LMX2330U/LMX2331U/LMX2332U PLLatinum ${ }^{\text {TM }}$ Ultra Low Power Dual Frequency Synthesizer for RF Personal Communications LMX2330U 2.5 GHz/600 MHz LMX2331U 2.0 GHz/600 MHz LMX2332U 1.2 GHz/600 MHz

General Description

The LMX233xU devices are high performance frequency synthesizers with integrated dual modulus prescalers. The LMX233xU devices are designed for use as RF and IF local oscillators for dual conversion radio transceivers.
A $32 / 33$ or a $64 / 65$ prescale ratio can be selected for the 2.5 GHz LMX2330U RF synthesizer. A 64/65 or a 128/129 prescale ratio can be selected for both the LMX2331U and LMX2332U RF synthesizers. The IF circuitry contains an 8/9 or a $16 / 17$ prescaler. Using a proprietary digital phase locked loop technique, the LMX233xU devices generate very stable, low noise control signals for RF and IF voltage controlled oscillators. Both the RF and IF synthesizers include a two-level programmable charge pump. The RF synthesizer has dedicated Fastlock circuitry.
Serial data is transferred to the devices via a three-wire interface (Data, LE, Clock). Supply voltages from 2.7 V to 5.5 V are supported. The LMX233xU family features ultra low current consumption:
LMX2330U (2.5 GHz) - 3.3 mA , LMX2331U (2.0 GHz) -2.9 mA, LMX2332U (1.2 GHz) -2.5 mA at 3.0V.
The LMX233xU devices are available in 20 -Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP surface mount plastic packages.

Features

- Ultra Low Current Consumption
- Upgrade and Compatible to LMX233xL Family
- 2.7 V to 5.5 V Operation
- Selectable Synchronous or Asynchronous Powerdown Mode:
$I_{\text {CC-PWDN }}=1 \mu \mathrm{~A}$ typical
- Selectable Dual Modulus Prescaler:

LMX2330U	RF: $32 / 33$ or $64 / 65$
LMX2331U	RF: $64 / 65$ or $128 / 129$
LMX2332U	RF: $64 / 65$ or $128 / 129$
LMX2330U/31U/32U	IF: $8 / 9$ or $16 / 17$

- Selectable Charge Pump TRI-STATE ${ }^{\circledR}$ Mode
- Programmable Charge Pump Current Levels RF and IF: 0.95 or 3.8 mA
- Selectable Fastlock ${ }^{\text {TM }}$ Mode for the RF Synthesizer
- Push-Pull Analog Lock Detect Output
- Available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP

Applications

- Mobile Handsets
(GSM, GPRS, W-CDMA, CDMA, PCS, AMPS, PDC, DCS)
- Cordless Handsets
(DECT, DCT)
- Wireless Data
- Cable TV Tuners

Chip Scale Package (SLB24A)

10136681

Ultra Thin Chip Scale Package (SLE20A)

10136695

10136680
Thin Shrink Small Outline Package (MTC20)

Functional Block Diagram

Connection Diagrams

Chip Scale Package (SLB) (Top View)

Ultra Thin Chip Scale Package (SLE) (Top View)

Thin Shrink Small Outline Package (TM)
(Top View)

Pin Descriptions

Pin Name	Pin No. 20-Pin UTCSP	Pin No. 24-Pin CSP	Pin No. 20-Pin TSSOP	I/O	Description
V_{CC}	20	24	1	-	Power supply bias for the RF PLL analog and digital circuits. V_{CC} may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
$\mathrm{V}_{\mathrm{P}} \mathrm{RF}$	1	2	2	-	RF PLL charge pump power supply. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
$\mathrm{D}_{\mathrm{o}} \mathrm{RF}$	2	3	3	O	RF PLL charge pump output. The output is connected to the external loop filter, which drives the input of the VCO.
GND	3	4	4	-	Ground for the RF PLL digital circuitry.
$\mathrm{f}_{\mathrm{IN}} \mathrm{RF}$	4	5	5	I	RF PLL prescaler input. Small signal input from the VCO.

Pin Descriptions (Continued)

Pin Name	Pin No. 20-Pin UTCSP	Pin No. 24-Pin CSP	Pin No. 20-Pin TSSOP	I/O	Description
$\overline{\overline{f_{\text {IN }}} \mathrm{RF}}$	5	6	6	1	RF PLL prescaler complementary input. For single ended operation, this pin should be AC grounded. The LMX233xU RF PLL can be driven differentially when the bypass capacitor is omitted.
GND	6	7	7	-	Ground for the RF PLL analog circuitry.
$\mathrm{OSC}_{\text {in }}$	7	8	8	1	Reference oscillator input. The input has an approximate $\mathrm{V}_{\mathrm{CC}} / 2$ threshold and can be driven from an external CMOS or TTL logic gate.
GND	8	10	9	-	Ground for the IF PLL digital circuits, MICROWIRE ${ }^{\text {TM }}$, F_{o} LD, and oscillator circuits.
FoLD	9	11	10	0	Programmable multiplexed output pin. Functions as a general purpose CMOS TRI-STATE output, RF/IF PLL push-pull analog lock detect output, N and R divider output or Fastlock output, which connects a parallel resistor to the external loop filter.
Clock	10	12	11	1	MICROWIRE Clock input. High impedance CMOS input. Data is clocked into the 22-bit shift register on the rising edge of Clock.
Data	11	14	12	1	MICROWIRE Data input. High impedance CMOS input. Binary serial data. The MSB of Data is shifted in first. The last two bits are the control bits.
LE	12	15	13	I	MICROWIRE Latch Enable input. High impedance CMOS input. When LE transitions HIGH, Data stored in the shift register is loaded into one of 4 internal control registers.
GND	13	16	14	-	Ground for the IF PLL analog circuitry.
$\overline{\mathrm{f}_{\text {IN }}} \mathrm{IF}$	14	17	15	1	IF PLL prescaler complementary input. For single ended operation, this pin should be AC grounded. The LMX233xU IF PLL can be driven differentially when the bypass capacitor is omitted.
f_{IN} IF	15	18	16	1	IF PLL prescaler input. Small signal input from the VCO.
GND	16	19	17	-	Ground for the IF PLL digital circuitry, MICROWIRE, F LD, and oscillator circuits.
D。IF	17	20	18	0	IF PLL charge pump output. The output is connected to the external loop filter, which drives the input of the VCO.
$\mathrm{V}_{\mathrm{P}} \mathrm{IF}$	18	22	19	-	IF PLL charge pump power supply. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
V_{CC}	19	23	20	-	Power supply bias for the IF PLL analog and digital circuits, MICROWIRE, F_{0} LD, and oscillator circuits. $V_{C C}$ may range from 2.7 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
NC	X	1, 9, 13, 21	X	-	No connect.

