LMX2377U

PLLatinum ${ }^{\text {TM }}$ Ultra Low Power Dual Frequency

 Synthesizer for RF Personal Communications 2.5 GHz/1.2 GHz
General Description

The LMX2377U device is a high performance frequency synthesizer with integrated dual modulus prescalers. The LMX2377U device is designed for use as a local oscillator for the first and second RF of a dual conversion radio transceiver.
A $16 / 17$ or a $32 / 33$ prescale ratio can be selected for the Main synthesizer. An 8/9 or a 16/17 prescale ratio can be selected for the Aux synthesizer. Using a proprietary digital phase lock technique, the LMX2377U device generates very stable, low noise control signals for UHF and VHF voltage controlled oscillators. Both the Main and Aux synthesizers include a two-level programmable charge pump. The Main synthesizer has dedicated Fastlock circuitry.
Serial data is transferred to the devices via a three-wire interface (Data, LE, Clock). The low voltage logic interface allows connection to 1.8 V devices. Supply voltages from 2.7 V to 5.5 V are supported. The LMX2377U features ultra low current consumption, typically 3.5 mA at 3.0 V .
The LMX2377U devices are available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP surface mount plastic packages.

Features

- Ultra Low Current Consumption
- Upgrade and Compatible to the LMX2370
- 2.7 V to 5.5 V Operation
- 1.8V to 5.0V MICROWIRE Logic Interface
- Selectable Synchronous or Asynchronous Powerdown Mode:
$I_{\text {CC-PWDN }}=1 \mu \mathrm{~A}$ typical
- Selectable Dual Modulus Prescaler: Main: 16/17 or 32/33
Aux: 8/9 or 16/17
- Selectable Charge Pump TRI-STATE ${ }^{\circledR}$ Mode
- Programmable Charge Pump Current Levels Main and Aux: 0.95 or 3.8 mA
- Selectable Fastlock ${ }^{\text {TM }}$ Mode for the Main Synthesizer
- Open Drain Analog Lock Detect Output
- Available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP

Applications

- Mobile Handsets (GSM, GPRS, W-CDMA, CDMA, PCS, AMPS, PDC, DCS)
- Cordless Handsets (DECT, DCT)
- Wireless Data
- Cable TV Tuners

Thin Shrink Small Outline Package (MTC20)

20022680

Chip Scale Package (SLB24A)

Ultra Thin Chip Scale Package (SLE20A)

20022681

Connection Diagrams

Thin Shrink Small Outline Package (TM)
(Top View)

(Top View)
$\begin{array}{lll}\text { U } \\ > & \stackrel{x}{4} \\ >\end{array}$

20022696

Pin Descriptions

Pin Name	Pin No. 20-Pin UTCSP	Pin No. 24-Pin CSP	Pin No. 20-Pin TSSOP	I/O	Description
V_{CC}	20	24	1	-	Power supply bias for the Main PLL analog and digital circuits. V_{CC} may range from 2.7V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
V_{P} Main	1	2	2	-	Main PLL charge pump power supply. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
D_{o} Main	2	3	3	O	Main PLL charge pump output. The output is connected to the external loop filter, which drives the input of the VCO.
GND	3	4	4	-	Ground for the Main PLL digital circuitry.
f_{IN} Main	4	5	5	I	Main PLL prescaler input. Small signal input from the VCO.

Pin Name	Pin No. 20-Pin UTCSP	Pin No. 24-Pin CSP	Pin No. 20-Pin TSSOP	I/O	Description
$\overline{\overline{f_{I N}} \text { Main }}$	5	6	6	1	Main prescaler complementary input. For single ended operation, this pin should be AC grounded. The LMX2377U Main PLL can be driven differentially when the bypass capacitor is omitted.
GND	6	7	7	-	Ground for the Main PLL analog circuitry.
$\mathrm{OSC}_{\text {in }}$	7	8	8	1	Reference oscillator input. It has an approximate $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
GND	8	10	9	-	Ground for the Aux PLL digital circuitry, MICROWIRE, FoLD, and oscillator circuits.
FoLD	9	11	10	0	Programmable multiplexed output pin. Functions as a general purpose CMOS TRI-STATE output, Main/Aux PLL open drain analog lock detect output, N and R divider output or Fastlock output, which connects a parallel resistor to the external loop filter.
Clock	10	12	11	1	MICROWIRE Clock input. High impedance CMOS input. Data is clocked into the 22-bit shift register on the rising edge of Clock.
Data	11	14	12	1	MICROWIRE Data input. High impedance CMOS input. Binary serial data. The MSB of Data is shifted in first. The last two bits are the control bits.
LE	12	15	13	1	MICROWIRE Latch Enable input. High impedance CMOS input. When LE transitions HIGH, Data stored in the shift register is loaded into one of 4 internal control registers.
V $\mu \mathrm{c}$	13	16	14	-	Power supply bias for the MICROWIRE circuitry. Must be $\leq \mathrm{V}_{\mathrm{Cc}}$. Typically connected to the same supply level as the microprocessor or baseband controller to enable programming at low voltages.
GND	14	17	15	-	Ground for the Aux PLL analog circuitry.
$\mathrm{f}_{\text {IN }}$ Aux	15	18	16	1	Aux PLL prescaler input. Small signal input from the VCO.
GND	16	19	17	-	Ground for the Aux PLL digital circuitry, MICROWIRE, F_{o} LD, and oscillator circuits.
D. Aux	17	20	18	0	Aux PLL charge pump output. the output is connected to an external loop filter, which drives the input of the VCO.
V_{P} Aux	18	22	19	-	Aux PLL charge pump power supply. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
V_{Cc}	19	23	20	-	Power supply bias for the Aux PLL analog and digital circuits, $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$, and oscillator circuits. V_{Cc} may range from 2.7 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
NC	-	1, 9, 13, 21	-	-	No Connect

Ordering Information

Model	Temperature Range	Package Description	Packing	NS Package Number
LMX2377USLEX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ultra Thin Chip Scale Package (UTCSP) Tape and Reel	2500 Units Per Reel	SLE20A
LMX2377USLBX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP) Tape and Reel	2500 Units Per Reel	SLB24A
LMX2377UTM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	73 Units Per Rail	MTC20
LMX2377UTMX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP) Tape and Reel	2500 Units Per Reel	MTC20

Notes:

1. V_{CC} supplies power to the Main and Aux prescalers, Main and Aux feedback dividers, Main and Aux reference dividers, Main and Aux phase detectors, the OSC ${ }_{\text {in }}$ buffer, and F_{0} LD circuitry
2. $V \mu c$ supplies power to the MICROWIRE circuitry
3. V_{P} Main and V_{P} Aux supply power to the charge pumps. They can be run separately as long as V_{P} Main $\geq V_{C C}$ and $V_{P} A u x \geq V_{C c}$.

Absolute Maximum Ratings (Notes 1,2, 3)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.	
Power Supply Voltage	
V_{CC} to GND	-0.3 V to +6.5 V
V_{P} Main to GND	-0.3 V to +6.5 V
V_{P} Aux to GND	-0.3 V to +6.5 V
Voltage on any pin to GND (V_{I})	
V_{1} must be $<+6.5 \mathrm{~V}$	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage Temperature Range (T_{s})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (solder 4 s) (T_{L})	$+260^{\circ} \mathrm{C}$
TSSOP $\theta_{\text {JA }}$ Thermal Impedance	$114.5^{\circ} \mathrm{C} / \mathrm{W}$
CSP $\theta_{\text {JA }}$ Thermal Impedance	$112^{\circ} \mathrm{C} / \mathrm{W}$

Recommended Operating Conditions (Note 1)

Power Supply Voltage

V_{CC} to GND	+2.7 V to +5.5 V
$\mathrm{~V}_{\mathrm{P}}$ Main to GND	V_{CC} to +5.5 V
$\mathrm{~V}_{\mathrm{P}}$ Aux to GND	V_{CC} to +5.5 V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

[^0]
Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}}$ Main $=\mathrm{V}_{\mathrm{P}}$ Aux $=\mathrm{V} \mu \mathrm{c}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
I_{cc} PARAMETERS						
$\mathrm{I}_{\mathrm{CC}}^{\text {Main + Aux }}$	Power Supply Current, Main + Aux Synthesizers	Clock, Data and LE = GND $\mathrm{OSC}_{\text {in }}=$ GND PWDN Main Bit $=0$ PWDN Aux Bit = 0		3.5	4.6	mA
$\mathrm{I}_{\mathrm{CC}_{\text {Main }}}$	Power Supply Current, Main Synthesizer Only	```Clock, Data and LE = GND \(\mathrm{OSC}_{\text {in }}=\) GND PWDN Main Bit \(=0\) PWDN Aux Bit = 1```		2.3	3.0	mA
$\overline{\mathrm{C}_{\text {Cux }}}$	Power Supply Current, Aux Synthesizer Only	$\begin{aligned} & \text { Clock, Data and LE }=\text { GND } \\ & \text { OSC }_{\text {in }}=\text { GND } \\ & \text { PWDN Main Bit }=1 \\ & \text { PWDN Aux Bit }=0 \end{aligned}$		1.0	1.6	mA
$\overline{I_{\text {CC-PWDN }}}$	Powerdown Current	Clock, Data and LE = GND $\mathrm{OSC}_{\text {in }}=$ GND PWDN Main Bit = 1 PWDN Aux Bit = 1		1.0	10.0	$\mu \mathrm{A}$
MAIN SYNTHESIZER PARAMETERS						
f_{IN} Main	Main Operating Frequency		500		2500	MHz
$\mathrm{N}_{\text {Main }}$	Main N Divider Range	$\begin{array}{\|l} \text { Prescaler = 16/17 } \\ \text { (Note 4) } \end{array}$	48		131087	
		$\begin{array}{\|l} \hline \text { Prescaler }=32 / 33 \\ (\text { Note 4) } \end{array}$	96		262143	
$\mathrm{R}_{\text {Main }}$	Main R Divider Range		2		32767	
$\mathrm{F}_{\text {¢Main }}$	Main Phase Detector Frequency				10	MHz
$\mathrm{Pf}_{\mathrm{IN}}$ Main	Main Input Sensitivity	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}} \leq 3.0 \mathrm{~V} \\ & (\text { Note 5) } \end{aligned}$	-15		0	dBm
		$\begin{aligned} & 3.0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & (\text { Note 5) } \end{aligned}$	-10		0	dBm

