAM characters are displayed.

Bit 6, Master Background Enable, disables or enables using a background color for the entire screen instead of the broadcast signal. If this bit is set to 1 , the incoming video signal blanks and the screen background displays color according to the background color bits. The color is specified in bits $2,1,0$. If bit 6 is set to 0 , the incoming video signal is displayed.

Bit 5, Fringe Enable, sets the fringe effect ON or OFF.
Bit 4, Smoothing Effect Enable, sets smoothing ON or OFF, and is available for 2 X and double width characters.
Bit 3, RGB Polarity, sets color polarity of OSD color output signals to positive or negative.
Bits 2, 1, and 0 form the color for the master background. The eight possible colors are the same ones listed in Table 21.

Video Refresh RAM Access

The Z90255 supports 12-bit character data. Nine bits, P8 and P7 through P0, contain character code. Three additional bits, c2 through c0, contain color palette information. See Figures 15.

Color Palette Selection bits serve as a 3-bit Color Index to the color palette lookup table. When software writes Character Byte data (7-0) into VRAM, it also takes the data in the color index register and writes the corresponding Color Palette Selection Bits ($10-8$) and the most significant bit of character data (P8).

When updating 3-bit color index data, the most significant bit of the character data must also be updated. Table 20 contains VRAM structure and memory mapping.

Figure 15 VRAM Data Path for 512 Character Set

Z90255 ROM and Z90251 OTP 32 KB Television Controller with OSD

Table 23 VRAM Structure and Memory Map

Character Code Data Bit[11] , Character Color C[2:0]

Row0/Column 0 D[11:8]	FE01h
Row0/Column 1 through 22 D[11:8]	FE02h
	FE17h
Row 0/Column 23 D[11:8]	FE18h

Row1/Column 0 D[11:8]	FE21h
Row1/Column 1 through 22 D[11:8]	FE22h
Row 1/Column 23 D[11:8]	FE37h
	FE38h

Row 4 D[11:8]	FE81h
	FE98h

Row 5 D[11:8]	FEA1h FEB8h

Character Code Data Bit[7:0]

Row 0 Attribute(ROW0_ATTR)	FC00h
Row 0/Column 0 D[7:0]	FC01h
Row 0/Column 1 through 22 D[7:0]	FC02h
	FC17h
Row 0/Column 23 D[7:0]	FC18h

Row 1 Attribute(ROW1_ATTR)	FC20h
Row 1/Column 0 D[7:0]	FC21h
Row 1/Column 1 through 22 D[7:0]	FC22h
	FC37h
Row 1/Column 23 D[7:0]	FC38h

Row 2 Video RAM buffer	FC40h
	FC41h
	FC58h

Row 3 Video RAM buffer	FC60h
	FC61h
	FC78h

Row 4 Video RAM buffer	FC80h FC81h FC98h

Row 5 Video RAM buffer	FCA0h FCA1h FCB8

Table 23 VRAM Structure and Memory Map (Continued)

Character Code Data Bit[7:0]

Row 6 D[11:8]	FEC1h
	FED8h

Row 6 Video RAM buffer	FCCOh FCC1h FCD8h

Row 7 D[11:8]	FEE1h FEF8h

Row 7 Video RAM buffer	FCE0h FCE1h FCF8h

Row 8 D[11:8]	FF01h FF18h

Row 8 Video RAM buffer	FD00h FD01h FD18h

Row 9 D[11:8]	FF21h
	FF38h

Row 9 Video RAM buffer	FD20h FD21h FD38h

Hardware processes the entire 12 bits of data at the same time it processes the OSD.

The Color Palette Selection Bits (10-8) are decoded as described in Table 24.

Table 24 Color Palette Selection Bits

Color Index, Bit [10:8]	Function
000	Selects background/foreground color in row attribute
001	Selects color palette 0 in the color look-up table
010	Selects color palette 1 in the color look-up table
011	Selects color palette 2 in the color look-up table
100	Selects color palette 3 in the color look-up table
101	Selects color palette 4 in the color look-up table
110	Selects color palette 5 in the color look-up table
111	Selects color palette 6 in the color look-up table

There are eight different foreground/background palettes, including the 000 h case that reads the color(s) from the ROW_Attr register mapped into video RAM.

Color Table and Color Index Register

Table 25 lists the bits in the Color Index Register.

Table 25 Color Index Register 09h: Bank C (CLR_IDX)

Bit	$\mathbf{7}$	$\mathbf{6}$		$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
R/W	R / W							
Reset	1	1	1	1	0	0	0	0

Note: R = Read W = Write X = Indeterminate

When the Color Index has a value other than 000 h , the value indicates the number of the color palette that contains the RGB foreground and background colors to be displayed. In the Color Palette register descriptions below, the following notation is used:

R_{nf}	R - Red,	n - Palette Number,	f-Foreground
R_{nb}	R - Red,	n - Palette Number,	b - Background
G_{nf}	G - Green,	n - Palette Number,	f - Foreground
G_{nb}	G - Green,	n - Palette Number,	b-Background
B_{nf}	B - Blue,	n - Palette Number,	f-Foreground
B_{nb}	B - Blue,	n - Palette Number,	b-Background

The registers for color palettes 0 through 6 are listed in Table 26 through Table 32.

Table 26 Color Palette 0 Register 09h: Bank A (CLR_P0)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	1	1	0	0	0	0	0	0

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R	Return 1	
		W	No Effect	
Color Palette 0	$5,4,3,2,1,0$	R / W	Programming $\mathrm{R}_{0 \mathrm{f}}, \mathrm{G}_{0 f}, \mathrm{~B}_{0 f}, \mathrm{R}_{0 \mathrm{~b}}, \mathrm{G}_{0 \mathrm{~b}}, \mathrm{~B}_{0 \mathrm{~b}}$	

Table 27 Color Palette 1 Register 0Ah: Bank A (CLR_P1)

Bit	$\mathbf{7}$		$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
R/W								
Reset	1	1	0	0	0	0	0	0

Note: $\mathrm{R}=$ Read $\mathrm{W}=\mathrm{W}$ rite $\mathrm{X}=$ Indeterminate

| Bit/ | Bit
 Position | R/W | Value |
| :--- | :--- | :---: | :--- | Description | Field | 7,6 | R | Return 1 |
| :--- | :--- | :--- | :--- |
| Reserved | | W | No Effect |
| Color Palette 1 | $5,4,3,2,1,0$ | R/W | Programming $R_{1 f}, \mathrm{G}_{1 \mathrm{f}}, \mathrm{B}_{1 \mathrm{f}}, \mathrm{R}_{1 \mathrm{~b}}, \mathrm{G}_{1 \mathrm{~b}}, \mathrm{~B}_{1 \mathrm{~b}}$ |