Ordering Information

Model	Temperature Range	Package Description	Packing	NS Package Number
LMX2330USLEX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ultra Thin Chip Scale Package (UTCSP) Tape and Reel	2500 Units Per Reel	SLE20A
LMX2330USLBX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP) Tape and Reel	2500 Units Per Reel	SLB24A
LMX2330UTM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	73 Units Per Rail	MTC20
LMX2330UTMX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP) Tape and Reel	2500 Units Per Reel	MTC20
LMX2331USLEX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ultra Thin Chip Scale Package (UTCSP) Tape and Reel	2500 Units Per Reel	SLE20A
LMX2331USLBX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP) Tape and Reel	2500 Units Per Reel	SLB24A
LMX2331UTM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	73 Units Per Rail	MTC20
LMX2331UTMX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP) Tape and Reel	2500 Units Per Reel	MTC20
LMX2332USLEX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ultra Thin Chip Scale Package (UTCSP) Tape and Reel	2500 Units Per Reel	SLE20A
LMX2332USLBX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP) Tape and Reel	2500 Units Per Reel	SLB24A
LMX2332UTM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	73 Units Per Rail	MTC20
LMX2332UTMX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP) Tape and Reel	2500 Units Per Reel	MTC20

Detailed Block Diagram

Notes:

1. A $64 / 65$ or $128 / 129$ prescaler ratio can be selected for the LMX2331U and LMX2332U RF synthesizers. A $32 / 33$ or $64 / 65$ prescaler ratio can be selected for the LMX2330U RF synthesizer.
2. V_{CC} supplies power to the RF and IF prescalers, RF and IF feedback dividers, RF and IF reference dividers, RF and IF phase detectors, the OSC ${ }_{\text {in }}$ buffer, MICROWIRE, and F_{0} LD circuitry.
3. $V_{P} R F$ and V_{P} IF supply power to the charge pumps. They can be run separately as long as $V_{P} R F \geq V_{C C}$ and V_{P} IF $\geq V_{C C}$.

Absolute Maximum Ratings (Notes 1,	
If Military/Aerospace specified please contact the National Semic Distributors for availability and s	vices are required, ductor Sales Office/ cifications.
Power Supply Voltage	
V_{CC} to GND	-0.3 V to +6.5 V
V_{P} RF to GND	-0.3 V to +6.5 V
V_{P} IF to GND	-0.3 V to +6.5 V
Voltage on any pin to GND (V_{l})	
V_{1} must be $<+6.5 \mathrm{~V}$	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage Temperature Range (T_{S})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (solder 4 s) (T_{L})	$+260^{\circ} \mathrm{C}$
TSSOP $\theta_{\text {JA }}$ Thermal Impedance	$114.5^{\circ} \mathrm{C} / \mathrm{W}$
CSP $\theta_{\text {JA }}$ Thermal Impedance	$112^{\circ} \mathrm{C} / \mathrm{W}$

Recommended Operating Conditions (Note 1)

Power Supply Voltage

V_{CC} to GND	+2.7 V to +5.5 V
$\mathrm{~V}_{\mathrm{P}} \mathrm{RF}$ to GND	V_{CC} to +5.5 V
$\mathrm{~V}_{\mathrm{P}}$ IF to GND	V_{CC} to +5.5 V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

[^0]
Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}} \mathrm{RF}=\mathrm{V}_{\mathrm{P}} \mathrm{IF}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter		Conditions	Value			Units	
			Min	Typ	Max			
$\mathrm{I}_{\text {cc }}$ PARAMETERS								
$\mathrm{I}_{\mathrm{CC}}^{\text {RF + IF }}$	Power Supply Current, RF + IF Synthesizers	LMX2330U		Clock, Data and LE = GND $\mathrm{OSC}_{\text {in }}=\mathrm{GND}$ PWDN RF Bit $=0$ PWDN IF Bit = 0		3.3	4.3	mA
		LMX2331U			2.9	3.8	mA	
		LMX2332U			2.5	3.3	mA	
$\mathrm{I}_{\mathrm{CC}_{\text {RF }}}$	Power Supply Current, RF Synthesizer Only	LMX2330U	Clock, Data and LE = GND $\mathrm{OSC}_{\text {in }}=$ GND PWDN RF Bit $=0$ PWDN IF Bit = 1		2.3	3.0	mA	
		LMX2331U			1.9	2.5	mA	
		LMX2332U			1.5	2.0	mA	
$\mathrm{I}_{\mathrm{CC}_{\text {IF }}}$	Power Supply Current, IF Synthesizer Only	LMX233xU	Clock, Data and LE = GND $\mathrm{OSC}_{\text {in }}=$ GND PWDN RF Bit = 1 PWDN IF Bit $=0$		1.0	1.3	mA	
$\mathrm{I}_{\text {CC-PWDN }}$	Powerdown Current	LMX233xU	Clock, Data and LE = GND $\mathrm{OSC}_{\text {in }}=$ GND PWDN RF Bit = 1 PWDN IF Bit = 1		1.0	10.0	$\mu \mathrm{A}$	
RF SYNTHESIZER PARAMETERS								
$\mathrm{f}_{\text {IN }} \mathrm{RF}$	RF Operating Frequency	LMX2330U		500		2500	MHz	
		LMX2331U		200		2000	MHz	
		LMX2332U		100		1200	MHz	
$\mathrm{N}_{\text {RF }}$	RF N Divider Range		$\begin{aligned} & \text { Prescaler = 32/33 } \\ & (\text { Note 4) } \end{aligned}$	96		65631		
			Prescaler = 64/65 (Note 4)	192		131135		
			$\begin{array}{\|l} \hline \text { Prescaler }=128 / 129 \\ (\text { Note 4) } \end{array}$	384		262143		
$\mathrm{R}_{\text {RF }}$	RF R Divider Range			3		32767		
$\mathrm{F}_{\text {¢RF }}$	RF Phase Detector Frequency					10	MHz	

Electrical Characteristics（Continued）
$V_{C C}=V_{P} R F=V_{P} I F=3.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ ，unless otherwise specified