Electrical Characteristics（Continued）
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}}$ Main $=\mathrm{V}_{\mathrm{P}}$ Aux $=\mathrm{V} \mu \mathrm{C}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ ，unless otherwise specified

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
MAIN SYNTHESIZER PARAMETERS						
ID_{o} Main SOURCE	Main Charge Pump Output Source Current	$\begin{aligned} & \mathrm{VD}_{\circ} \text { Main }=\mathrm{V}_{\mathrm{P}} \text { Main/2 } \\ & I \mathrm{ID}_{\circ} \text { Main Bit }=0 \\ & \text { (Note 6) } \\ & \hline \end{aligned}$		－0．95		mA
		$\begin{aligned} & \hline \mathrm{VD}_{\circ} \text { Main }=\mathrm{V}_{\mathrm{P}} \text { Main/2 } \\ & I \mathrm{ID}_{\circ} \text { Main Bit }=1 \\ & \text { (Note 6) } \\ & \hline \end{aligned}$		－3．80		mA
ID_{o} Main SINK	Main Charge Pump Output Sink Current	$\begin{aligned} & V_{D_{\circ}} \text { Main }=V_{P} \text { Main/2 } \\ & I D_{\circ} \text { Main Bit }=0 \\ & \text { (Note 6) } \\ & \hline \end{aligned}$		0.95		mA
		VD。 Main $=V_{P}$ Main／2 ID。Main Bit＝ 1 （Note 6）		3.80		mA
ID．Main TRI－STATE	Main Charge Pump Output TRI－STATE Current	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{VD}_{\circ} \text { Main } \leq \mathrm{V}_{\mathrm{P}} \text { Main }-0.5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	－2．5		2.5	nA
ID．Main SINK Vs ID．Main SOURCE	Main Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch	$\begin{aligned} & \mathrm{VD}_{\mathrm{o}} \text { Main }=\mathrm{V}_{\mathrm{P}} \text { Main/2 } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & (\text { Note 7) } \end{aligned}$		3	10	\％
ID。Main Vs VD_{o} Main	Main Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{VD}_{\circ} \text { Main } \leq \mathrm{V}_{\mathrm{P}} \text { Main }-0.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & (\text { Note } 7) \end{aligned}$		10	15	\％
$\begin{aligned} & \hline \mathrm{ID}_{\mathrm{o}} \text { Main } \\ & \mathrm{Vs} \\ & \mathrm{~T}_{\mathrm{A}} \\ & \hline \end{aligned}$	Main Charge Pump Output Current Magnitude Variation Vs Temperature	$\begin{aligned} & \mathrm{VD}_{\circ} \text { Main }=\mathrm{V}_{\mathrm{P}} \text { Main/2 } \\ & \text { (Note 7) } \end{aligned}$		10		\％

AUX SYNTHESIZER PARAMETERS

f_{IN} Aux	Aux Operating Frequency		45	1200	MHz
$\mathrm{N}_{\text {Aux }}$	Aux N Divider Range	$\begin{aligned} & \text { Prescaler = 8/9 } \\ & \text { (Note 4) } \end{aligned}$	24	65559	
		Prescaler = 16/17 (Note 4)	48	131087	
$\mathrm{R}_{\text {Aux }}$	Aux R Divider Range		2	32767	
$\mathrm{F}_{\text {¢Aux }}$	Aux Phase Detector Frequency			10	MHz
$\mathrm{Pf}_{\text {IN }}$ Aux	Aux Input Sensitivity	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & (\text { Note } 5) \end{aligned}$	－10	0	dBm

Electrical Characteristics
(Continued)
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}}$ Main $=\mathrm{V}_{\mathrm{P}}$ Aux $=\mathrm{V} \mu \mathrm{c}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
AUX SYNTHESIZER PARAMETERS						
ID。Aux SOURCE	Aux Charge Pump Output Source Current	$\begin{aligned} & \mathrm{VD}_{\circ} \text { Aux }=\mathrm{V}_{\mathrm{P}} \text { Aux/2 } \\ & \mathrm{ID}_{\circ} \text { Aux Bit }=0 \\ & \text { (Note 6) } \\ & \hline \end{aligned}$		-0.95		mA
		VD_{o} Aux = V_{P} Aux/2 ID。Aux Bit = 1 (Note 6)		-3.80		mA
ID. Aux SINK	Aux Charge Pump Output Sink Current	$\begin{aligned} & \mathrm{VD}_{\circ} \text { Aux }=\mathrm{V}_{\mathrm{P}} \text { Aux/2 } \\ & \mathrm{ID}_{\circ} \text { Aux Bit }=0 \\ & \text { (Note 6) } \\ & \hline \end{aligned}$		0.95		mA
		$\begin{aligned} & \hline \mathrm{VD}_{\circ} \text { Aux }=\mathrm{V}_{\mathrm{P}} \text { Aux/2 } \\ & \mathrm{ID}_{\circ} \text { Aux Bit }=1 \\ & \text { (Note 6) } \\ & \hline \end{aligned}$		3.80		mA
$\begin{aligned} & \hline \text { ID }{ }_{\circ} \text { Aux } \\ & \text { TRI-STATE } \end{aligned}$	Aux Charge Pump Output TRI-STATE Current	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{VD}_{\circ} \text { Aux } \leq \mathrm{V}_{\mathrm{P}} \text { Aux }-0.5 \mathrm{~V} \\ & (\text { Note 6) } \end{aligned}$	-2.5		2.5	nA
ID. Aux SINK Vs ID. Aux SOURCE	Aux Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch	$\begin{aligned} & \mathrm{VD}_{\mathrm{o}} \text { Aux }=\mathrm{V}_{\mathrm{P}} \text { Aux/2 } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Note 7) } \end{aligned}$		3	10	\%
ID. Aux Vs VD_{o} Aux	Aux Charge Pump Output Current Magnitude Variation Vs Charge Pump OutputVoltage	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{VD}_{\mathrm{O}} \text { Aux } \leq \mathrm{V}_{\mathrm{P}} \text { Aux }-0.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Note 7) } \\ & \hline \end{aligned}$		10	15	\%
$\begin{aligned} & \hline \mathrm{ID}_{\mathrm{o}} \text { Aux } \\ & \text { Vs } \\ & \mathrm{T}_{\mathrm{A}} \\ & \hline \end{aligned}$	Aux Charge Pump Output Current Magnitude Variation Vs Temperature	$V D_{\circ} A u x=V_{P} A u x / 2$ (Note 7)		10		\%
OSCILLATOR PARAMETERS						
$\mathrm{F}_{\text {Osc }}$	Oscillator Operating Frequency		2		40	MHz
$\mathrm{V}_{\text {Osc }}$	Oscillator Sensitivity	(Note 8)	0.5		V_{Cc}	V_{PP}
losc	Oscillator Input Current	$\mathrm{V}_{\mathrm{OSC}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OSC }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100			$\mu \mathrm{A}$

Electrical Characteristics (Continued)
$V_{C C}=V_{P}$ Main $=V_{P}$ Aux $=V \mu \mathrm{C}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
DIGITAL INTERFACE (Data, LE, Clock, FoLD)						
V_{IH}	High-Level Input Voltage	$1.72 \mathrm{~V} \leq \mathrm{V} \mu \mathrm{c} \leq 5.5 \mathrm{~V}$	$0.8 \mathrm{~V} \mu \mathrm{c}$			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage	$1.72 \mathrm{~V} \leq \mathrm{V} \mu \mathrm{c} \leq 5.5 \mathrm{~V}$			$0.2 \mathrm{~V} \mu \mathrm{c}$	V
${ }^{1+}$	High-Level Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V} \mu \mathrm{c}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low-Level Input Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V} \mu \mathrm{c}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
V_{OH}	High-Level Output Voltage	$\mathrm{l}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.4 \end{gathered}$			V
V_{OL}	Low-Level Output Voltage	$\mathrm{l} \mathrm{OL}=500 \mu \mathrm{~A}$			0.4	V
MICROWIRE INTERFACE						
t_{cs}	Data to Clock Set Up Time	(Note 9)	50			ns
t_{CH}	Data to Clock Hold Time	(Note 9)	20			ns
$\mathrm{t}_{\text {cWH }}$	Clock Pulse Width HIGH	(Note 9)	50			ns
$\mathrm{t}_{\text {CWL }}$	Clock Pulse Width LOW	(Note 9)	50			ns
t_{ES}	Clock to Load Enable Set Up Time	(Note 9)	50			ns
t_{EW}	Latch Enable Pulse Width	(Note 9)	50			ns