Table 28 Color Palette 2 Register 0Bh: Bank A (CLR_P2)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	1	1	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

| Bit/ $/$
 Field | Bit
 Position | R/W | Value |
| :--- | :--- | :---: | :--- | Description | Reserved |
| :--- |

Table 29 Color Palette 3 Register OCh: Bank A (CLR_P3)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	1	1	0	0	0	0	0	0

Note: $\mathrm{R}=$ Read $\mathrm{W}=\mathrm{W}$ rite $\mathrm{X}=$ Indeterminate

Table 30 Color Palette 4 Register ODh: Bank A (CLR_P4)

Bit	$\mathbf{7}$		$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	1	1	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R	Return 1	
		W	No Effect	
Color Palette 4	$5,4,3,2,1,0$	R/W	Programming $R_{4 f}, G_{4 f}, B_{4 f}, R_{4 b}, G_{4 b}, B_{4 b}$	

Table 31 Color Palette 5 Register 0Eh: Bank A (CLR_P5)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	1	1	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Table 32 Color Palette 6 Register 0Fh: Bank A (CLR_P6)

Bit	7	6	5	4	3	2	1	0
R/W								
Reset	1	1	0	0	0	0	0	0

Note: R = Read W = Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$		Return 1 No Effect
Color Palette 6	5,4,3,2,1,0	R/W		Programming $\mathrm{R}_{6 f}, \mathrm{G}_{6 f}, \mathrm{~B}_{6 f}, \mathrm{R}_{6 \mathrm{~b}}, \mathrm{G}_{6 b}, \mathrm{~B}_{6 b}$

Row Attribute Register

The Row Attribute Register (Table 33) is mapped to VRAM, as shown in Table 20. This register controls row background and foreground display. If the Color Index is set to 000 h , the display color is read from the Row Attribute Register.

Table 33 Row Attribute Register (ROW_ATTR)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	x							

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

| Bit/
 Field | Bit
 Position | R/W | Value | Description |
| :--- | :--- | :---: | :---: | :--- | | Row Foreground
 Enable | 7 | R/W | 0
 1 | Row Foreground Color displayed
 Row Foreground color disabled |
| :--- | :--- | :--- | :--- | :--- |
| Row Foreground
 Color | $6,5,4$ | R/W | | Defines the Character Color R, G, B,
 respectively |
| Row Background
 Enable | 3 | R/W | 0
 1 | Row Background Color disabled
 Row Background color displayed |
| Row Background
 Color | $2,1,0$ | R/W | Defines the Row Background Color R,
 G, B, respectively | |

5.10 HV Interrupt Processing

An interrupt is issued at the beginning of a row and at the leading edge of the $\mathrm{V}_{\text {SYNC }}$ signal. The leading edge of the first $\mathrm{H}_{\text {SYNC }}$ of a row constitutes the beginning of a row. The Z90255 software tracks this cycle as two recurring events, the Horizontal ($\mathrm{H}_{\text {SYNC }}$) Interrupt and the Vertical ($\mathrm{V}_{\text {SYNC }}$) Interrupt.

A $\mathrm{V}_{\text {SYNC }}$ interrupt marks the time for displaying a new field of a TV frame.
Displaying subsequent rows coincides with the issuance of the HSYNC interrupt. The interrupts mark the time when displaying a row or start of a field is to occur.

Each text row is comprised of 18 scan lines. Each scan line takes 63.5μ s to be displayed. So, $1143 \mu \mathrm{~s}$ is the amount of time available to change programming for the next row. Double-size and double-height characters span 36 scan lines,

allowing 2286μ s to program the next row. Additional programming time is available with inter-row spacing. VRAM is updated during that time.
If the program has too much to display, black lines appear at the top of the screen.
The HV Interrupt Status Register (Table 34) keeps track of the type of interrupt issued, horizontal or vertical.

Table 34 HV Interrupt Status Register 07h: Bank C (INT_ST)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Fringe Color Selection	7	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Select Character Background Color Select Fringe Color RGB*
Fringe Color	6, 5, 4	R/W		Defines Fringe Color RGB
Palette Mode	3	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Normal Mode Color Palette Mode
Horizontal Interrupt Enable	2	R/W	1	No Horizontal Interrupt Enable Horizontal Interrupt
Vertical Interrupt	1	R W	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	No Vertical Interrupt Vertical Interrupt No Effect Reset Vertical Interrupt Flag
Horizontal Interrupt	0	R W	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	No Horizontal Interrupt Horizontal Interrupt No Effect Reset Horizontal Interrupt Flag

Note: The fringing feature is not available in Progressive Mode.
Bit 7, Fringe Color Selection, sets the fringe color to the background color or to a Red, Green, and Blue color specified in bits 6,5,4.

Bit 3, Palette Mode, sets color to Normal or VRAM Mode. When the value is 0 (Normal Mode), the color attribute of a row is controlled by values in the ROW_ATTR register which is mapped in VRAM, but the Color Palette Selection Bits
are ignored. When the Palette Mode value is 1, the Color Palette Selection Bits are used, unless they are set to 0s. In that case, the values in the ROW_ATTR register are used.

Bit 2, Horizontal Interrupt Enable, disables or enables the horizontal (HSYNC) interrupt.

Bit 1, Vertical Interrupt, has different meanings depending on its Read and Write status. In Read State, a value of 0 indicates that a vertical interrupt was not issued; a value of 1 indicates that a vertical interrupt was issued. In Write State, a value of 0 has no effect; a value of 1 resets the vertical interrupt flag.

Bit 0, Horizontal Interrupt, has different meanings depending on its status. In Read State, a value of 0 indicates that a horizontal interrupt was not issued; a value of 1 indicates that a horizontal interrupt was issued. In Write State, a value of 0 has no effect; a value of 1 resets the horizontal interrupt flag.

When an interrupt is issued while another interrupt is processing, the last-issued interrupt is pended. The interrupt-flag bit which is in service (the interrupt issued first) must be cleared or serviced before the pended interrupt can be processed (see SNDCLR (6)).