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
RF SYNTHESIZER PARAMETERS						
$\mathrm{Pf}_{\mathrm{IN}} \mathrm{RF}$	RF Input Sensitivity	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.0 \mathrm{~V} \\ & (\text { Note 5) } \end{aligned}$	－15		0	dBm
		$\begin{aligned} & 3.0<\mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & \text { (Note 5) } \end{aligned}$	－10		0	dBm
$\mathrm{ID} \text { 。 } \mathrm{RF}$ SOURCE	RF Charge Pump Output Source Current	$V_{D} R F=V_{P} R F / 2$ ID。RF Bit $=0$ （Note 6）		－0．95		mA
		V_{D} RF＝$V_{P} R F / 2$ ID。RF Bit＝ 1 （Note 6）		－3．80		mA
$\begin{aligned} & \hline \mathrm{ID} \mathrm{D}_{\circ} \mathrm{RF} \\ & \text { SINK } \end{aligned}$	RF Charge Pump Output Sink Current	$\begin{aligned} & \mathrm{VD}_{\circ} \mathrm{RF}=\mathrm{V}_{\mathrm{P}} \mathrm{RF} / 2 \\ & \mathrm{ID}_{\circ} \mathrm{RF} \text { Bit }=0 \\ & \text { (Note 6) } \end{aligned}$		0.95		mA
		$\mathrm{VD}_{\mathrm{o}} \mathrm{RF}=\mathrm{V}_{\mathrm{P}} \mathrm{RF} / 2$ ID。RFBit＝ 1 （Note 6）		3.80		mA
$\begin{aligned} & \hline \mathrm{ID}_{\circ} \mathrm{RF} \\ & \text { TRI-STATE } \end{aligned}$	RF Charge Pump Output TRI－STATE Current	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{VD}_{\circ} \mathrm{RF} \leq \mathrm{V}_{\mathrm{P}} \mathrm{RF}-0.5 \mathrm{~V} \\ & (\text { Note 6) } \end{aligned}$	－2．5		2.5	nA
ID。RF SINK Vs ID。RF SOURCE	RF Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch	$\begin{aligned} & \mathrm{VD}_{\circ} \mathrm{RF}=\mathrm{V}_{\mathrm{P}} \mathrm{RF} / 2 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { (Note 7) } \end{aligned}$		3	10	\％
ID。RF Vs VD。RF	RF Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{VD} \mathrm{O}_{\circ} \mathrm{RF} \leq \mathrm{V}_{\mathrm{P}} \mathrm{RF}-0.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & (\text { Note } 7) \\ & \hline \end{aligned}$		10	15	\％
$\begin{aligned} & \hline \mathrm{ID}_{\mathrm{o}} \mathrm{RF} \\ & \mathrm{Vs} \\ & \mathrm{~T}_{\mathrm{A}} \\ & \hline \end{aligned}$	RF Charge Pump Output Current Magnitude Variation Vs Temperature	$\begin{aligned} & \mathrm{VD}_{\circ} \mathrm{RF}=\mathrm{V}_{\mathrm{P}} \mathrm{RF} / 2 \\ & (\text { Note 7) } \end{aligned}$		10		\％

$\mathrm{f}_{\mathrm{IN}} \mathrm{IF}$	IF Operating Frequency	LMX2330U		45	600	MHz
		LMX2331U		45	600	MHz
		LMX2332U		45	600	MHz
$\mathrm{N}_{\text {IF }}$	IF N Divider Range		$\begin{aligned} & \text { Prescaler = 8/9 } \\ & \text { (Note 4) } \end{aligned}$	24	16391	
			Prescaler = 16/17 (Note 4)	48	32767	
$\mathrm{R}_{\text {IF }}$	IF R Divider Range			3	32767	
$\mathrm{F}_{\text {¢IF }}$	IF Phase Detector Frequency				10	MHz
$\mathrm{Pf}_{\text {IN }} \mathrm{IF}$	IF Input Sensitivity		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}} \leq 5.5 \mathrm{~V} \\ & \text { (Note 5) } \end{aligned}$	－10	0	dBm

Electrical Characteristics (Continued)
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}} \mathrm{RF}=\mathrm{V}_{\mathrm{P}} \mathrm{IF}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
IF SYNTHESIZER PARAMETERS						
$\mathrm{ID}_{\mathrm{o}} \mathrm{IF}$ SOURCE	IF Charge Pump Output Source Current	$\begin{aligned} & \mathrm{VD}_{\mathrm{o}} \mathrm{IF}=\mathrm{V}_{\mathrm{P}} \mathrm{IF} / 2 \\ & \mathrm{ID} \text { IF Bit }=0 \\ & \text { (Note 6) } \end{aligned}$		-0.95		mA
		$\begin{aligned} & \mathrm{VD}_{\circ} \mathrm{IF}=\mathrm{V}_{\mathrm{P}} \mathrm{IF} / 2 \\ & \mathrm{ID} \text { IF Bit }=1 \\ & \text { (Note 6) } \\ & \hline \end{aligned}$		-3.80		mA
$\begin{aligned} & \hline \mathrm{ID}_{\circ} \mathrm{IF} \\ & \text { SINK } \end{aligned}$	IF Charge Pump Output Sink Current	$\begin{aligned} & \mathrm{VD}_{\mathrm{o}} \mathrm{IF}=\mathrm{V}_{\mathrm{P}} \mathrm{IF} / 2 \\ & \mathrm{ID}_{\mathrm{o}} \mathrm{IF} \text { Bit }=0 \\ & (\text { Note 6) } \\ & \hline \end{aligned}$		0.95		mA
		$\begin{aligned} & \mathrm{VD}_{\mathrm{o}} \mathrm{IF}=\mathrm{V}_{\mathrm{P}} \mathrm{IF} / 2 \\ & \text { ID IF Bit }=1 \\ & \text { (Note 6) } \\ & \hline \end{aligned}$		3.80		mA
$\begin{aligned} & \hline \mathrm{ID}_{\mathrm{o}} \mathrm{IF} \\ & \text { TRI-STATE } \end{aligned}$	IF Charge Pump Output TRI-STATE Current	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{VD}_{\mathrm{O}} \mathrm{IF} \leq \mathrm{V}_{\mathrm{P}} \mathrm{IF}-0.5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	-2.5		2.5	nA
ID。IF SINK Vs ID. IF SOURCE	IF Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch	$\begin{aligned} & \mathrm{VD}_{\mathrm{O}} \mathrm{IF}=\mathrm{V}_{\mathrm{P}} \mathrm{IF} / 2 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & (\text { Note } 7) \end{aligned}$		3	10	\%
$\begin{aligned} & \hline \mathrm{ID} \text { o } \mathrm{IF} \\ & \mathrm{Vs} \\ & \mathrm{VD}_{\mathrm{o}} \mathrm{IF} \\ & \hline \end{aligned}$	IF Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{VD} \text { o } \mathrm{IF} \leq \mathrm{V}_{\mathrm{P}} \mathrm{IF}-0.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & (\text { Note } 7) \\ & \hline \end{aligned}$		10	15	\%
$\begin{aligned} & \mathrm{ID}_{\mathrm{o}} \mathrm{IF} \\ & \mathrm{Vs} \\ & \mathrm{~T}_{\mathrm{A}} \\ & \hline \end{aligned}$	IF Charge Pump Output Current Magnitude Variation Vs Temperature	$\begin{aligned} & \text { VD。IF }=\mathrm{V}_{\mathrm{P}} \mathrm{IF} / 2 \\ & (\text { Note } 7) \end{aligned}$		10		\%
OSCILLATOR PARAMETERS						
$\mathrm{F}_{\text {Osc }}$	Oscillator Operating Frequency		2		40	MHz
$\mathrm{V}_{\text {OSC }}$	Oscillator Sensitivity	(Note 8)	0.5		V_{cc}	V_{PP}
Iosc	Oscillator Input Current	$\mathrm{V}_{\text {OSC }}=\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OSC }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100			$\mu \mathrm{A}$
DIGITAL INTERFACE (Data, LE, Clock, FoLD)						
V_{IH}	High-Level Input Voltage		$0.8 \mathrm{~V}_{\mathrm{CC}}$			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage				$0.2 \mathrm{~V}_{\mathrm{CC}}$	V
I_{IH}	High-Level Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
ILL	Low-Level Input Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
V_{OH}	High-Level Output Voltage	$\mathrm{l}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.4 \\ \hline \end{gathered}$			V
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}$			0.4	V
MICROWIRE INTERFACE						
t_{CS}	Data to Clock Set Up Time	(Note 9)	50			ns
t_{CH}	Data to Clock Hold Time	(Note 9)	10			ns
$\mathrm{t}_{\text {CWH }}$	Clock Pulse Width HIGH	(Note 9)	50			ns
$\mathrm{t}_{\text {CWL }}$	Clock Pulse Width LOW	(Note 9)	50			ns
$\mathrm{t}_{\text {ES }}$	Clock to Load Enable Set Up Time	(Note 9)	50			ns
$\mathrm{t}_{\text {EW }}$	Latch Enable Pulse Width	(Note 9)	50			ns