Electrical Characteristics
（Continued）
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}}$ Main $=\mathrm{V}_{\mathrm{P}}$ Aux $=\mathrm{V} \mu \mathrm{c}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ ，unless otherwise specified

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
PHASE NOISE CHARACTERISTICS						
$\mathrm{L}_{\mathrm{N}}(\mathrm{f})$ Main	Main Synthesizer Normalized Phase Noise Contribution （Note 10）	TCXO Reference Source ID。Main Bit＝ 1		－212．0		$\begin{gathered} \hline \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$
L（f）Main	Main Synthesizer Single Side Band Phase Noise Measured	f_{IN} Main $=2450 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{kHz}$ Offset $\mathrm{F}_{\text {фMain }}=200 \mathrm{kHz}$ Loop Bandwidth $=7.5 \mathrm{kHz}$ $N=12250$ $\mathrm{F}_{\text {Osc }}=10 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{OSC}}=0.632 \mathrm{~V}_{\mathrm{PP}}$ ID．Main Bit＝ 1 PWDN Aux Bit＝ 1 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ （Note 11）		－77．24		$\begin{gathered} \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$
$\mathrm{L}_{\mathrm{N}}(\mathrm{f}) \mathrm{Aux}$	Aux Synthesizer Normalized Phase Noise Contribution （Note 10）	TCXO Reference Source ID。Aux Bit＝ 1		－212．0		$\begin{gathered} \hline \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$
L（f）Aux	Aux Synthesizer Single Side Band Phase Noise Measured	$\mathrm{f}_{\text {IN }}$ Aux $=900 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{kHz}$ Offset $\mathrm{F}_{\text {фAux }}=200 \mathrm{kHz}$ Loop Bandwidth＝ 12 kHz $N=4500$ $\mathrm{F}_{\text {Osc }}=10 \mathrm{MHz}$ $\mathrm{V}_{\text {OSC }}=0.632 \mathrm{~V}_{\mathrm{PP}}$ ID。Aux Bit＝ 1 PWDN Main Bit＝ 1 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ （Note 11）		－85．94		$\begin{gathered} \hline \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$

Note 4：Some of the values in this range are illegal divide ratios $(B<A)$ ．To obtain continuous legal division，the Minimum Divide Ratio must be calculated．Use N $\geq P$＊$(P-1)$ ，where P is the value of the prescaler selected．
Note 5：Refer to the LMX2377U f_{IN} Sensitivity Test Setup section
Note 6：Refer to the LMX2377U Charge Pump Test Setup section
Note 7：Refer to the Charge Pump Current Specification Definitions for details on how these measurements are made．
Note 8：Refer to the LMX2377U OSC in Sensitivity Test Setup section
Note 9：Refer to the LMX2377U Serial Data Input Timing section
Note 10：Normalized Phase Noise Contribution is defined as：$L_{N}(f)=L(f)-20 \log (N)-10 \log \left(F_{\phi}\right)$ ，where $L(f)$ is defined as the single side band phase noise measured at an offset frequency， f ，in a 1 Hz bandwidth．The offset frequency， f ，must be chosen sufficiently smaller than the PLL＇s loop bandwidth，yet large enough to avoid substantial phase noise contribution from the reference source． N is the value selected for the feedback divider and F_{ϕ} is the Main／Aux phase detector comparison frequency．
Note 11：The synthesizer phase noise is measured with the LMX2370TMEB／LMX2370SLBEB／LMX2370SLEEB Evaluation boards and the HP8566B Spectrum Analyzer．

Typical Performance Characteristics

Sensitivity

20022642
LMX2330U f_{IN} Main Input Power Vs Frequency
$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}}$ Main $=\mathrm{V} \mu \mathrm{c}=5.5 \mathrm{~V}$

Typical Performance Characteristics
Sensitivity (Continued)

Typical Performance Characteristics

Sensitivity (Continued)

LMX2377U OSC ${ }_{\text {in }}$ Input Voltage Vs Frequency
$\mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mu \mathrm{c}=5.5 \mathrm{~V}$

Typical Performance Characteristics Charge Pump

Typical Performance Characteristics

Charge Pump (Continued)

20022661

	LMX2377U TSSOP (Zfin Main and Zif ${ }_{\text {N }}$ Aux)										LMX2377U CSP (Zifin Main and Zfin Aux)									
	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}} \text { Main }=\mathrm{V}_{\mathrm{P}} \mathrm{Aux}=\mathrm{V}_{\mu \mathrm{c}}=3.0 \mathrm{~V} \\ \left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{gathered}$					$\begin{gathered} V_{c c}=V_{P} \text { Main }=V_{P} A u x=V_{\mu c}=5.5 \mathrm{~V} \\ \left(T_{A}=25^{\circ} \mathrm{C}\right) \end{gathered}$					$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}} \text { Main }=\mathrm{V}_{\mathrm{P}} \mathrm{Aux}=\mathrm{V}_{\mu \mathrm{C}}=3.0 \mathrm{~V} \\ \left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{gathered}$					$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}} \text { Main }=\mathrm{V}_{\mathrm{P}} \mathrm{Aux}=\mathrm{V}_{\mu \mathrm{C}}=5.5 \mathrm{~V} \\ \left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{gathered}$				
$\begin{gathered} \mathrm{f}_{\mathrm{N}} \\ (\mathrm{MHz}) \end{gathered}$	$\|\Gamma\|$	$\angle \Gamma$	$\begin{aligned} & \boldsymbol{R}_{e} \\ & \mathbf{f i n}_{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \mathbf{n}_{\text {Z }}^{\text {fNN }} \\ & (\Omega) \end{aligned}$		\|гі	$\angle \Gamma$		$\begin{aligned} & 2^{2 m} \\ & \mathrm{ff}_{\mathrm{N}} \\ & (\Omega) \end{aligned}$		$\|\Gamma\|$	$\angle \Gamma$	$\begin{aligned} & \boldsymbol{z}_{e} \\ & z_{f_{N}^{N}} \\ & (\Omega) \end{aligned}$	$\begin{aligned} & \mathbf{n}_{\mathrm{fl}_{\mathrm{N}}}^{(\Omega)} \\ & (\Omega) \end{aligned}$	(finl	$\|\Gamma\|$	$\angle \Gamma$	$\begin{aligned} & \mathcal{R e}_{e} \\ & \mathrm{Zf}_{\mathrm{N}} \\ & (\Omega) \end{aligned}$	$\begin{aligned} & 9_{\mathrm{mm}}^{\mathrm{Zf}_{\mathbb{N}}} \\ & (\Omega) \end{aligned}$	$\begin{aligned} & \left\|z_{f_{N N} \mid}\right\| \end{aligned}$
100	0.862	-6.23	439.774	319.866	543.798	0.862	-6.07	. 23	318.841	550.064	0.864	-6.4	1.004	0.013	2.838	0.864	6.3	8.240	7.814	547.281
200	0.834	30	307.614	-272.274	410.803	0.83	-9.00	479	. 58	417.031	0.836	-9.88	1.25	.923	2.5	. 836	-9.57	0.190	7.55	408.838
300	. 20	-12.11	237.700	9.291	344.452	0.	-11.66	26	1.09	352.40	0.821	-13.24	5.31	8.361	. 70	0.821	-12.76	4.62	49.637	335.819
400	0.808	15.25	. 04	. 17	293.00	0.80	-14.61	. 68	9.054	. 60	0.808	-16.88	163.190	9.893	3.83	0.808	16.	1.34	2.518	0.84
500	0.796	18.51	785	3.923	251.843	0.796	-17.66	93	7.313	0.014	0.793	-20.90	6.19	91.93	29.707	0.79	-20.00	33.88	96.200	7.52
600	0.781	21.81	122.091	-181.461	218.710	0.782	-20.7	130.906	-185.850	227.325	0.775	-24.82	102.95	-168.026	97.06	0.77	23.7	109.53	172.887	4.66
700	0.765	24.72	106.10	63.758	195.129	0.	23.45	78	-168.514	203.329	0.749	-28.29	0.820	6.58	72.437	0.75	27.0	96.279	-151.333	79.36
800	0.760	. 35	87.984	50.524	174.352	0.762	-26.97	4.255	-155.481	181.819	0.742	31.2	79.737	36.782	58.32	0.7	29.8	84.470	141.47	4.772
900	0.747	32.60	73.777	4.500	153.406	0.	-30.95	79.270	9.668	0.596	0.7	-36.04	. 577	3.951	9.76	0.7	34.	69.006	28.610	45.95
1000	0.732	36.68	122	0.908	136.859	0.735	-34.73	215	-126.104	143.851	0.71	-41.4	55.019	8.415	121.57	0.72	-39.	58.68	-113.123	. 43
1100	0.717	41.25	55.780	8.398	121.908	0.7	-39.12	. 041	3.2	128.151	0.694	-47.2	48.056	4.403	105.93	0.698	-45.0	51.15	8.547	1.03
1200	0.698	46.24	180	605	403	0.702	. 8	848	-101.254	14.216	0.669	-53.5	42.269	2.40	2.610	0.67	51.	5.06	6.38	97.434
130		51.43	43.982	291	96.853	0.683	-48.77	47.173	. 67	212		-60.4	85	. 65	. 03	0.647	-57.50	. 23	5.400	85.461
1400	0.663	56.68	39.39	901	87.296	0.667	53.71	317	. 070	33	0.610	-68.3	10	1.48	. 308	0.613	-64.	6.477	4.8	74.424
1500	0.649	. 08	35.56	500	78.963	0.653	58.74	281	-74.569	82	0.577	77.0	. 049	2.38	0.898	0.58	-73.18	3.06	5.5	64.649
1600	0.630	-67.58	91	-63.544	71.562	0.634	63.96	35.335	-67.423	6.121	0.539	-84.86	73	.952	8.89	. 5	-80.	. 65	8.1	57.597
1700	0.608	-72.22	31.565	-57.996	. 030	0.61	88.5	33.590	61.63	. 191	0.477	27.	100.35	-58.17	115.99	0.48	-84	33.10	2.1	53.562
1800	0.596	5.66	. 44	-54.462	392	0.601	71.81	32.358	-57.943	66.366	0.455	89.9	32.829	7.62	.933	0.468	-85.	3.8	0.5	52.847
1900	0.598	-80.06	.91	16	58.284	0.602	76.2	29.678	-54.335	. 912	0.493	87.34	29.357	. 2	48.189	0.500	-88.	29.576	9.3	9.2
20	0.607	-85.3	24.914	7.65	771	0.607	81.3	67	-50.603	57.203	0.520	79.89	25.120	5.2	. 26	0.521	84.05	. 3	7.5	45.921
2100	0.612	89.24	50	99	. 414	0.611	86.	21.612	42.064	47.292	0.529	70.97	2.17	0.77	. 930	0.525	75.52	23.556	3.0	0.580
00	05	84.09	. 28	35	629	0.602	88.61	901	-43.251	48.940	0.531	61.99	20.155	. 3	33.159	0.524	6.9	21.544	8.5	35.802
2300	. 94	44	20.36	. 56	855	. 589	83.13	21.961	298	18	0.533	52.71	18.533	-21.975	28.747	. 525	57.61	19.706	24.119	. 146
2400	0	72.27	19.111	2.907	. 054	. 58	7,11	20.598	-35.536	074	. 50	43.18	. 578	7.883	24.385	0.5	47.69	7.671	19.749	26.501
2500	0.5	67.24	18.297	-30.064	35.194	0.576	72.09	19.792	-32.516	38.066	0.583	34.44	14.340	-14.328	20.272	0.566	38.69	15.416	-16.055	22.257