52

$\mathbf{H}_{\text {SYNC }}$ and $\mathbf{V}_{\text {SYNC }}$ Requirements

$H_{\text {SYNC }}$ and $V_{\text {SYNC }}$ must meet all TV broadcasting specifications. The minimum width of $V_{\text {SYNC }}$ must conform to the specification in Figure 16.

Figure $16 \mathrm{H}_{\text {SYNC }}$ and $\mathrm{V}_{\text {SYNC }}$ Specification

The rising edge of $\mathrm{V}_{\text {SYNC }}$ must not coincide with the rising edge of $\mathrm{H}_{\text {SYNC }}$ to be sure that the controller recognizes both rising edges.

$6 \quad$ Z90255 I2C Master Interface

The Z90255 has a hardware module which supports the $I^{2} \mathrm{C}$ Master interface. Bus arbitration and Masters' arbitration logic is NOT implemented; in other words, the Z90255 is designed for a Single Master application.
The $I^{2} \mathrm{C}$ interface can be configured to run at four different transfer speeds defined by bits $(1,0)$ in the $I^{2} C$ Control Register ($\left.I^{2} C_{-} C N T L: ~ O C h, ~ B a n k: C\right)$.

To circumvent possible problems on both DATA and SCLK lines, digital filters with time constant equal to $3 \mathrm{~T}_{\text {sclk }}$ are implemented on all inputs of the $\mathrm{I}^{2} \mathrm{C}$ bus interface. The Z90255 has two separate $I^{2} \mathrm{C}$ busses which share the same $\mathrm{I}^{2} \mathrm{C}$ state machine.
The $I^{2} \mathrm{C}$ module is enabled by setting bit (2) in the I2C_CNTL register to 1 (see Figure 17). This bit blocks out $I^{2} \mathrm{C}$ logic if it is set to 0 . To prevent switching the $\mathrm{I}^{2} \mathrm{C}$ bus during activation, bits $(7,6)$ of the Port 2 Data Register for $I^{2} \mathrm{C}$ selection 1 (bits $(5,4)$ of Port 2 Data Register for $I^{2} \mathrm{C}$ selection 0) should be set to 1 before the $\mathrm{I}^{2} \mathrm{C}$ module is enabled.
Notes: 1 When the $I^{2} \mathrm{C}$ module is enabled, pins used as $\mathrm{I}^{2} \mathrm{C}$ must be configured as output in the Port 2 Mode Register (P2M: $F 6 h$). If $P 27 / P 26$ or $P 25 / P 24$ are used as $I^{2} C$ pins, then these pins are automatically set to open-drain mode.
2 Port 2 must be configured in standard drive mode (PCON: 00 h : Bank F) when the $\mathrm{I}^{2} \mathrm{C}$ interface is active.

Figure 17 Bidirectional Port Pin Pad Multiplexed with I2C Port

Table 35 Master $I^{2} \mathbf{C}$ Control Register $0 \mathbf{C h}$: Bank C ($\left.\mathbf{I}^{2} \mathbf{C}_{-} C N T L\right)$

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	x	x	0	0	x	x	x	x

Note: R = Read $W=$ Write $X=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Clock Selection	7	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	1X SCLK for $I^{2} \mathrm{C}$ and ADC 0.5 X SCLK for $\mathrm{I}^{2} \mathrm{C}$ and ADC
Reserved	6	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$		Return 1 No Effect
$\mathrm{I}^{2} \mathrm{C}$ Selection 1	5	R/W	0	P26 selection - POR P27 selection - POR SCLK1 selection on P26 SDATA1 selection on P27
$1^{2} \mathrm{C}$ Selection 0	4	R/W	0	P24 selection - POR P25 selection - POR SCLK 0 selection on P24 SDATA0 selection on P25
Reserved	3	R/W		Must be 0
$1^{2} \mathrm{C}$ Enable	2	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Disable ${ }^{2} \mathrm{C}$ Interface Enable $\mathrm{I}^{2} \mathrm{C}$ Interface
$\mathrm{I}^{2} \mathrm{C}$ Speed (for 6-MHz XTAL)	1,0	R/W	$\begin{aligned} & 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	10 KHz 50 KHz 100 KHz 330 KHz

If bits 4 and 5 both equal 1 , then the $I^{2} \mathrm{C}$ Selection 0 prevails.

Controlling the $\mathrm{I}^{2} \mathrm{C}$ Interface

Software controls the $I^{2} \mathrm{C}$ module by writing appropriate commands into the $\mathrm{I}^{2} \mathrm{C}$ Command Register ($\mathrm{I}^{2}{ }^{2}$ _CMD : 0Bh: 0Ch). See Table 36.

Table 36 Master $I^{2} C$ Command Register 0Bh: Bank C ($\left.I^{2} C_{-} C M D\right)$

Bit	7	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	x	0						

Note: $\mathrm{R}=$ Read $\mathrm{W}=\mathrm{W}$ rite $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$		Return 1 No Effect
$1^{2} \mathrm{C}$ Command	6, 5, 4	$\begin{aligned} & R \\ & \mathrm{~W} \end{aligned}$		Return 1 See Table 35
Reserved	3, 2	$\begin{aligned} & R \\ & W \end{aligned}$		Return 1 No Effect
Reset	1	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Return 1 No Effect Reset $I^{2} \mathrm{C}$ interface
Busy	0	R W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Idle Busy No Effect

Software puts data to be transmitted into $I^{2} \mathrm{C}$ Data Register (Table 37) and reads received data from it. Bit 7 in this register is used as an acknowledge bit when receiving data from a Slave. Bit 0 of I^{2} C_DATA register contains an acknowledgment bit generated by the Slave. Refer to Table 38.

Table 37 Master I ${ }^{2}$ C Data Register 0Ah: Bank C ($I^{2} C_{-}$DATA)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write $\mathrm{X}=$ Indeterminate

Bit/	Bit							
Field	Position	R/W	Value	Description	Data	$7,6,5,4,3,2,1,0$	R	Received data
:---	:---	:---	:---					
		W	Data to be sent					

Table 38 Master $\mathrm{I}^{2} \mathrm{C}$ Bus Interface Commands

Command	Description
000	Send a Start bit followed by the address byte specified in the $\mathrm{I}^{2} \mathrm{C}$ data register, then fetch the acknowledgment bit in I^{2} C_DATA (0). Used to initialize communication. Nine SCLK cycles are generated.
001	Send the byte of data specified in the $\mathrm{I}^{2} \mathrm{C}$ data register, then fetch an acknowledgment bit stored in bit 0 . Used in a Write frame. Nine SCLK cycles are generated.
010	Send bit 7 of ${ }^{2}$ C_DATA register as an acknowledgment bit (ACK: ($0 X X X X X X X)$, NAK: ($1 \times X X X X X X$)), then receive a data byte. Used in a Read frame when the next data byte is expected. Nine SCLK cycles are generated. Received data is read in the $I^{2} \mathrm{C}$ data register.
011	Send bit 7 of ${ }^{2}$ C_DATA register as an acknowledgment bit (ACK: ($0 X X X X X X X$), NAK: (1XXXXXXX). Used in a Read frame. One SCLK cycle is generated.
10X	Null operation. Must be used with a Reset bit.
110	Received one data byte. Used in a Read frame to receive the first data byte after an address byte is transmitted. Eight SCLK cycles are generated.
111	Send Stop bit. One SCLK cycle is generated.