Electrical Characteristics (Continued)
$V_{C C}=V_{P} R F=V_{P} I F=3.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	

PHASE NOISE CHARACTERISTICS

$\mathrm{L}_{\mathrm{N}}(\mathrm{f}) \mathrm{RF}$	RF Synthesizer Normalized Phase Noise Contribution (Note 10)		TCXO Reference Source ID。RF Bit = 1	-212.0	$\begin{gathered} \hline \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$
L(f) RF	RF Synthesizer Single Side Band Phase Noise Measured	LMX2330U	$\begin{aligned} & \hline \mathrm{f}_{\mathrm{IN}} \mathrm{RF}=2450 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{kHz} \text { Offset } \\ & \mathrm{F}_{\text {¢RF }}=200 \mathrm{kHz} \\ & \text { Loop Bandwidth }=7.5 \mathrm{kHz} \\ & \mathrm{~N}=12250 \\ & \mathrm{~F}_{\mathrm{Osc}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{OSC}}=0.632 \mathrm{~V} \text { PP } \\ & \mathrm{ID} \text { 共F Bit }=1 \\ & \text { PWDN IF Bit }=1 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & (\text { Note } 11) \\ & \hline \end{aligned}$	-77.24	$\begin{gathered} \hline \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$
		LMX2331U	$\begin{aligned} & \hline \mathrm{f}_{\mathrm{IN}} \mathrm{RF}=1960 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{kHz} \text { Offset } \\ & \mathrm{F}_{\mathrm{\phi RF}}=200 \mathrm{kHz} \\ & \text { Loop Bandwidth }=15 \mathrm{kHz} \\ & \mathrm{~N}=9800 \\ & \mathrm{~F}_{\mathrm{OSC}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{OsC}}=0.632 \mathrm{~V} \text { PP } \\ & \text { ID } \mathrm{RF} \text { Bit }=1 \\ & \text { PWDN IF Bit }=1 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & (\text { Note } 11) \end{aligned}$	-79.18	$\begin{gathered} \hline \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$
		LMX2332U	$\begin{aligned} & \hline \mathrm{f}_{\mathrm{IN}} \mathrm{RF}=900 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{kHz} \text { Offset } \\ & \mathrm{F}_{\mathrm{\phi RF}}=200 \mathrm{kHz} \\ & \text { Loop Bandwidth }=12 \mathrm{kHz} \\ & \mathrm{~N}=4500 \\ & \mathrm{~F}_{\mathrm{OSC}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{OsC}}=0.632 \mathrm{~V} \text { PP } \\ & \text { ID } \mathrm{RF} \text { Bit }=1 \\ & \text { PWDN IF Bit }=1 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & (\text { Note } 11) \\ & \hline \end{aligned}$	-85.94	$\begin{gathered} \hline \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$

Electrical Characteristics (Continued)
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}} \mathrm{RF}=\mathrm{V}_{\mathrm{P}} \mathrm{IF}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter		Conditions	Value			Units	
			Min	Typ	Max			
PHASE NOISE CHARACTERISTICS								
$\mathrm{L}_{\mathrm{N}}(\mathrm{f}) \mathrm{IF}$	IF Synthesizer Normalized Phase Noise Contribution (Note 10)			TCXO Reference Source ID. IF Bit = 1		-212.0		$\begin{gathered} \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$
L(f) IF	IF Synthesizer Single Side Band Phase Noise Measured	LMX233xU	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}} \mathrm{IF}=200 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{kHz} \text { Offset } \\ & \mathrm{F}_{\text {¢IF }}=200 \mathrm{kHz} \\ & \text { Loop Bandwidth }=18 \mathrm{kHz} \\ & \mathrm{~N}=1000 \\ & \mathrm{~F}_{\mathrm{OSC}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{OSC}}=0.632 \mathrm{~V} \text { PP } \\ & \mathrm{ID} \text { IF Bit }=1 \\ & \text { PWDN RF Bit }=1 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & (\text { Note } 11) \\ & \hline \end{aligned}$		-99.00		$\begin{gathered} \hline \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$	

Note 4: Some of the values in this range are illegal divide ratios $(B<A)$. To obtain continuous legal division, the Minimum Divide Ratio must be calculated. Use N $\geq P *(P-1)$, where P is the value of the prescaler selected.
Note 5: Refer to the LMX233xU $f_{I N}$ Sensitivity Test Setup section
Note 6: Refer to the LMX233xU Charge Pump Test Setup section
Note 7: Refer to the Charge Pump Current Specification Definitions for details on how these measurements are made.
Note 8: Refer to the LMX233xU OSC in Sensitivity Test Setup section
Note 9: Refer to the LMX233xU Serial Data Input Timing section
Note 10: Normalized Phase Noise Contribution is defined as: $L_{N}(f)=L(f)-20 \log (N)-10 \log \left(F_{\phi}\right)$, where $L(f)$ is defined as the single side band phase noise measured at an offset frequency, f , in a 1 Hz bandwidth. The offset frequency, f , must be chosen sufficiently smaller than the PLL's loop bandwidth, yet large enough to avoid substantial phase noise contribution from the reference source. N is the value selected for the feedback divider and F_{ϕ} is the RF/IF phase detector comparison frequency.
Note 11: The synthesizer phase noise is measured with the LMX2330TMEB/LMX2330SLBEB/LMX2330SLEEB Evaluation boards and the HP8566B Spectrum Analyzer.