Typical Performance Characteristics
 Input Impedance (Continued)

LMX2377U UTCSP
$f_{I N}$ Main and $f_{I N}$ Aux Input Impedance
$\mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mu \mathrm{c}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Marker $1=900 \mathrm{MHz}$
Marker $2=1800 \mathrm{MHz}$
Marker $3=1900 \mathrm{MHz}$
Marker $4=2500 \mathrm{MHz}$

LMX2377U UTCSP
$f_{\mathrm{IN}_{\mathrm{N}}}$ Main and f_{IN} Aux Input Impedance $\mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mu \mathrm{c}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Marker $1=900 \mathrm{MHz}$
Marker $2=1800 \mathrm{MHz}$
Marker $3=1900 \mathrm{MHz}$
Marker $4=2500 \mathrm{MHz}$

Typical Performance Characteristics Input Impedance (Continued)

LMX2377U TSSOP OSC ${ }_{\text {in }}$ Input Impedance Vs Frequency $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

20022676
LMX2377U CSP OSC ${ }_{\text {in }}$ Input Impedance Vs Frequency
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

20022677

Typical Performance Characteristics Input Impedance (Continued)

$$
\begin{aligned}
& \text { LMX2377U UTCSP OSC } \begin{array}{l}
\text { in } \\
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\end{array} .
\end{aligned}
$$

LMX2377U
Typical Performance Characteristics
Input Impedance (Continued)
LMX2377U UTCSP OSC in Input Impedance Table

	LMX2377U UTCSP ZOSC $_{\text {in }}$											
	$\mathrm{V}_{\text {cc }}=3.0 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$						$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$					
	OSC $_{\text {in }}$ BUFFER POWERED UP			OSC $_{\text {in }}$ BUFFER POWERED DOWN			OSC $_{\text {in }}$ BUFFER POWERED UP			OSC $_{\text {in }}$ BUFFER POWERED DOWN		
Fosc (MHz)	$\underset{(\Omega)}{\mathrm{Re}_{\mathrm{in}}} \underset{\mathrm{zO}_{\mathrm{n}}}{ }$	$\operatorname{Im}_{\operatorname{zosc}_{\text {in }}(\Omega)}$	$\begin{gathered} \mathrm{IZOSC}_{\text {in }} \mid \\ (\Omega) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Re} \\ \mathrm{zos}_{\mathrm{in}} \\ (\Omega) \end{gathered}$	$\operatorname{zosc}_{\mathrm{Im}_{\text {in }}(\Omega)}$	$\underset{(\Omega)}{\mathrm{IZOSC}_{\text {l }} \mid}$	$\begin{gathered} \mathrm{Re} \\ \mathrm{zOSC}_{\text {in }} \\ (\Omega) \end{gathered}$	$\underset{\operatorname{zosc}_{\text {in }}(\Omega)}{ }$	$\underset{(\Omega)}{\mathbf{I Z O S C}_{\text {I }} \mid}$	$\begin{gathered} \text { Re } \\ \text { zess }_{\text {in }} \\ (\Omega) \\ \hline \end{gathered}$	$\operatorname{zosc}_{\text {in }}(\Omega)$	$\begin{gathered} \mathrm{IZOSC}_{\text {in }} 1 \\ (\Omega) \\ \hline \end{gathered}$
5.0	5918.57	-9897.80	11532.39	1822.62	-19947.73	20030.82	4982.73	-7668.32	9144.98	2478.02	-19591.11	19747.21
7.5	3097.46	-7441.43	8060.35	2238.93	-12114.22	12319.38	2742.97	-6062.16	6653.85	2483.54	-12531.99	12775.71
10.0	1695.22	-5720.83	5966.72	998.16	-9046.84	9101.74	1582.29	-4875.36	5125.70	1064.38	-9063.97	9126.25
12.5	1241.03	-4759.14	4918.29	660.39	-7338.93	7368.58	1150.39	-4034.66	4195.46	621.48	-7679.86	7704.97
15.0	820.55	-3955.33	4039.55	471.57	-6142.40	6160.48	861.48	-3448.80	3554.76	591.34	-6481.87	6508.79
17.5	646.18	-3417.20	3477.76	317.24	-5165.41	5175.14	599.49	-3009.04	3068.18	154.67	-5518.01	5520.17
20.0	520.20	-3006.22	3050.90	223.35	-4567.95	4573.41	491.78	-2647.38	2692.67	120.99	-4867.07	4868.57
22.5	459.63	-2666.05	2705.38	219.57	-4040.96	4046.92	396.64	-2342.62	2375.96	137.85	-4301.63	4303.84
25.0	391.21	-2398.19	2429.89	172.20	-3664.77	3668.81	323.46	-2108.25	2132.92	89.00	-3864.60	3865.62
27.5	348.79	-2210.66	2238.01	169.02	-3291.50	3295.84	312.14	-1920.70	1945.90	114.48	-3476.68	3478.56
30.0	285.07	-1996.71	2016.96	110.02	-3005.42	3007.43	260.59	-1763.82	1782.97	121.11	-3185.26	3187.56
32.5	267.83	-1847.30	1866.61	117.14	-2725.46	2727.97	239.41	-1612.35	1630.02	111.70	-2876.34	2878.50
35.0	252.27	-1719.32	1737.73	114.38	-2558.44	2561.00	222.16	-1503.76	1520.08	115.42	-2690.37	2692.84
37.5	224.94	-1639.80	1655.15	70.31	-2408.64	2409.67	191.46	-1422.88	1435.71	48.06	-2550.41	2550.86
40.0	208.96	-1512.91	1527.27	76.50	-2242.79	2244.09	180.75	-1329.24	1341.47	72.61	-2353.73	2354.85