7 Input/Output Ports

There are 20 input/output (I/O) ports. In addition, seven pulse-width modulators (PWM), PWM1 through PWM6, and PWM11, can be configured as regular output ports. The maximum number of I/O ports available is 27 . Please refer to the port bank and number carefully for exact addressing and access. See Table 39 through Table 49.

Table 39 Port configuration Register 00h: Bank F (PCON)

Bit	7	6	5	4	3	2	1	0
R/W								
Reset	1	1	1	1	1	1	1	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Low EMI Z8 Oscillator	7	R/W	0	Low EMI Noise Standard-POR
Low EMI Port 6	6	R/W	0	Low EMI Noise Standard-POR
Low EMI Port 2	5	R/W	0	Low EMI Noise Standard-POR
Reserved	4,3	R		Return 1 Write 1s
Low EMI Port 4 and	2	R/W	0	Low EMI Noise SWMs
			1	Standard-POR

Ports 2, 4, and 6 can be set for Standard or Low EMI. The Low EMI option can also be selected for the microcontroller oscillator or OSD oscillator. Standard (1) is the High setting. Following Power-On Reset, Bits 1, 2, 5, 6, 7 each has a value of 1 .

Table 40 Port 2 Mode Register F6h: P2M

Bit	7	6	5	4	3	2	1	0
R/W	W	W	W	W	W	W	W	W
Reset	1	1	1	1	1	1	1	1

Note: R = Read W = Write X = Indeterminate

Bit// Field	Bit Position	R/W	Value	Description

When P27/P26 or P25/P24 are used as $\mathrm{I}^{2} \mathrm{C}$ pins, then these pins are automatically set to open-drain mode.

Table 41 Port 2 Data Register 02h: P2

Bit	7	6	5	4	3	2	1	0
R/W								
Reset	x	x	x	x	x	x	x	x

Note: $\mathrm{R}=$ Read $\mathrm{W}=\mathrm{W}$ rite $\mathrm{X}=$ Indeterminate

| Bit/
 Field | Bit
 Position | R/W | Value |
| :--- | :--- | :---: | :--- | Description | P27 | 7 | R |
| :--- | :--- | :--- |
| W | Data input on P27
 Data Output on P27 | |
| P26 | 6 | R |
| W | Data input on P26 | |
| | | Data Output on P26 |
| P25 | 5 | W |

7.1 Port 4 Pin-Out Selection Register

Bits 5, 4, 3, and 2 control the configuration of multiplexed pins 20, 19, 18, and 17. If a bit is set to 0 , the pin functions as a PWM output port. If a bit is set to 1 , the pin functions as a programmable regular input/output port. See Table 42. This value is the default following a Power-On Reset.

Table 42 Port 4 Pin-Out Selection Register 08h: Bank C (PIN_SLT)

Bit			$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
R/W								
Reset	x	x	1	1	1	1	x	x

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description						
Reserved	7,6	R		Return 1						
		W		No Effect						
P47/PWM10	5	R/W	0	Selects PWM10						
			1	Selects P47 - POR		P46/PWM9	4	R/W	0	Selects PWM9
:---	:---	:---:	:---	:---						
			1	Selects P46 - POR						
P45/PWM8	3	R/W	0	Selects PWM8						
			1	Selects P45 - POR						
P44/PWM7	2	R/W	0	Selects PWM7						
			1	Selects P44 - POR						
Reserved	1,0	R		Return 1						
		W		No Effect						

Table 43 Port 4 Data Register 05h: Bank C (PRT4_DTA)

Bit	7	6	5	4	3	2	1	0
R/W								
Reset	x	x	x	x	x	x	x	x
Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate								
Bit/ Field	Bit Position	R/W	Value	Description				
P47	7	$\begin{aligned} & R \\ & W \end{aligned}$		Data input on P47 Data Output on P47				
P46	6	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$		Data input on P46 Data Output on P46				
P45	5	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$		Data input on P45 Data Output on P45				
P44	4	$\begin{aligned} & R \\ & W \end{aligned}$		Data input on P44 Data Output on P44				
P43	3	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$		Data input on P43 Data Output on P43				

61

Bit/ Field	Bit Position	R/W	Value	Description
P42	2	R	Data input on P42	
		W	Data Output on P42	
P41	1	R	Data input on P41	
		W	Data Output on P41	
P40	0	R	Data input on P40	
		W	Data Output on P40	

Table 44 Port 4 Direction Control Register 06h: Bank C (PRT4_DRT)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	1	1	1	1	1	1	1	1

Note: R = Read W = Write X = Indeterminate

Bit// Field	Bit Position	R/W	Value	Description

62

7.2 Port 5 Pin-Out Selection Register

Table 45 PWM Mode Register ODh: Bank B (P_MODE)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W	R / W							
Reset	0	1	1	1	1	1	1	1

Note: R = Read W = Write $\mathrm{X}=$ Indeterminate
Table 46 Port 5 Data Register 0Ch: Bank B (PRT5_DTA)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x							

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

| Bit/
 Field | Bit
 Position | R/W | Value |
| :--- | :--- | :---: | :--- | Description | Reserved | 7 | R |
| :--- | :--- | :--- |
| W | | Return 1
 No Effect |
| P56 | 6 | R |
| W | Data input on P56 | |
| | | R |
| Data Output on P56 | | |

63

Table 47 Port 5 Direction Control Register 0Eh: Bank B (PRT5_DRT)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x	1	1	1	1	1	1	1