Typical Performance Characteristics

Sensitivity

10136642
LMX2330U $f_{I N}$ RF Input Power Vs Frequency
$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}} \mathrm{RF}=5.5 \mathrm{~V}$

10136643

Typical Performance Characteristics
Sensitivity (Continued)

Typical Performance Characteristics
Sensitivity (Continued)

10136646

Typical Performance Characteristics
Sensitivity (Continued)

10136648
LMX233xU $f_{I N}$ IF Input Power Vs Frequency $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}} \mathrm{IF}=5.5 \mathrm{~V}$

Typical Performance Characteristics
Sensitivity (Continued)

LMX233xU OSC ${ }_{i n}$ Input Voltage Vs Frequency

10136653

Typical Performance Characteristics Charge Pump

Typical Performance Characteristics Charge Pump (Continued)

	LMX233xU TSSOP Zin RF										LMX233xU CSP Zif RF									
	$V_{c C}=V_{P} R F=3.0 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$					$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{P}} \mathrm{RF}=5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$					$V_{c C}=V_{P} R F=3.0 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$					$\mathrm{V}_{\mathrm{cC}}=\mathrm{V}_{\mathrm{P}} \mathrm{RF}=5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$				
$\begin{aligned} & \mathrm{f}_{\mathrm{N}} \mathrm{RF} \\ & (\mathrm{MHz}) \end{aligned}$	\|гі	$\angle \Gamma$	$\begin{gathered} R e \\ \mathrm{Zf}_{\mathrm{IN}} \mathrm{RF} \\ (\Omega) \end{gathered}$		$\underset{(\Omega)}{\mid Z f_{N} R F I}$	$\|\Gamma\|$	$\angle \Gamma$	$\begin{gathered} R_{e} \\ \mathbf{Z \mathbf { I } _ { 1 N }} \mathbf{R F} \\ (\Omega) \end{gathered}$	$\underset{(\Omega)}{\mathbf{Z f}_{\mathrm{IN}} \mathrm{~m}}$	$\underset{(\Omega)}{\mid \mathbf{I Z} \mathbf{f}_{\text {IN }} \text { RFI }}$	ІГ	$\angle \Gamma$	$\begin{gathered} R_{e} \\ \mathbf{Z} \mathbf{f i n}_{\mathbf{N}} \mathbf{R F} \\ (\Omega) \end{gathered}$		$\underset{(\Omega)}{\mid Z_{f_{1 N}} R F I}$	$\|\Gamma\|$	$\angle \Gamma$	$\begin{gathered} R_{e} \\ \mathrm{Zf}_{1 N} \mathrm{RF} \\ (\Omega) \end{gathered}$	$\overbrace{\mathrm{Zf}_{\mathrm{IN}} \mathrm{RF}}^{9 m}$ $\text { (} \Omega \text {) }$	$\underset{(\Omega)}{\text { IZ } \mathrm{ff}_{\text {I }} \text { RFI }}$
100	0.862	-6.23	439.774	-319.866	543.798	0.862	-6.07	448.230	-318.841	550.064	0.864	-6.44	431.004	330.013	542.838	0.864	-6.30	438.240	-327.814	547.281
200	0.834	-9.30	307.614	-272.274	410.803	0.834	-9.00	316.479	-271.581	417.031	0.836	-9.88	291.252	-277.923	402.577	0.836	-9.57	300.190	277.552	408.838
00	0.820	-12.1	237.700	-249.291	344.452	0.821	1.66	247.264	-251.098	352.406	0.821	-13.24	215.318	-248.361	328.702	0.821	12.76	224.624	-249.637	335.819
400	0.808	-15.25	185.048	-227.171	293.001	0.808	4.61	194.668	-229.054	300.601	0.808	-16.88	163.190	-219.893	273.832	0.808	16.24	171.345	-222.518	280.844
500	0.796	-18.5	147.785	-203.923	251.843	0.79	-17.66	156.935	-207.313	260.014	0.79	-20.90	126.193	-191.939	229.707	0.794	20.00	133.885	-196.200	237.528
600	0.781	-21.81	122.091	-181.461	218.710	0.782	20.70	130.906	-185.850	227.325	0.77	-24.82	102.956	-168.026	197.060	0.777	23.70	109.531	-172.887	204.663
700	0.765	-24.72	106.107	-163.758	195.129	0.767	23.45	113.780	-168.514	203.329	0.74	-28.29	90.820	-146.582	172.437	0.75	27.0	96.279	-151.333	179.363
800	0.	-28.35	87.984	-150.524	174.352	0.76	26.97	94.255	-155.481	181.819	0.742	31.22	79.737	-136.782	158.327	0.7	29.85	84.470	141.473	164.772
900	0.747	32.60	73.777	-134.500	153.406	0.750	-30.95	79.270	-139.668	160.596	0.7	-36.04	64.577	-123.951	139.764	0.7	-34.37	69.006	-128.610	145.954
1000	0.732	36.68	64.122	-120.908	136.859	0.735	34.73	69.215	-126.104	143.851	0.719	41.44	55.019	-108.415	121.577	0.723	39.46	58.684	-113.123	127.439
1100	0.717	41.25	55.780	-108.398	121.908	0.720	39.12	60.041	-113.215	128.151	0.694	47.27	48.056	94.403	105.931	0.698	45.08	51.159	98.547	1.035
1200	0.698	46.2	49.180	-96.605	108.403	0.702	43.8	52.848	-101.254	114.216	0.669	53.59	42.269	-82.401	92.610	0.674	51.0	45.061	-86.388	7.434
1300	0.678	-51.43	43.982	6.291	6. 853	0.683	48.7	47.173	-90.676	102.212	0.64	-60.42	37.856	-71.653	81.039	0.647	57.50	40.230	5.400	85.461
1400	0.663	56.68	39.397	-77.901	87.296	0.667	53.7	42.317	-82.070	92.337	0.610	68.3	34.108	-61.481	70.308	0.61	64.9	36.477	-64.872	4.424
1500	0.64	62.08	35.566	-70.500	78.963	0.653	58.7	38.281	-74.569	83.821	0.577	-77.01	31.049	-52.388	60.898	0.58	73.1	33.064	-55.554	4.649
1600	0.630	67.5	32.912	-63.544	71.562	. 63	63.9	35.335	. 423	76.121	. 539	-84.86	29.732	4.952	53.895	0.543	80.3	31.654	48.11	57.59
1700	0.608	72.2	31.565	-57.996	66.030	0.614	68.51	33.590	-61.632	70.191	0.47	27.97	100.359	-58.171	115.999	0.487	84.99	33.106	-42.105	53.562
1800	0.596	75.66	30.44	-54.462	62.392	0.601	71.	32.358	-57.943	66.366	0.455	89.90	32.829	-37.624	49.933	0.4	-85.8	33.886	-40.554	52.847
1900	0.598	80.06	27.915	-51.164	284	0.602	76.22	29.678	. 33	. 91	0.493	87.34	29.357	-38.214	8.189	0.500	88.90	29.576	-39.369	49.241
2000	07	85.3	24.914	-47.651	53.771	0.607	-81.32	26.675	50.603	57.203	0.520	79.89	25.120	-35.225	43.264	0.521	84.05	26.396	-37.576	45.921
2100	0.612	89.24	22.502	-43.994	. 414	0.611	-86.42	21.612	2.064	7.292	0.529	70.97	22.177	-30.771	37.930	0.525	75.52	23.556	-33.043	40.580
2200	605	84.09	21.289	-40.358	45.629	0.602	88.61	22.901	-43.251	48.940	0.531	61.99	20.155	-26.331	33.159	0.524	66.93	21.544	-28.595	35.802
2300	0.594	78.44	20.367	-36.566	41.855	0.589	83.13	21.961	-39.298	45.018	0.533	52.71	18.533	-21.975	28.747	0.525	57.61	19.706	-24.119	31.146
2400	0.590	72.27	19.111	-32.907	38.054	0.584	77.11	20.598	-35.536	41.074	0.550	43.18	16.578	-17.883	24.385	0.537	47.69	17.671	-19.749	26.501
2500	0.586	67.2	18.29	-30.064	35.194	0.576	72.09	19.79	-32.516	38.06	0.583	34.44	14.340	-14.328	20.272	0.566	38.	15.416	-16.05	22.25