Charge Pump Current Specification Definitions

$11=$ Charge Pump Sink Current at $\mathrm{VD}_{\mathrm{o}}=\mathrm{V}_{\mathrm{P}}-\Delta \mathrm{V}$
$12=$ Charge Pump Sink Current at $V D_{o}=V_{P} / 2$
$13=$ Charge Pump Sink Current at $\mathrm{VD}_{\mathrm{o}}=\Delta \mathrm{V}$
$14=$ Charge Pump Source Current at $\mathrm{VD}_{\mathrm{o}}=\mathrm{V}_{\mathrm{P}}-\Delta \mathrm{V}$
$15=$ Charge Pump Source Current at $V_{D}=V_{P} / 2$
$16=$ Charge Pump Source Current at $\mathrm{VD}_{\mathrm{o}}=\Delta \mathrm{V}$
$\Delta \mathrm{V}=$ Voltage offset from the positive and negative rails. Dependent on the VCO tuning range relative to V_{CC} and GND. Typical values are between 0.5 V and 1.0 V .
V_{P} refers to either V_{P} Main or V_{P} Aux
$V D_{0}$ refers to either VD_{0} Main or VD_{0} Aux
$I D_{o}$ refers to either $I D_{o}$ Main or $I D_{o}$ Aux
Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage

Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch

$$
I_{0} \text { SINK Vs ID SOURCE }=\frac{||2|-|15|}{\frac{1}{2}(| | 2|+|15|)} \times 100 \%
$$

20022664
Charge Pump Output Current Magnitude Variation Vs Temperature

Test Setups

The block diagram above illustrates the setup required to measure the LMX2377U device's Main charge pump sink current. The same setup is used for the LMX2370TMEB/ LMX2370SLEEB Evaluation Boards. The Aux charge pump measurement setup is similar to the Main charge pump measurement setup. The purpose of this test is to assess the functionality of the Main charge pump.
This setup uses an open loop configuration. A power supply is connected to V_{cc} and swept from 2.7 V to 5.5 V . The MICROWIRE power supply, $\mathrm{V} \mu \mathrm{c}$, is tied to V_{cc}. By means of a signal generator, a 10 MHz signal is typically applied to the f_{IN} Main pin. The signal is one of two inputs to the phase detector. The 3 dB pad provides a 50Ω match between the PLL and the signal generator. The $\mathrm{OSC}_{\text {in }}$ pin is tied to V_{cc}. This establishes the other input to the phase detector. Alternatively, this input can be tied directly to the ground plane. With the D_{o} Main pin connected to a Semiconductor Parameter Analyzer in this way, the sink, source, and TRI-STATE currents can be measured by simply toggling the Phase Detector Polarity and Charge Pump State states in Code

Loader. Similarly, the LOW and HIGH currents can be measured by switching the Charge Pump Gain's state between 1X and $\mathbf{4 X}$ in Code Loader.
Let F_{r} represent the frequency of the signal applied to the OSC $_{\text {in }}$ pin, which is simply zero in this case (DC), and let F_{p} represent the frequency of the signal applied to the $f_{I N}$ Main pin . The phase detector is sensitive to the rising edges of F_{r} and F_{p}. Assuming positive VCO characteristics; the charge pump turns ON and sinks current when the first rising edge of F_{p} is detected. Since F_{r} has no rising edge, the charge pump continues to sink current indefinitely.
Toggling the Phase Detector Polarity state to negative VCO characteristics allows the measurement of the Main charge pump source current. Likewise, selecting TRI-STATE (TRI-STATE ID。Main Bit = 1) for Charge Pump State in Code Loader facilitates the measurement of the TRI-STATE current.
The measurements are repeated at different temperatures, namely $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$.

The block diagram above illustrates the setup required to measure the LMX2377U device's Main input sensitivity level. The same setup is used for the LMX2370TMEB/ LMX2370SLEEB Evaluation Boards. The Aux input sensitivity test setup is similar to the Main input sensitivity test setup. The purpose of this test is to measure the acceptable signal level to the f_{IN} Main input of the PLL chip. Outside the acceptable signal range, the feedback divider begins to divide incorrectly and miscount the frequency.
The setup uses an open loop configuration. A power supply is connected to V_{cc} and the bias voltage is swept from 2.7 V to 5.5 V . The MICROWIRE power supply, $\mathrm{V} \mu \mathrm{c}$, is tied to V_{cc}. The Aux PLL is powered down (PWDN Aux Bit = 1). By means of a signal generator, an RF signal is applied to the f_{IN} Main pin. The 3 dB pad provides a 50Ω match between the PLL and the signal generator. The OSC ${ }_{\text {in }}$ pin is tied to V_{cc}. The N value is typically set to 10000 in Code Loader, i.e. Main N_CNTRB Word $=312$ and Main N_CNTRA Word $=$ 16 for PRE Main Bit = 1. The feedback divider output is routed to the F_{o} LD pin by selecting the Main PLL N Divider

Output word (F_{0} LD Word $=6$ or 14) in Code Loader. A Universal Counter is connected to the $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ pin and tied to the 10 MHz reference output of the signal generator. The output of the feedback divider is thus monitored and should be equal to $f_{I N}$ Main/ N.
The f_{IN} Main input frequency and power level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$. Sensitivity is reached when the frequency error of the divided RF input is greater than or equal to 1 Hz . The power attenuation from the cable and the 3 dB pad must be accounted for. The feedback divider will actually miscount if too much or too little power is applied to the $f_{I N}$ Main input. Therefore, the allowed input power level will be bounded by the upper and lower sensitivity limits. In a typical application, if the power level to the $f_{I N}$ Main input approaches the sensitivity limits, this can introduce spurs and degradation in phase noise. When the power level gets even closer to these limits, or exceeds it, then the Main PLL loses lock.

Test Setups
(Continued)

The block diagram above illustrates the setup required to measure the LMX2377U device's OSC $_{\text {in }}$ buffer sensitivity level. The same setup is used for the LMX2370TMEB/ LMX2370SLEEB Evaluation Boards. This setup is similar to the $f_{I N}$ sensitivity setup except that the signal generator is now connected to the $\mathrm{OSC}_{\text {in }}$ pin and both $\mathrm{f}_{\text {IN }}$ pins are tied to V_{CC}. The 51Ω shunt resistor matches the $\mathrm{OSC}_{\text {in }}$ input to the signal generator. The R counter is typically set to 1000, i.e. Main R_CNTR Word = 1000 or Aux R_CNTR Word = 1000. The reference divider output is routed to the F_{0} LD pin by selecting the Main PLL R Divider Output word (F_{o} LD Word $=2$ or 10) or the Aux PLL R Divider Output word (F_{0} LD Word = 1 or 9) in Code Loader. Similarly, a Universal

Counter is connected to the F_{0} LD pin and is tied to the 10 MHz reference output from the signal generator. The output of the reference divider is monitored and should be equal to $\mathrm{OSC}_{\text {in }} /$ Main R_CNTR or $\mathrm{OSC}_{\text {in }} /$ Aux R_CNTR.
Again, V_{Cc} is swept from 2.7 V to 5.5 V . The MICROWIRE power supply, $\mathrm{V} \mu \mathrm{c}$, is tied to V_{cc}. The $\mathrm{OSC}_{\text {in }}$ input frequency and voltage level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$. Sensitivity is reached when the frequency error of the divided input signal is greater than or equal to 1 Hz .

The block diagram above illustrates the setup required to measure the LMX2377U device's Main input impedance. The Aux input impedance and reference oscillator impedance setups are very much similar. The same setup is used for the LMX2370TMEB/ LMX2370SLEEB Evaluation Boards. Measuring the device's input impedance facilitates the design of appropriate matching networks to match the PLL to the VCO, or in more critical situations, to the characteristic impedance of the printed circuit board (PCB) trace, to prevent undesired transmission line effects.
Before the actual measurements are taken, the Network Analyzer needs to be calibrated, i.e. the error coefficients need to be calculated. Therefore, three standards will be used to calculate these coefficients: an open, short and a matched load. A 1-port calibration is implemented here.
To calculate the coefficients, the PLL chip is first removed from the PCB. The Network Analyzer port is then connected to the RF1 OUT connector of the evaluation board and the desired operating frequency is set. The typical frequency range selected for the LMX2377U device's Main synthesizer is from 100 MHz to 2500 MHz . The standards will be located down the length of the RF1 OUT transmission line. The transmission line adds electrical length and acts as an offset from the reference plane of the Network Analyzer; therefore,
it must be included in the calibration. Although not shown, 0 Ω resistors are used to complete the RF1 OUT transmission line (trace).
To implement an open standard, the end of the RF1 OUT trace is simply left open. To implement a short standard, a 0 Ω resistor is placed at the end of the RF1 OUT transmission line. Last of all, to implement a matched load standard, two 100Ω resistors in parallel are placed at the end of the RF1 OUT transmission line. The Network Analyzer calculates the calibration coefficients based on the measured S_{11} parameters. With this all done, calibration is now complete.
The PLL chip is then placed on the PCB. A power supply is connected to V_{CC} and swept from 2.7 V to 5.5 V . The MICROWIRE power supply, $\mathrm{V} \mu \mathrm{c}$, is tied to V_{cc}. The $\mathrm{OSC}_{\text {in }}$ pin is tied to the ground plane. Alternatively, the $\mathrm{OSC}_{\text {in }}$ pin can be tied to V_{CC}. In this setup, the complementary input ($\overline{\mathrm{f}_{\mathrm{IN}}}$ Main) is AC coupled to ground. With the Network Analyzer still connected to RF1 OUT, the measured $f_{\text {IN }}$ Main impedance is displayed.
Note: The impedance of the reference oscillator is measured when the oscillator buffer is powered up (PWDN Main Bit = 0 or PWDN Aux Bit = 0), and when the oscillator buffer is powered down (PWDN Main Bit = 1 and PWDN Aux Bit = 1).