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$		Return 1 No Effect
P56 I/O Definition	6	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Defines P56 as Output Defines P56 as Input-POR
P55 I/O Definition	5	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Defines P55 as Output Defines P55 as Input-POR
P54 I/O Definition	4	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Defines P54 as Output Defines P54 as Input-POR
P53 I/O Definition	3	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Defines P53 as Output Defines P53 as Input-POR
P52 I/O Definition	2	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Defines P52 as Output Defines P52 as Input-POR
P51 I/O Definition	1	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Defines P51 as Output Defines P51 as Input-POR
P50 I/O Definition	0	R/W	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Defines P50 as Output Defines P50 as Input-POR

7.3 Port 6 Data Register

Table 48 Port 6 Data Register 03h: Bank F (PRT6_DTA)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	1	1	1	1	1	1	1	1

Note: R = Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6, 5, 4	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$		Return Unknown No Effect
P63	3	$\begin{aligned} & R \\ & \mathrm{~W} \end{aligned}$		Data input on P63 Data Output on P63
P62	2	$\begin{aligned} & R \\ & \mathrm{~W} \end{aligned}$		Data input on P62 Data Output on P62
P61	1	$\begin{aligned} & R \\ & W \end{aligned}$		Data input on P61 Data Output on P61
P60	0	$\begin{aligned} & R \\ & \mathrm{~W} \end{aligned}$		Data input on P60 Data Output on P60

Table 49 Port 6 Direction Control Register 02h: Bank F (PRT6_DRT)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	1	1	1	1	1	1	1	1

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
P63	7	R/W	0	Open-Drain Output Push-Pull Output - POR
P62	6	R/W	0	Open-Drain Output Push-Pull Output - POR
P61	5	R/W	0	Open-Drain Output
			1	Push-Pull Output - POR
P60	4	R/W	0	Open-Drain Output
			1	Push-Pull Output - POR
P63 I/O	3	R/W	0	Data Output
definition			1	Data Input - POR

Bit/ Field	Bit Position	R/W	Value	Description
P62 I/O	2	R/W	0	Data Output
definition				

8 Infrared Interface

The Z90255 supports the Infrared (IR) Remote Control interface with a minimum of software overhead.

Two bytes of data are received through the Infrared (IR) Interface. The lower byte, bits 7-0, is stored in IR Capture Register 0 . The upper byte, bits 15-8, is stored in IR Capture Register 1.

When an IR interrupt occurs, the IR capture registers contain the amount of time passed from the previous IR interrupt if bit 0 in the TCRO is set to 0 . If bit 0 is set to 1 , the IR capture registers contain the amount of time passed from the last overflow of the IR capture counter. The IR interrupt flags are reset by the IR interrupt service routine software. Refer to Table 50 through Table 53.

Timer Control Register 0

Rising edge (falling edge) interrupt is preserved even when a falling edge (rising edge) interrupt occurs. But it is overridden by a second rising edge (falling edge) if the second one occurs before the first rising edge (falling edge) is serviced. Preservation of the interrupt means that it generates the hardware interrupt after the first interrupt is serviced when two different (rising edge/falling edge) interrupts are already ON.

Table 50 Timer Control Register 001 h : Bank C (TCRO)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x							

Note: R = Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	$7,6,5,4,3$	R		Return 0
		W		No Effect

During the interrupt service routine, software must read the contents of Timer Control Register 0 . Then it checks which bit is set to 1 , indicating the type of edge which generated the interrupt.

Table 51 Timer Control Register 102 h : Bank C (TCR1)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	x	1	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7	R		Return 0
		W		No Effect
CAP Halt	6	R/W	0	Capture Timer Running
			1	Capture Timer Halted
CAP Edge	5,4	R/W	00	No capture
			01	Capture on Rising Edge Only
			10	Capture on Falling Edge Only
			11	Capture on Both Edges

Bit/ Field	Bit Position	R/W	Value	Description
CAP Glitch	3,2	R/W	00	Glitch Filter Disabled
			01	<2 SCLK Filtered Out
			10	<8 SCLK Filtered Out
		11	<16SCLK Filtered Out	
CAP Speed	1,0	R/W	00	SCLK/32
			01	SCLK/4
			10	SCLK/8
			11	SCLK/16

Bit 6 resets the IR Capture Timer. To stop the timer, set this bit to 1 . To start the timer, set the bit to 0 .

Bits 5 and 4 set the IR Capture Edge. The rising edge, the falling edge, or both edges of an input signal can be used as the source of IR interrupts. If both edges are set as interrupt sources, Timer Control Register 0 (TCR0: 01h: Bank C) must be read and checked by the Interrupt Service Routine (ISR) in order to identify which edge was captured.

Bits 3 and 2 contain a time constant used in a digital filter to process the IR Capture module in order to prevent errors.

Bits 1 and 0 set the IR Capture Counter to one of four different speeds.
The IR capture counter is driven by the clock generated by dividing the system clock in the Z90255.

Table 52 IR Capture Register 0 03h: Bank C (IR_CPO)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate								
Bit/ Field	Bit Position	R / W	Value Description					
IR Capture Register 0	$7,6,5,4,3,2,1,0$	R	Reading Low Byte of IR Capture Data					

Table 53 IR Capture Register 1 04h: Bank C (IR_CP1)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Note: R = Read W = Write $\mathrm{X}=$ Indeterminate

| Bit/
 Field | Bit
 Position | R/W | Value |
| :--- | :--- | :---: | :---: | | Description |
| :--- |

9 Pulse Width Modulators

The Z90255 has 11 Pulse Width Modulator channels. PWM1 through PwM10 have 6 -bit resolution and are typically used for audio and video level control. PWM11 has 14-bit resolution and is typically used for voltage synthesis tuning. PWM11 uses two registers to accommodate its 14-bit resolution. PWM6 can be configured as either 14-bit or 6-bit.

9.1 PWM Mode Register

PWM Mode Register (Table 54) controls the setting of multiplexed pins 1-7. These pins can be configured to function as PWM output ports or regular output ports. If a bit is reset to 0 , the pin outputs the PWM signal. If a bit is set to 1 , the pin is a regular output port.

Table 54 PWM Mode Register 0Dh: Bank B (P_MODE)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	0	1	1	1	1	1	1	1

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

| Bit/
 Field | Bit
 Position | R/W | Value | Description |
| :--- | :--- | :--- | :---: | :--- | | 6-bit/14-bit PWM6 | 7 | R/W | 0 | Select 6-bit (POR) |
| :--- | :--- | :--- | :--- | :--- |
| | | | 1 | Select 14-bit |

Note: PWM6 can be either 6- or 14-bit depending on the bit status in bit7.