Typical Performance Characteristics Input Impedance (Continued)

Marker $1=900 \mathrm{MHz}$
Marker $2=1800 \mathrm{MHz}$
Marker $3=1900 \mathrm{MHz}$ Marker $4=2500 \mathrm{MHz}$

LMX233xU UTCSP $f_{I N}$ RF Input Impedance

Marker $1=900 \mathrm{MHz}$
Marker $2=1800 \mathrm{MHz}$
Marker $3=1900 \mathrm{MHz}$
Marker $4=2500 \mathrm{MHz}$
Typical Performance Characteristics

LMX233xU TSSOP and LMX233xU CSP $f_{\text {IN }}$ IF Input Impedance Table

	LMX233xU TSSOP $\mathbf{Z} \mathbf{f}_{1 / 1 F}$										LMX233xU CSP $\mathrm{Zf}_{\mathbf{1}} 1 \mathrm{~F}$									
	$\mathrm{V}_{\mathrm{cC}}=\mathrm{V}_{\mathrm{P}} \mathrm{IF}=3.0 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$					$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}} \mathrm{IF}=5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$					$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{p}} \mathrm{IF}=3.0 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$					$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{P}} \mathrm{IF}=5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$				
(MHz)	\|г'	$\angle \Gamma$			$\begin{gathered} \left.I \mathrm{If}_{\mathrm{N}}(\Omega) \mathbf{F I}\right) \end{gathered}$	$\|\Gamma\|$	$\angle \Gamma$				\|гі	$\angle \Gamma$			$\underset{(\Omega)}{\left\|Z_{1} \mathbf{f}_{\mathbf{N}}\right\| \mathrm{F} \mid}$	$\|\Gamma\|$	$\angle \Gamma$		$\begin{gathered} q_{m} \\ Z f_{\mathbb{N}} \mid F(\Omega) \end{gathered}$	$\underset{(\Omega)}{\left\|Z f_{(1,}\right\| F \mid}$
50	. 884	-3.93	621.523	345.924	305	0.885	-3.81	20.568	. 995	716.864	0.8	-1.69	. 934	-242.583	7.940	0.899	-1.67	4.127	9.189	906.261
75	0.873	-5.30	503.424	.78	23	0.873	-5.18	511.352	-338.259	613.107	0.891	-3.44	3.122	-354.024	769.408	0.8	-3.33	. 5	-349.036	775.57
100	361	-6.42	629	. 996	704	0.8	6.24	666	. 00	805	0.88	4.98	5.334	-360.736	.533	0. 879	-4.85	543.967	7.1	650.739
125	0.851	-7.27	384.49	301.18	488.414	0.852	-7.10	391.664	300.482	493.65	0.868	6.23	445.309	339.29	559.84	0.86	-6.06	454.18	337.263	565.7
150	0.8	-8.1	34	8.744	453.0	0.844	-7.90	. 46	-287.1	457.753	0.858	-7.26	88.975	-319.0	503.085	0.858	-7.0	97.0	-317.892	08.
175	0.837	. 85	08	707	424.622	0.837	. 57	.546	. 058	430.020	0.850	8.18	348.616	3.51	229	0.850	7.98	6.200	03.914	8.23
200	0.832	-9.5	300.314	268.356	402.745	0.8	-9.22	309.296	267.480	408.913	0.8	-9.07	316.481	-291.646	430.369	0.844	-8.84	324.033	291.128	435.60
225	0.82	10.	279.576	260.995	382.46	0.8	-9.95	288.264	260.18	388	0.83	-9.93	289.893	282.342	404.6	0.839	-9.6	297.640	282.345	410.25
250	0.823	11.0	261.205	254.758	364.870	0.823	10.64	270.659	-254.417	371.462	0.834	10.77	. 263	-274.027	. 780	0.8	-10.45	5.67	3.085	. 03
275	0.819	11	244.399	248.227	348.350	0.8	-11.38	253.507	247.511	354.299	0.8	-11.63	247.024	265.1	362.40	0.8	-11.24	256.1	265.26	368.7
300	0.814	12.58	228.9	241.239	332.597	0.8	12.14	237.587	241.965	339.109	0.826	-12.50	228.671	705	344.5	0.826	-12.08	237.60	-257.879	350.6
325	0.812	-13.3	214.910	236.082	319.251	0.811	12.84	224.277	-236.738	106	0.82	13.38	2.305	-250.287	328.203	0.822	12.90	221.471	251.212	34.899
350	0.807	-14.1	201.728	228.591	304.874	0.807	-13.62	210.927	-230.202	312.223	0.819	-14.23	198.231	-242.453	313.176	0.819	-13.73	206.868	244.5	20.3
375	0.804	-14.9	189.889	223.629	293.373	0.804	14.44	198.121	224.602	497	0.816	15.21	. 656	-234.712	. 025	0.815	-14.63	192.740	6.7	305.274
400	0.801	-15.	178.372	-217.315	281.144	0.801	15.	187.401	9.200	288.388	0.81	16.0	172.185	227.189	285.066	0.8	-15.	180.755	229.88	292.43
425	0.797	-16.	167.895	. 342	269.915	0.797	16.0	176.91	21	277.208	0.80	-17.02	160.959	220.345	272.87	0.8	16.	169.6	222.89	280
450	0.794	17	158	-205.691	259.700	0.794	-16.81	. 586	208.198	267.267	0.805	17.9	150.694	-213.253	. 124	0.805	-17.28	. 91	216.102	268.242
475	0.79	-18.	150.375	-199.750	250.026	0.7	-17.67	158.301	-202.585	257.099	0.80	-18.9	141.126	-206.449	250.075	0.802	-18.1	149.61	210.2	258.0
500	0.787	-19.2	142.803	-194.502	24	0.787	-18.43	15	-1920	248.474	0.79	-19.92	132.835	0.384	240.414	0.799	-19.09	140.765	204.0	47.8
525	0.783	-20.10	135	-188.890	2	0.783	-19.20	144.065	-1920	240.231	0.796	20	125.186	-193.960	230.851	0.7	20.0	132.797	-197.693	238.154
550	0.779	-20.93	29.745	3.353	224.616	0.780	19.97	7.814	-187.051	232.338	0.7	21.8	8.197	-187.808	221.906	0.79	20.	125.69	-191.5	229.07
57	0.775	-21.73	124.298	-178.182	217	0.77	-20.75	131.86	-182.250	224.954	0.789	22	112.161	-181.85	213.658	0.789	-21.92	118.87	-185.88	0.640
600	0.770	-22.59	119.110	-172.763	209.8	0.77	1 -21.53	126.693	-176.798	217.5	0.7	23.86	106.393	-175.910	205.	0.785	-22.85	113.154	-180.1	212.