1.0 Functional Description

The basic phase-lock-loop (PLL) configuration consists of a high-stability crystal reference oscillator, a frequency synthesizer such as the National Semiconductor LMX2377U, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, programmable reference R and feedback N frequency dividers. The VCO frequency is established by dividing the crystal reference signal down via the reference divider to obtain a comparison reference frequency. This reference signal, F_{r}, is then presented to the input of a phase/frequency detector and compared with the feedback signal, F_{p}, which was obtained by dividing the VCO frequency down by way of the feedback divider. The phase/frequency detector measures the phase error between the F_{r} and F_{p} signals and outputs control signals that are directly proportional to the phase error. The charge pump then pumps charge into or out of the loop filter based on the magnitude and direction of the phase error. The loop filter converts the charge into a stable control voltage for the VCO. The phase/frequency detector's function is to adjust the voltage presented to the VCO until the feedback signal's frequency and phase match that of the reference signal. When this "Phase-Locked" condition exists, the VCO frequency will be N times that of the comparison frequency, where N is the feedback divider ratio.

1.1 REFERENCE OSCILLATOR INPUT

The reference oscillator frequency for both the Main and Aux PLLs is provided from an external reference via the OSC ${ }_{\text {in }}$ pin. The reference buffer circuit supports input frequencies from 2 to 40 MHz with a minimum input sensitivity of $0.5 \mathrm{~V}_{\mathrm{PP}}$. The reference buffer circuit has an approximate $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate. Typically, the $\mathrm{OSC}_{\text {in }}$ pin is connected to the output of a crystal oscillator.

1.2 REFERENCE DIVIDERS (R COUNTERS)

The reference dividers divide the reference input signal, $\mathrm{OSC}_{\text {in }}$, by a factor of R . The output of the reference divider circuits feeds the reference input of the phase detector. This reference input to the phase detector is often referred to as the comparison frequency. The divide ratio should be chosen such that the maximum phase comparison frequency ($\mathrm{F}_{\phi \text { Main }}$ or $F_{\phi A u x}$) of 10 MHz is not exceeded.
The Main and Aux reference dividers are each comprised of 15 -bit CMOS binary counters that support a continuous integer divide ratio from 2 to 32767. The Main and Aux reference divider circuits are clocked by the output of the reference buffer circuit which is common to both.

1.3 PRESCALERS

The $f_{I N}$ Main and $\overline{f_{I N}}$ Main input pins drive the input of a bipolar, differential-pair amplifier. The output of the bipolar, differential-pair amplifier drives a chain of ECL D-type
flip-flops in a dual modulus configuration. The output of the prescaler is used to clock the subsequent feedback dividers. The Main PLL complementary inputs can be driven differentially, or the negative input can be AC coupled to ground through an external capacitor for single ended configuration. A $16 / 17$ or a $32 / 33$ prescale ratio can be selected for the LMX2377U Main synthesizer. On the other hand, the Aux PLL is only intended for single ended operation. An 8/9 or a 16/17 prescale ratio can be selected for the LMX2377U Aux synthesizer.

1.4 PROGRAMMABLE FEEDBACK DIVIDERS (N COUNTERS)

The programmable feedback dividers operate in concert with the prescalers to divide the input signal $f_{I N}$ by a factor of N. The output of the programmable reference divider is provided to the feedback input of the phase detector circuit. The divide ratio should be chosen such that the maximum phase comparison frequency ($\mathrm{F}_{\text {}}$ Main or $\mathrm{F}_{\text {фAux }}$) of 10 MHz is not exceeded.
The programmable feedback divider circuit is comprised of an A counter (swallow counter) and a B counter (programmble binary counter). The Main N_CNTRA and the Aux N_CNTRA counters are both 5 -bit CMOS swallow counters, programmable from 0 to 31. The Main N_CNTRB and Aux N_CNTRB counters are both 13-bit CMOS binary counters, programmable from 3 to 8191. A continuous integer divide ratio is achieved if $N \geq P^{*}(P-1)$, where P is the value of the prescaler selected. Divide ratios less than the minimum continuous divide ratio are achievable as long as the binary programmable counter value is greater than the swallow counter value (N_CNTRB \geq N_CNTRA). Refer to Sections 2.5.1, 2.5.2, 2.7.1 and 2.7.2 for details on how to program the N_CNTRA and N_CNTRB counters. The following equations are useful in determining and programming a particular value of N :
$N=\left(P \times N _C N T R B\right)+N _C N T R A$
$\mathrm{f}_{\mathrm{IN}}=\mathrm{N} \times \mathrm{F}_{\phi}$

Definitions:

F_{ϕ} : Main or Aux phase detector comparison frequency
$f_{I N}$: Main or Aux input frequency
N_CNTRA: Main or Aux A counter value
N_CNTRB: Main or Aux B counter value
P: Preset modulus of the dual modulus prescaler
Main synthesizer: $P=16$ or 32
Aux synthesizer: $\mathrm{P}=8$ or 16

1.0 Functional Description

(Continued)

1.5 PHASE/FREQUENCY DETECTORS

The Main and Aux phase/frequency detectors are driven from their respective N and R counter outputs. The maximum frequency for both the Main and Aux phase detector inputs is 10 MHz . The phase/frequency detector outputs control the respective charge pumps. The polarity of the pump-up or pump-down control signals are programmed using the PD_POL Main or PD_POL Aux control bits, de-
pending on whether the Main or Aux VCO characteristics are positive or negative. Refer to Sections 2.4.2 and 2.6.2 for more details. The phase/frequency detectors have a detection range of -2π to $+2 \pi$. The phase/frequency detectors also receive a feedback signal from the charge pump in order to eliminate dead zone.

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

Notes:

1. The minimum width of the pump-up and pump-down current pulses occur at the D_{o} Main or D_{o} Aux pins when the loop is phase locked.
2. The diagram assumes positive VCO characteristics, i.e. PD_POL Main or PD_POL Aux = 1 .
3. F_{r} is the phase detector input from the reference divider (R counter).
4. F_{p} is the phase detector input from the programmable feedback divder (N counter).
5. D_{o} refers to either the Main or Aux charge pump output.

1.6 CHARGE PUMPS

The charge pump directs charge into or out of an external loop filter. The loop filter converts the charge into a stable control voltage which is applied to the tuning input of the VCO. The charge pump steers the VCO control voltage towards V_{P} Main or V_{P} Aux during pump-up events and towards GND during pump-down events. When locked, D_{o} Main or $\mathrm{D}_{\text {。 }}$ Aux are primarily in a TRI-STATE mode with small corrections occuring at the phase comparator rate. The charge pump output current magnitude can be selected by toggling the $\mathrm{ID}_{\mathbf{o}}$ Main or ID_{o} Aux control bits.

1.7 MICROWIRE SERIAL INTERFACE

The programmable register set is accessed via the MICROWIRE serial interface. The supply for the MICROWIRE circuitry is separate from the rest of the IC to allow direct connection to 1.8 V devices. The interface is comprised of three signal pins: Clock, Data and LE (Latch Enable). Serial data is clocked into the 22-bit shift register on the rising edge of Clock. The last two bits decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of four control registers depending on the state of the address bits. The MSB of Data is loaded in first. The synthesizers can be programmed even in power down mode. A complete programming description is provided in Section 2.0 Programming Description.

1.8 MULTI-FUNCTION OUTPUTS

The LMX2377U device's FoLD output pin is a multi-function output that can be configured as the Main synthesizer FastLock output, an open drain analog lock detect output, counter reset, or used to monitor the output of the various reference divider (R counter) or feedback divider (N counter) circuits. The F_{0} LD control word is used to select the desired output function. When the PLL is in powerdown mode, the $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ output is pulled to a LOW state. A complete programming description of the multi-function output is provided in Section $2.8 \mathrm{~F}_{\mathrm{o}}$ LD.

1.8.1 Open Drain Analog Lock Detect Output

An analog lock detect status generated from the phase detector is available on the F_{o} LD output pin if selected. The lock detect output goes to a high impedance state when the charge pump is inactive. It goes low when the charge pump is active during a comparison cycle. When viewed with an oscilloscope, and when a pull-up resistor is used, narrow negative pulses are observed when the charge pump turns on. The lock detect output signal is an open drain configuration.
Three separate lock detect signals are routed to the multiplexer. Two of these monitor the 'lock' status of the individual synthesizers. The third detects the condition when both the Main and Aux synthesizers are in a 'locked state'. External circuitry however, is required to provide a steady DC signal to indicate when the PLL is in a locked state. Refer to Section $2.8 \mathrm{~F}_{\mathrm{o}} \mathrm{LD}$ for details on how to program the different lock detect options.