Port 4 Pin-Out Selection Register

Bits 5, 4, 3, and 2 of the Port 4 Pin-Out Selection Register (Table 55) control the configuration of multiplexed pins $20,19,18$, and 17 . If a bit is reset to 0 , the pin functions as a PWM output port. This value is the default following a Power-On Reset. If a bit is set to 1 , the pin functions as a programmable regular input/output port.

Table 55 Port 4 Pin-Out Selection Register 08h: Bank C (PIN_SLT)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	x	x	1	1	1	1	x	x

Note: R = Read W = Write $\mathrm{X}=$ Indeterminate

| Bit/
 Field | Bit
 Position | R/W | Value | Description |
| :--- | :--- | :---: | :--- | :--- | | Reserved | 7,6 | R | Return 1
 No effect | |
| :--- | :--- | :---: | :--- | :--- |
| P47/ | 5 | R/W | 0 | Select PWM 10 |
| PWM 10 | | | 1 | Select P47 - POR |

9.2 PWM1 through PWM11

Two data registers (PWM11H and PWM11L) hold the 14-bit PWM11 ratio. If PWM6 is configured to 14-bit, two data registers (PWM6H and PWM6L) hold the 14-bit PWM6 ratio. The upper 7 bits control the width of the distributed pulse. The lower 7 bits distribute the minimum resolution pulse in the various time slots. Using this technique, the pseudo-repetition of frequency is raised up to 128 times faster than ordinary pulse width modulation.
There are 128 time slots which start from time slot 7 Fh to 0 h because a 14-bit binary down counter is used. When the glitch exceeds 127 pulses, the upper 7 bits take precedence and fill 128 pulses of the same width in different locations. Generating the pulse-train output requires the following equation: Time slot (Fts) and one cycle of frequency (F14).

```
Fdp (Distribution pulse frequency)=XTAL/128 (Hz)
Fts (Time slot frequency) = XTAL/128 (Hz)
F14 (a cycle/frequency) = XTAL /16384 (Hz)
```

When the 6-bit data is 00 h , the PWM output is Low. The maximum value is 3 Fh and emits High DC-level output.

A selected PWM cycle/frequency is shown in the following equation:

```
F6 (a cycle/frequency) = XTAL/16/64 (Hz)
```

Figure 18 and Figure 19 illustrate various timing pulses and resultant frequencies for the 6-bit and 14-bit PWMs.

Figure 18 Pulse Width Modulator Timing Diagram, 6 Bit

Figure 19 Pulse Width Modulator Timing Diagram, 14-Bit

The following tables contain data register information for registers PWM1 -PWM11.

Table 56 PWM 1 Data Register 02h: Bank B (PWM1)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x	x	0	0	0	0	0	0

Note: $\mathrm{R}=$ Read $\mathrm{W}=\mathrm{W}$ rite $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7, 6	R		Return to 0
		W		No effect
PWM 1 Value	5,4,3,2,1,0	R/W		

Table 57 PWM 2 Data Register 03h: Bank B (PWM2)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x	x	0	0	0	0	0	0

Note: $\mathrm{R}=$ Read $\mathrm{W}=\mathrm{W}$ rite $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R	Return to 0	
		W	No effect	
PWM 2 Value	$5,4,3,2,1,0$	R/W		

Table 58 PWM 3 Data Register 04h: Bank B (PWM3)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x	x	0	0	0	0	0	0

[^0]| Bit/ $/$
 Field | Bit
 Position | R/W | Value | Description |
| :--- | :--- | :---: | :--- | :--- |
| Reserved | 7,6 | R | | Return to 0 |
| | | W | | No effect |
| PWM 3 Value | $5,4,3,2,1,0$ | R/W | | |

Table 59 PWM 4 Data Register 05h:Bank B (PWM4)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x	x	0	0	0	0	0	0

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R		Return to 0 No effect
PWM 4 Value	$5,4,3,2,1,0$	R/W		

Table 60 PWM 5 Data Register 06h: Bank B (PWM5)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x	x	0	0	0	0	0	0

Note: R = Read W = Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R		Return to 0
PWM 5 Value	$5,4,3,2,1,0$	R/W		

75

Table 61 PWM 6 (6-bit)Data Register 07h: Bank B (PWM6)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x	x	0	0	0	0	0	0

$1 \quad \mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R		Return to 0
		W		No effect
PWM 6 Value	$5,4,3,2,1,0$	R/W		

Table 62 PWM 7 Data Register 08h: Bank B (PWM7)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x	x	0	0	0	0	0	0

Note: R = Read W = Write X = Indeterminate

Bit $/$ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R		Return to 0
		W		No effect
PWM 7 Value	$5,4,3,2,1,0$	R/W		

Table 63 PWM 8 Data Register 09h: Bank B (PWM8)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W	R / W							
Reset	x	x	0	0	0	0	0	0

Bit $/$ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R		Return to 0
		W		No effect
PWM 8 Value	$5,4,3,2,1,0$	R/W		

Table 64 PWM 9 Data Register 0Ah: Bank B (PWM9)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	x	x	0	0	0	0	0	0

Bit/ $/$ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R		Return to 0
		W		No effect
PWM 9 Value	$5,4,3,2,1,0$	R/W		

Table 65 PWM 10 Data Register 0Bh: Bank B (PWM10)

Bit	7	6	5	4	3	2	1	0
R/W								
Reset	x	x	0	0	0	0	0	0
Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate								
Bit/ Field		Bit Position		R/W	Value	Description		
Reserved		7, 6		$\begin{aligned} & \mathrm{R} \\ & \mathrm{~W} \end{aligned}$		Return to 0 No effect		
PWM 10 Value		5,4,3,2,1,0		R/W				

Table 66 PWM 6 (14-bit) High Data Register 08h: Bank F (PWM6H)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	x	x	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R		Return 0
		W		No effect
PWM 6 Bits 13-8	$5,4,3,2,1,0$	R/W		

Table 67 PWM 6 (14-bit) Low Data Register 09h: Bank F (PWM6L)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	0	0	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W	Value	Description
PWM 6 Bits 7-0	$7,6,5,4,3,2,1,0$	R/W		

Table 68 PWM 11 High Data Register 00h: Bank B (PWM11H)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	x	x	0	0	0	0	0	0
Note: $R=$ Read W Write $X=$ Indeterminate								

Bit/ Field	Bit Position	R/W	Value	Description
Reserved	7,6	R		Return 0 No effect
PWM 11 Bits 13-8	$5,4,3,2,1,0$	R/W		

Table 69 PWM 11 Low Data Register 01h: Bank B (PWM11L)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W								
Reset	0	0	0	0	0	0	0	0

Bit/ Field	Bit Position	R/W	Value	Description
PWM 11 Bits 7-0	$7,6,5,4,3,2,1,0$	R/W		

9.3 Digital/Analog Conversion with PWM

The televison OSD controller can generate square waves which have fixed periods but variable duty cycles. If this type of signal passes through an RC integrator, the output is a DC voltage proportional to the pulse width of the square wave. Refer to Figure 20, Cases A and B show fixed voltage samples while Case C shows a varying voltage example.