Typical Performance Characteristics Input Impedance (Continued)

LMX233xU UTCSP $f_{\text {IN }}$ IF Input Impedance

Marker $1=50 \mathrm{MHz}$
Marker $2=200 \mathrm{MHz}$
Marker $3=500 \mathrm{MHz}$ Marker $4=600 \mathrm{MHz}$

LMX233xU UTCSP $f_{I N}$ IF Input Impedance

Marker $1=50 \mathrm{MHz}$
Marker $2=200 \mathrm{MHz}$
Marker $3=500 \mathrm{MHz}$
Marker $4=600 \mathrm{MHz}$

Typical Performance Characteristics Input Impedance (Continued)

LMX233xU TSSOP OSC ${ }_{\text {in }}$ Input Impedance Vs Frequency $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

LMX233xU CSP OSC ${ }_{\text {in }}$ Input Impedance Vs Frequency
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

10136677

Typical Performance Characteristics Input Impedance (Continued)

> LMX233xU UTCSP OSC ${ }_{\text {in }}$ Input Impedance Vs Frequency $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

LMX2330U/LMX2331U/LMX2332U

Charge Pump Current Specification Definitions

$11=$ Charge Pump Sink Current at $\mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}}-\Delta \mathrm{V}$
$\mathrm{I} 2=$ Charge Pump Sink Current at $\mathrm{VD}_{\mathrm{o}}=\mathrm{V}_{\mathrm{P}} / 2$
$\mathrm{I} 3=$ Charge Pump Sink Current at $\mathrm{VD}_{\mathrm{O}}=\Delta \mathrm{V}$
$14=$ Charge Pump Source Current at $\mathrm{VD}_{\mathrm{o}}=\mathrm{V}_{\mathrm{P}}-\Delta \mathrm{V}$
$15=$ Charge Pump Source Current at $\mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}} / 2$
$16=$ Charge Pump Source Current at $\mathrm{VD}_{\mathrm{O}}=\Delta \mathrm{V}$
$\Delta \mathrm{V}=$ Voltage offset from the positive and negative rails. Dependent on the VCO tuning range relative to V_{CC} and GND . Typical values are between 0.5 V and 1.0 V .
V_{P} refers to either V_{P} RF or V_{P} IF
$V D_{0}$ refers to either $V D_{0} R F$ or $V D_{0} I F$
$I D_{0}$ refers to either $I D_{0}$ RF or $I D_{0} I F$
Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage

$$
\begin{aligned}
I D_{0} V s V D_{0} & =\frac{(|11|-||3|)}{(|11|+||3|)} \times 100 \% \\
& =\frac{(|14|-||6|)}{(|14|+||6|)} \times 100 \%
\end{aligned}
$$

Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch

$$
I D_{0} \text { SINK Vs ID }
$$

10136664
Charge Pump Output Current Magnitude Variation Vs Temperature

Test Setups

The block diagram above illustrates the setup required to measure the LMX233xU device's RF charge pump sink current. The same setup is used for the LMX2330TMEB/ LMX2330SLEEB Evaluation Boards. The IF charge pump measurement setup is similar to the RF charge pump measurement setup. The purpose of this test is to assess the functionality of the RF charge pump.
This setup uses an open loop configuration. A power supply is connected to V_{cc} and swept from 2.7V to 5.5 V . By means of a signal generator, a 10 MHz signal is typically applied to the $f_{I N}$ RF pin. The signal is one of two inputs to the phase detector. The 3 dB pad provides a 50Ω match between the PLL and the signal generator. The $\mathrm{OSC}_{\text {in }}$ pin is tied to V_{cc}. This establishes the other input to the phase detector. Alternatively, this input can be tied directly to the ground plane. With the D_{0} RF pin connected to a Semiconductor Parameter Analyzer in this way, the sink, source, and TRI-STATE currents can be measured by simply toggling the Phase Detector Polarity and Charge Pump State states in Code Loader. Similarly, the LOW and HIGH currents can be mea-
sured by switching the Charge Pump Gain's state between 1X and 4 X in Code Loader.
Let F_{r} represent the frequency of the signal applied to the $\mathrm{OSC}_{\text {in }}$ pin, which is simply zero in this case (DC), and let F_{p} represent the frequency of the signal applied to the f_{IN} RF pin. The phase detector is sensitive to the rising edges of F_{r} and F_{p}. Assuming positive VCO characteristics; the charge pump turns ON and sinks current when the first rising edge of F_{p} is detected. Since F_{r} has no rising edge, the charge pump continues to sink current indefinitely.
Toggling the Phase Detector Polarity state to negative VCO characteristics allows the measurement of the RF charge pump source current. Likewise, selecting TRI-STATE (TRI-STATE ID。RF Bit = 1) for Charge Pump State in Code Loader facilitates the measurement of the TRI-STATE current.
The measurements are repeated at different temperatures, namely $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$.