1.0 Functional Description

1.8.2 Open Drain FastLock Output

The LMX233xU Fastlock feature allows faster loop response time during lock aquisition. The loop response time (lock time) can be approximately halved if the loop bandwidth is doubled. In order to achieve this, the same gain/ phase relationship at twice the loop bandwidth must be maintained. This can be achieved by increasing the charge pump current from $0.95 \mathrm{~mA}\left(\mathrm{ID}_{\mathrm{o}}\right.$ Main Bit $\left.=0\right)$ in the steady state mode, to $3.8 \mathrm{~mA}\left(\mathrm{ID}_{\mathrm{o}}\right.$ Main Bit =1) in Fastlock. When the F LD output is configured as a FastLock output, an open drain device is enabled. The open drain device switches in a parallel resistor R2' to ground, of equal value to resistor R2 of the external loop filter. The loop bandwidth is effectively doubled and stability is maintained. Once locked to the correct frequency, the PLL will return to a steady state condition. Refer to Section 2.8 $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ for details on how to configure the $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ output to an open drain Fastlock output.

1.8.3 Counter Reset

Three separate counter reset functions are provided. When the F_{o} LD is programmed to Reset Aux PLL Counters, both the Aux feedback divider and the Aux reference divider are held at their load point. When the Reset Main PLL Counters is programmed, both the Main feedback divider and the Main reference divider are held at their load point. When the Reset All Counters mode is enabled, all feedback dividers and reference dividers are held at their load point. When the device is programmed to normal operation, both the feedback divider and reference divider are enabled and resume counting in 'close' alignment to each other. Refer to Section $2.8 \mathrm{~F}_{\mathrm{o}} \mathrm{LD}$ for more details.

1.8.4 Reference Divider and Feedback Divider Output

The outputs of the various N and R divders can be monitored by selecting the appropriate $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ word. This is essential when performing $\mathrm{OSC}_{\text {in }}$ or f_{IN} sensitivity measurements. Refer to the Test Setups section for more details. Refer to Section $2.8 \mathrm{~F}_{\mathrm{o}} \mathrm{LD}$ for details on how to route the appropriate divder output to the $\mathrm{F}_{0} \mathrm{LD}$ pin.

1.9 POWER CONTROL

Each synthesizer in the LMX2377U device is individually power controlled by device powerdown bits. The powerdown word is comprised of the PWDN Main (PWDN Aux) bit, in conjuction with the TRI-STATE ID。Main (TRI-STATE ID。 Aux) bit. The powerdown control word is used to set the operating mode of the device. Refer to Sections 2.4.4, 2.5.4, 2.6.4, and 2.7.4 for details on how to program the Main or Aux powerdown bits.
When either the Main synthesizer or the Aux synthesizer enters the powerdown mode, the respective prescaler, phase detector, and charge pump circuit are disabled. The D_{o} Main (D_{o} Aux), $f_{I N}$ Main ($f_{I N}$ Aux), and $\overline{f_{I N}}$ Main pins are all forced to a high impedance state. The reference divider and feedback divider circuits are held at the load point during powerdown. The oscillator buffer is disabled when both the Main and Aux synthesizers are powered down. The OSC in pin is forced to a HIGH state through an approximate $100 \mathrm{k} \Omega$ resistance when this condition exists. When either synthesizer is activated, the respective prescaler, phase detector, charge pump circuit, and the oscillator buffer are all powered up. The feedback divider, and the reference divider are held at load point. This allows the reference oscillator, feedback divider, reference divider and prescaler circuitry to reach proper bias levels. After a finite delay, the feedback and reference dividers are enabled and they resume counting in 'close' alignment (the maximum error is one prescaler cycle). The MICROWIRE control register remains active and capable of loading and latching data while in the powerdown mode.

Synchronous Powerdown Mode

In this mode, the powerdown function is gated by the charge pump. When the device is configured for synchronous powerdown, the device will enter the powerdown mode upon completion of the next charge pump pulse event.

Asynchronous Powerdown Mode

In this mode, the powerdown function is NOT gated by the completion of a charge pump pulse event. When the device is configured for asynchronous powerdown, the part will go into powerdown mode immediately.

TRI-STATE ID	PWDN	Operating Mode
0	0	PLL Active, Normal Operation
1	0	PLL Active, Charge Pump Output in High Impedance State
0	1	Synchronous Powerdown
1	1	Asynchronous Powerdown

Notes:

1. TRI-STATE $I D_{\circ}$ refers to either the TRI-STATE $I D_{\circ}$ Main or TRI-STATE $I D_{\circ}$ Aux bit .
2. PWDN refers to either the PWDN Main or PWDN Aux bit.

2.0 Programming Description

2.1 MICROWIRE INTERFACE

The 22-bit shift register is loaded via the MICROWIRE interface. The shift register consists of a 20-bit Data[19:0] Field and a 2-bit Address[1:0] Field as shown below. The Address Field is used to decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of 4 control registers depending on the state of the address bits. The MSB of Data is loaded in first. The Data field assignments are shown in Section 2.3 CONTROL REGISTER CONTENT MAP.

MSB		LSB	
	Data[19:0]		Address[1:0]
21	21	0	

2.2 CONTROL REGISTER LOCATION

The address bits Address[1:0] decode the internal register address. The table below shows how the address bits are mapped into the target control register.

Address[1:0] Field		Target Register
0	0	Aux R
0	1	Aux N
1	0	Main R
1	1	Main N

2.3 CONTROL REGISTER CONTENT MAP

The control register content map describes how the bits within each control register are allocated to specific control functions.

2．0 Programming Description
 （Continued）

2．4 AUXILIARY R REGISTER

The Aux R register contains the Aux R＿CNTR，PD＿POL Aux，ID。Aux，and TRI－STATE ID。Aux control words，in addition to two bits that compose the F_{0} LD control word．The detailed description and programming information for each control word is discussed in the following sections．

Reg．	Most Significant Bit								SHIFT REGISTER BIT LOCATION										Least Significant Bit			
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Data Field																				Address Field	
$\begin{gathered} \hline \text { Aux } \\ \mathbf{R} \end{gathered}$	FoLDo	FoLD2	$\begin{array}{\|c\|} \hline \text { TRI- } \\ \text { STATE } \\ \text { IDo } \\ \text { Aux } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ID} \mathrm{D}_{\mathrm{O}} \\ & \text { Aux } \end{aligned}$	PD＿ POL Aux	Aux R＿CNTR［14：0］															0	0

2．4．1 Aux R＿CNTR［14：0］AUXILIARY SYNTHESIZER PROGRAMMABLE REFERENCE DIVIDER（R COUNTER） Aux R［2：16］
The Aux reference divider（Aux R＿CNTR）can be programmed to support divide ratios from 2 to 32767 ．Divide ratios less than 2 are prohibited．

Divide Ratio	Aux R＿CNTR［14：0］														
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

2．4．2 PD＿POL Aux
AUXILIARY SYNTHESIZER PHASE DETECTOR POLARITY
Aux R［17］
The PD＿POL Aux bit is used to control the Aux synthesizer＇s phase detector polarity based on the VCO tuning characteristics．

Control Bit	Register Location	Description	Function	
		0	1	
PD＿POL Aux	Aux R［17］	Aux Phase Detector Polarity	Aux VCO Negative Tuning Characteristics	Aux VCO Positive Tuning Characteristics

Aux VCO Characteristics

2．4．3 ID．Aux
AUXILIARY SYNTHESIZER CHARGE PUMP CURRENT GAIN
Aux R［18］
The ID。Aux bit controls the Aux synthesizer＇s charge pump gain．Two current levels are available．

Control Bit	Register Location	Description	Function	
			0	1
ID_{o} Aux	Aux R［18］	Aux Charge Pump	LOW	HIGH
		Current Gain	0.95 mA	3.80 mA

2.0 Programming Description (Continued)

2.4.4 TRI-STATE ID。Aux AUXILIARY SYNTHESIZER CHARGE PUMP TRI-STATE CURRENT

Aux R[19]
The TRI-STATE ID ${ }_{\circ}$ Aux bit allows the charge pump to be switched between a normal operating mode and a high impedance output state. This happens asynchronously with the change in the TRI-STATE ID ${ }_{\circ}$ Aux bit.
Furthermore, the TRI-STATE ID。Aux bit operates in conjuction with the PWDN Aux bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Function	
			1	
TRI-STATE ID Aux	Aux R[19]	Aux Charge Pump TRI-STATE Current	Aux Charge Pump Normal Operation	Aux Charge Pump Output in High Impedance State

2.5 AUXILIARY N REGISTER

The Aux N register contains the Aux N_CNTRA, Aux N_CNTRB, PRE Aux, and PWDN Aux control words. The Aux N_CNTRA and Aux N_CNTRB control words are used to setup the programmable feedback divider. The detailed description and programming information for each control word is discussed in the following sections.

2.5.1 Aux N_CNTRA[4:0] AUXILIARY SYNTHESIZER SWALLOW COUNTER (A COUNTER)

Aux N[2:6]
The Aux N_CNTRA control word is used to setup the Aux synthesizer's A counter. The A counter is a 5 -bit swallow counter used in the programmable feedback divider. The Aux N_CNTRA control word can be programmed to values ranging from 0 to 31 .