Figure 20 Analog Signals Generated from PWM Signals

Z90255 ROM and Z90251 OTP
 32 KB Television Controller with OSD

10 Analog-to-Digital Converter

The Z90255 is equipped with a 4-bit flash analog-to-digital converter (ADC) that can be used as either three or four bit configurations. There are four multiplexed analog-input channels. There are two register addresses, one for 3-bit (Table 70) ADC (3ADC_DTA: 00h: Bank C), and one for 4-bit (Table 71)
ADC (4ADC_DTA: 01h: Bank F). Because no default is set, system software must configure the control register for the preferred ADC.

Converted 3 -bit data is available as bits 0,1 , and 2 of the 3 -bit ADC data register.
Converted 4 -bit data is available as bits $0,1,2$, and 3 of the 4 -bit ADC data register.

Figure 21 illustrates four input pins ($\mathrm{P} 60 / \mathrm{ADC} 3, \mathrm{P} 61 / \mathrm{ADC} 2, \mathrm{P} 41 / \mathrm{ADC} 1$, and P62/ADCO) which function as analog-input channels and as digital I/O ports. To support the analog function, the digital ports must be configured as analog through software. Analog/digital selection is controlled by bits 4 and 3 of the 3-bit ADC Data Register, and by bits 5 and 4 of 4-bit ADC Data Register.

- If ADC Input Selection equals $00, \operatorname{ADC} 0$ is selected; this value is the default following POR.
- If ADC Input Selection equals 01 , $A D C 1$ is selected.
- If ADC Input Selection equals 10, $\operatorname{ADC} 2$ is selected.
- If ADC Input Selection equals 11, ADC3 is selected.

Sampling occurs at one-eighth of an ADC-clock tick. One ADC-clock tick equals one-half, one-third, or one-quarter of a system-clock (SCLK) tick, as set by 3ADC_DTA $(6,5)$ for 3-bit or 4ADC_DTA $(7,6)$ for 4-bit. If ADC speed bits are set to 00 , the ADC is not operative; this is the default value following POR. If these bits equal 01, ADC speed is based on one-half of a system-clock tick, SCLK/2. If these bits equal 10, ADC speed is based on one-third of a system-clock tick, SCLK / 3. If these bits equal 11, ADC speed is based on one-quarter of a systemclock tick, SCLK/4.

81

Table 70 3-Bit ADC Data Register 00h: Bank C (3ADC_DTA)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R / W								
Reset	x	0	0	0	0	x	x	x

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit/Field	Bit Position	R/W	Value	Description
Reserved	7	R		Return 1
		W		No effect
ADC Speed	6,5	R/W	00	No ADC - POR
			01	SCLK/2
			10	SCLK/3
			11	SCLK/4
ADC Input Selection	4,3	00	Select ADC0 - POR	
			01	Select ADC 1
			10	Select ADC 2
				R/W
				Digitized data from
				selected ADC input
ADC Data				

Table 71 4-Bit ADC Data Register 01h: Bank F (4ADC_DTA)

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R/W	R / W							
Reset	0	0	0	0	x	x	x	x

Note: $\mathrm{R}=$ Read $\mathrm{W}=$ Write $\mathrm{X}=$ Indeterminate

Bit/Field	Bit Position	R/W	Value	Description
ADC Speed	7,6	R/W	00	No ADC - POR
			01	SCLK/2
		10	SCLK/3	
		11	SCLK/4	
ADC Input Selection	5,4	R/W	00	Select ADC0 - POR
			01	Select ADC 1
			10	Select ADC 2
			R/W	
ADC Data	$3,2,1,0$		Delect ADC 3	
				selected ADC input

P41 must be set to input mode to select ADC1.

ADC Block Diagram

Figure 21 ADC Block Diagram

11 Electrical Characteristics

11.1 Absolute Maximum Ratings

Stress exceeding the levels listed in the Operational Limits can cause permanent damage to the device. These limits represent stress limits only, not optimal operating levels. Exposure to maximum rating conditions for extended periods can affect device reliability.

Table 72 Operational Limits

Symbol	Parameters	Min	Max	Units	Notes
V_{CC}	Power Supply Voltage	-0.3	+7	V	
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
I_{OH}	Output Current - High		-10	mA	One pin
I_{OH}	Output Current - High		-100	mA	Total, all pins
I_{OL}	Output Current - Low		20	mA	One pin
I_{OL}	Output Current - Low		200	mA	Total, all pins
T_{A}	Operating Temperature	0	70	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	-55	150	${ }^{\circ} \mathrm{C}$	

A typical value is $25^{\circ} \mathrm{C}$. Minimum and maximum values are $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ respectively.

11.2 DC Characteristics

Table 73 DC Characteristics

Symbol	Parameter	Min	Typical	Max	Units	Conditions
V_{CC}	Power Supply Voltage	4.5	5.00	5.5	V	
$\mathrm{V}_{1 \mathrm{H}}$	Input Voltage High	$0.7 \mathrm{~V}_{\mathrm{CC}}$		V_{CC}	V	
V_{IL}	Input Voltage Low	-0.3		$0.2 \mathrm{~V}_{\text {cC }}$	V	
$\mathrm{V}_{\mathrm{IHC}}$	Input XTAL/Oscillator In High	$0.7 \mathrm{~V}_{\text {cc }}$		V_{CC}	V	
$\mathrm{V}_{\text {ILC }}$	Input XTAL/Oscillator In Low	-0.3		$0.2 \mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{OH} \text { _ST }}{ }^{1}$	Output Voltage High	$\mathrm{V}_{\mathrm{CC}}-0.4$	4.75		V	$\mathrm{IOH}=-2.00 \mathrm{~mA}$
$\mathrm{V}_{\text {OL_ST }}{ }^{1}$	Output Voltage Low		0.16	0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.00 \mathrm{~mA}$
$\mathrm{V}_{\text {oh_l }}{ }^{1}$	Output Voltage High			$\mathrm{V}_{\mathrm{CC}}-0.4$	V	$\mathrm{I}_{\mathrm{OL}}=-0.98 \mathrm{~mA}$
$V_{\text {oh_l }}{ }^{1}$	Output Voltage Low	0.4			V	$\mathrm{I}_{\mathrm{OL}}=0.66 \mathrm{~mA}$
$V_{\text {oh_le }}{ }^{2}$	Output Voltage High	$\mathrm{V}_{\mathrm{CC}}-0.4$			V	$\mathrm{I}_{\mathrm{OL}}=-0.18 \mathrm{~mA}$
$V_{\text {oh_l }}{ }^{2}$	Output Voltage Low			0.4	V	$\mathrm{I}_{\mathrm{LL}}=0.18 \mathrm{~mA}$
V_{HY}	Schmitt Hysteresis	$0.1 \mathrm{~V}_{\mathrm{CC}}$	0.8		V	
I_{IR}	Reset Input Current		-170	- 250	uA	$\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$
IIL	Input Leakage	-3.0	0.01	3.0	uA	$0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$
l_{OL}	Tri-State Leakage	-3.0	0.02	3.0	uA	$0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$
${ }^{\text {cc }}$	Supply Current		25	40	mA	All inputs at rail; outputs floating
$\mathrm{I}_{\mathrm{CC} 1}$	Halt Mode Current		3.2	6	mA	All inputs at rail; outputs floating
$\mathrm{I}_{\text {CC2 }}$	Stop Mode Current		25	50	uA	All inputs at rail; outputs floating

Note: $1 \mathrm{ST}=$ standard drive, le = low EMI drive
2 For XTAL2 and OSDX2

85

11.3 AC Characteristics

The numbers in Table 74 correspond to the numbered signal segments in Figure 22.

Table 74 AC Characteristics

No.	Symbol	Parameter	Min	Max	Unit
1	TpC	Input Clock Period	166	1000	ns
2	$\mathrm{T}_{\mathrm{R}} \mathrm{C}, \mathrm{T}_{\mathrm{F}} \mathrm{C}$	Clock Input Rise And Fall Time		25	ns
3	$\mathrm{T}_{\mathrm{W}} \mathrm{C}$	Input Clock Width	35		ns
4	$\mathrm{T}_{\text {W }} \mathrm{Hsync}_{\text {IN }} \mathrm{L}$	Hsync Input Low Width	70		ns
5	$\mathrm{T}_{\mathrm{W}} \mathrm{Hsync}_{\text {IN } \mathrm{H}}$	Hsync Input High Width	3 TpC		
6	$\mathrm{TpHsync}_{\text {IN }}$	Hsync Input Period	8TpC		
7	$\mathrm{T}_{\mathrm{R}} \mathrm{Hsync}_{\mathrm{IN}^{\prime}}, \mathrm{T}_{\mathrm{F}} \mathrm{Hssync}_{\text {IN }}$	Hsync Input Rise Fall Time		100	ns
8	TWIL	Interrupt Request Input Low	70		ns
9	$\mathrm{T}_{\mathrm{W}} \mathrm{H}$	Interrupt Request Input High	3 TpC		
10	T ${ }_{\text {D }}$ POR	Power-On Reset Delay	25	100	ms
11	TDLVIRES	Low Voltage Detect To Internal Reset Condition	200		ns
12	T ${ }_{\text {W }}$ RES	Reset Minimum Width	5TpC		
13	$\mathrm{T}_{\mathrm{D}} \mathrm{H}_{\text {S }} \mathrm{Ol}$	$\mathrm{H}_{\text {sync }}$ Start To OSDX2 Stop	2TpV	3 TpV	
14	$\mathrm{T}_{\mathrm{D}} \mathrm{H}_{S} \mathrm{OH}$	$\mathrm{H}_{\text {sync }}$ Start To OSDX2 Start		1 TpV	

11.4 Timing Diagram

Figure 22 Timing Requirements of External Inputs

87

12 Packaging

Figure 23 42-Lead Shrink Dual-in-line Package (SDIP)

Table 75 Package Dimensions

Symbol	Millimeter		Inch	
	Min	Max	Min	Max
A1	0.51		.020	
A2		4.32		.170
B	0.38	0.56	.015	.022
B1	0.76	1.27	.030	.050
C	0.20	0.30	.008	.012
D	36.70	36.96	1.445	1.455
E	15.24	15.88	.600	.625
E1	13.72	14.22	.540	.560
F	1.78 TYP			.070 TYP
eA	15.49	16.76	.610	.660
L	3.05	3.43	.120	.135
Q1	1.65	1.91	.065	.075
S	0.51	0.76	.020	.030

Ordering Information

Part	PSI	Description
Z90251	Z9025106PSC	OTP TV Controller
Z90255	Z9025506PSC Rxxxx*	Masked ROM TV Controller
Z9025900ZEM	Z9025900ZEM	Emulator/Programmer
Z9020900TSC	Z9020900TSC	Protopak
Note: * xxxx is a unique ROM number assigned to each customer code		

ROM Code Submission

ROM Code Submission Instructions

ROM Code can be submitted on ZiLOG's web site at http://www.zilog.com.

Top Mark Information

Mark Permanency: 3 X soak into Alpha 2110 at 63° to $70^{\circ} \mathrm{C}$, for 30 seconds duration each soak. Mechanical brush after each soak.

Customer Feedback Form

Z90255 Product Specification

If there are any problems while operating this product, or any inaccuracies in the specification, please copy and complete this form, then mail or fax it to ZiLOG.
Suggestions welcome!

Customer Information

Name	Country
Company	Phone
Address	Fax
City/State/Zip	E-Mail

Product Information

Serial \# or Board Fab \#/Rev. \#
Software Version
Document Number
Host Computer Description/Type

Return Information

ZiLOG
System Test/Customer Support
910 E. Hamilton Avenue, Suite 110, MS 4-3
Campbell, CA 95008
Fax: (408) 558-8536 Email: tools@zilog.com

Problem Description or Suggestion

Provide a complete description of the problem or suggestion. For specific problems, include all steps leading up to the occurrence of the problem. Attach additional pages as necessary.
\qquad
\qquad
\qquad
\qquad

[^0]: Note: R = Read W = Write $\mathrm{X}=$ Indeterminate