Divide Ratio	Aux N_CNTRA[4:0]				
	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
0	0	0	0	0	0
1	0	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
31	1	1	1	1	1

2.5.2 Aux N_CNTRB[12:0] AUXILIARY SYNTHESIZER PROGRAMMABLE BINARY COUNTER (B COUNTER) Aux N[7:19]

The Aux N_CNTRB control word is used to setup the Aux synthesizer's B counter. The B counter is a 13-bit programmable binary counter used in the programmable feedback divider. The Aux N_CNTRB control word can be programmed to values ranging from 3 to 8191 .

Divide Ratio	Aux N_CNTRB[12:0]												
	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	1	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-
8191	1	1	1	1	1	1	1	1	1	1	1	1	1

2．0 Programming Description（Continued）

2．5．3 PRE Aux

AUXILIARY SYNTHESIZER PRESCALER SELECT
Aux N［20］
The Aux synthesizer utilizes a selectable dual modulus prescaler．

Control Bit	Register Location	Description	Function	
			0	1
PRE Aux	Aux N［20］	Aux Prescaler Select	8／9 Prescaler Selected	$16 / 17$ Prescaler Selected

2．5．4 PWDN Aux

AUXILIARY SYNTHESIZER POWERDOWN
Aux N［21］
The PWDN Aux bit is used to switch the Aux PLL between a powered up and powered down mode．
Furthermore，the PWDN Aux bit operates in conjuction with the TRI－STATE ID。Aux bit to set a synchronous or an asynchronous powerdown mode．

Control Bit	Register Location	Description	Function	
			0	1
PWDN Aux	Aux N［21］	Aux Powerdown	Aux PLL Active	Aux PLL Powerdown

2．6 MAIN R REGISTER

The Main R register contains the Main R＿CNTR，PD＿POL Main，ID。Main，and TRI－STATE ID。 Main control words，in addition to two bits that compose the F_{o} LD control word．The detailed description and programming information for each control word is discussed in the following sections．

Reg．	Most Significant Bit								SHIFT REGISTER BIT LOCATION										Least Significant Bit			
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Data Field																				Address Field	
Main R	FoLD1	FoLD3	TRI－ state ID。 Main	$\begin{aligned} & \text { ID。 } \\ & \text { Main } \end{aligned}$	PD＿ POL Main	Main R＿CNTR［14：0］															1	0

2．6．1 Main R＿CNTR［14：0］MAIN SYNTHESIZER PROGRAMMABLE REFERENCE DIVIDER（R COUNTER）

 Main R［2：16］The Main reference divider（Main R＿CNTR）can be programmed to support divide ratios from 2 to 32767 ．Divide ratios less than 2 are prohibited．

Divide Ratio	Main R＿CNTR［14：0］														
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

2．0 Programming Description
 （Continued）

2．6．2 PD＿POL Main
MAIN SYNTHESIZER PHASE DETECTOR POLARITY
Main R［17］
The PD＿POL Main bit is used to control the Main synthesizer＇s phase detector polarity based on the VCO tuning characteristics．

Control Bit	Register Location	Description	Function	
			0	1
PD＿POL Main	Main R［17］	Main Phase Detector Polarity	Main VCO Negative Tuning Characteristics	Main VCO Positive Tuning Characteristics

Main VCO Characteristics

2．6．3 I_{D} Main
MAIN SYNTHESIZER CHARGE PUMP CURRENT GAIN
Main R［18］
The I_{0} Main bit controls the Main synthesizer＇s charge pump gain．Two current levels are available．

Control Bit	Register Location	Description	Function	
			0	1
ID。Main	Main R［18］	Main Charge Pump	LOW	HIGH
		Current Gain	0.95 mA	3.80 mA

2．6．4 TRI－STATE ID。Main MAIN SYNTHESIZER CHARGE PUMP TRI－STATE CURRENT

Main R［19］
The TRI－STATE ID。Main bit allows the charge pump to be switched between a normal operating mode and a high impedance output state．This happens asynchronously with the change in the TRI－STATE ID。 Main bit．
Furthermore，the TRI－STATE ID。Main bit operates in conjuction with the PWDN Main bit to set a synchronous or an asynchronous powerdown mode．

Control Bit	Register Location	Description	Function	
			1	
TRI－STATE ID。Main	Main R［19］	Main Charge Pump TRI－STATE Current	Main Charge Pump Normal Operation	Main Charge Pump Output in High Impedance State

2.0 Programming Description

(Continued)

2.7 MAIN N REGISTER

The Main N register contains the Main N_CNTRA, Main N_CNTRB, PRE Main, and PWDN Main control words. The Main N_CNTRA and Main N_CNTRB control words are used to setup the programmable feedback divider. The detailed description and programming information for each control word is discussed in the following sections.

Reg.	Most Significant Bit								SHIFT REGISTER BIT LOCATION										Least Significant Bit			
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Data Field																				Address Field	
$\begin{gathered} \hline \text { Main } \\ \mathrm{N} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { PwDN } \\ \text { Main } \end{array}$	PRE Main	Main N_CNTRB[12:0]													Main N_CNTRA[4:0]					1	1

2.7.1 Main N_CNTRA[4:0] MAIN SYNTHESIZER SWALLOW COUNTER (A COUNTER)

Main N[2:6]
The Main N_CNTRA control word is used to setup the Main synthesizer's A counter. The A counter is a 5-bit swallow counter used in the programmable feedback divider. The Main N_CNTRA control word can be programmed to values ranging from 0 to 31.

Divide Ratio	Main N_CNTRA[4:0]				
	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
0	0	0	0	0	0
1	0	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
31	1	1	1	1	1

2.7.2 Main N_CNTRB[12:0] MAIN SYNTHESIZER PROGRAMMABLE BINARY COUNTER (B COUNTER) Main N[7:19]

The Main N_CNTRB control word is used to setup the Main synthesizer's B counter. The B counter is a 13-bit programmable binary counter used in the programmable feedback divider. The Main N_CNTRB control word can be programmed to values ranging from 3 to 8191 .

Divide Ratio	Main N_CNTRB[12:0]												
	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	1	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-
8191	1	1	1	1	1	1	1	1	1	1	1	1	1

2.7.3 PRE Main
MAIN SYNTHESIZER PRESCALER SELECT
Main N[20]

The Main synthesizer utilizes a selectable dual modulus prescaler.

Control Bit	Register Location	Description	Function			
			1			
PRE Main	Main N[20]	Main Prescaler	$16 / 17$ Prescaler 	Select		$32 / 33$ Prescaler
:---						

2.7.4 PWDN Main MAIN SYNTHESIZER POWERDOWN

Main N [21]
The PWDN Main bit is used to switch the Main PLL between a powered up and powered down mode.
Furthermore, the PWDN Main bit operates in conjuction with the TRI-STATE ID. Main bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Function	
			0	1
PWDN Main	Main N[21]	Main Powerdown	Main PLL Active	Main PLL Powerdown

2.0 Programming Description (Continued)

2.8 FoLD[3:0]

MULTI-FUNCTION OUTPUT SELECT
[Main R[20], Aux R[20], Main R [21], Aux R[21]]
The $F_{0} L D$ control word is used to select which signal is routed to the $F_{0} L D$ pin.

F $_{\mathbf{o}}$ LD3	F $_{\mathbf{o}}$ LD2	Fob $_{\mathbf{o}}$ LD1	F $_{\mathbf{o}}$ LD0	FoLD Output State $^{\prime 0}$
0	0	0	0	LOW Logic State Output
0	0	0	1	Aux PLL R Divider Output, Push-Pull Output
0	0	1	0	Main PLL R Divider Output, Push-Pull Output
0	0	1	1	Open Drain Fastlock Output
0	1	0	0	Aux PLL Analog Lock Detect, Open Drain Output
0	1	0	1	Aux PLL N Divider Output, Push-Pull Output
0	1	1	0	Main PLL N Divider Output, Push-Pull Output
0	1	1	1	Reset Aux PLL Counters, LOW Logic State Output
1	0	0	0	Main PLL Analog Lock Detect, Open Drain Output
1	0	0	1	Aux PLL R Divider Output, Push-Pull Output
1	0	1	0	Main PLL R Divider Output, Push-Pull Output
1	0	1	1	Reset Main PLL Counters, LOW Logic State Output
1	1	0	0	Main and Aux Analog Lock Detect, Open Drain Output
1	1	0	1	Aux PLL N Divider Output, Push-Pull Output
1	1	1	0	Main PLL N Divider Output, Push-Pull Output
1	1	1	1	Reset All Counters, LOW Logic State Output

Physical Dimensions inches (millimeters) unless otherwise noted

20-Pin Thin Shrink Small Outline Package (TM) NS Package Number MTC20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

RECOMMENDED LAND PATTERN
1:1 RATIO WITH PACKAGE SOLDER PADS

24-Pin Chip Scale Package (SLB) NS Package Number SLB24A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Pin Ultra Thin Chip Scale Package (SLE) NS Package Number SLE20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor	National Semiconductor	National Semiconductor Corporation	Europe

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

[^0]: Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, refer to the Electrical Characteristics section. The guaranteed specifications apply only for the conditions listed.
 Note 2: This device is a high performance RF integrated circuit with an ESD rating <2 kV and is ESD sensitive. Handling and assembly of this device should only be done at ESD protected work stations.
 Note 3: GND = OV