The block diagram above illustrates the setup required to measure the LMX233xU device's RF input sensitivity level. The same setup is used for the LMX2330TMEB/ LMX2330SLEEB Evaluation Boards. The IF input sensitivity test setup is similar to the RF sensitivity test setup. The purpose of this test is to measure the acceptable signal level to the $f_{I N}$ RF input of the PLL chip. Outside the acceptable signal range, the feedback divider begins to divide incorrectly and miscount the frequency.
The setup uses an open loop configuration. A power supply is connected to V_{cc} and swept from 2.7 V to 5.5 V . The IF PLL is powered down (PWDN IF Bit = 1). By means of a signal generator, an RF signal is applied to the $f_{\mathrm{IN}} R \mathrm{RF}$ pin. The 3 dB pad provides a 50Ω match between the PLL and the signal generator. The $\mathrm{OSC}_{\text {in }}$ pin is tied to V_{cc}. The N value is typically set to 10000 in Code Loader, i.e. RF N_CNTRB Word = 156 and RF N_CNTRA Word $=16$ for PRE RF Bit = 1 (LMX2330U) or PRE RF $=0$ (LMX2331U and LMX2332U). The feedback divider output is routed to the F_{0} LD pin by
selecting the RF PLL N Divider Output word (F_{0} LD Word $=$ 6 or 14) in Code Loader. A Universal Counter is connected to the $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ pin and tied to the 10 MHz reference output of the signal generator. The output of the feedback divider is thus monitored and should be equal to $f_{I N} R F / N$.
The $f_{\text {IN }}$ RF input frequency and power level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$. Sensitivity is reached when the frequency error of the divided RF input is greater than or equal to 1 Hz . The power attenuation from the cable and the 3 dB pad must be accounted for. The feedback divider will actually miscount if too much or too little power is applied to the $f_{I N}$ RF input. Therefore, the allowed input power level will be bounded by the upper and lower sensitivity limits. In a typical application, if the power level to the f_{IN} RF input approaches the sensitivity limits, this can introduce spurs and degradation in phase noise. When the power level gets even closer to these limits, or exceeds it, then the RF PLL loses lock.

Test Setups

The block diagram above illustrates the setup required to measure the LMX233xU device's OSC in buffer sensitivity level. The same setup is used for the LMX2330TMEB/ LMX2330SLEEB Evaluation Boards. This setup is similar to the $f_{I N}$ sensitivity setup except that the signal generator is now connected to the $\mathrm{OSC}_{\text {in }}$ pin and both $\mathrm{f}_{\text {IN }}$ pins are tied to V_{CC}. The 51Ω shunt resistor matches the $\mathrm{OSC}_{\text {in }}$ input to the signal generator. The R counter is typically set to 1000, i.e. RF R_CNTR Word = 1000 or IF R_CNTR Word = 1000. The reference divider output is routed to the F_{o} LD pin by selecting the RF PLL R Divider Output word (F_{o} LD Word $=2$ or 10) or the IF PLL R Divider Output word (F_{o} LD Word $=1$ or
9) in Code Loader. Similarly, a Universal Counter is connected to the $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ pin and is tied to the 10 MHz reference output from the signal generator. The output of the reference divider is monitored and should be equal to $\mathrm{OSC}_{\text {in }} / \mathrm{RF}$ R_CNTR or $\mathrm{OSC}_{\text {in }}$ / IF R_CNTR.
Again, V_{Cc} is swept from 2.7 V to 5.5 V . The $\mathrm{OSC}_{\text {in }}$ input frequency and voltage level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$. Sensitivity is reached when the frequency error of the divided input signal is greater than or equal to 1 Hz .

The block diagram above illustrates the setup required to measure the LMX233xU device's RF input impedance. The IF input impedance and reference oscillator impedance setups are very much similar. The same setup is used for the LMX2330TMEB/ LMX2330SLEEB Evaluation Boards. Measuring the device's input impedance facilitates the design of appropriate matching networks to match the PLL to the VCO, or in more critical situations, to the characteristic impedance of the printed circuit board (PCB) trace, to prevent undesired transmission line effects.

Before the actual measurements are taken, the Network Analyzer needs to be calibrated, i.e. the error coefficients need to be calculated. Therefore, three standards will be used to calculate these coefficients: an open, short and a matched load. A 1-port calibration is implemented here.
To calculate the coefficients, the PLL chip is first removed from the PCB. The Network Analyzer port is then connected to the RF OUT connector of the evaluation board and the desired operating frequency is set. The typical frequency range selected for the LMX233xU device's RF synthesizer is from 100 MHz to 2500 MHz . The standards will be located down the length of the RF OUT transmission line. The transmission line adds electrical length and acts as an offset from the reference plane of the Network Analyzer; therefore, it
must be included in the calibration. Although not shown, 0Ω resistors are used to complete the RF OUT transmission line (trace).
To implement an open standard, the end of the RF OUT trace is simply left open. To implement a short standard, a 0 Ω resistor is placed at the end of the RF OUT transmission line. Last of all, to implement a matched load standard, two 100Ω resistors in parallel are placed at the end of the RF OUT transmission line. The Network Analyzer calculates the calibration coefficients based on the measured S_{11} parameters. With this all done, calibration is now complete.
The PLL chip is then placed on the PCB. A power supply is connected to V_{cc} and swept from 2.7 V to 5.5 V . The $\mathrm{OSC}_{\text {in }}$ pin is tied to the ground plane. Alternatively, the $O S C_{\text {in }}$ pin can be tied to V_{Cc}. In this setup, the complementary input ($\overline{\mathrm{I}_{\mathrm{IN}}} \mathrm{RF}$) is AC coupled to ground. With the Network Analyzer still connected to RF OUT, the measured f_{IN} RF impedance is displayed.
Note: The impedance of the reference oscillator is measured when the oscillator buffer is powered up (PWDN RF Bit $=0$ or PWDN IF Bit $=0$), and when the oscillator buffer is powered down (PWDN RF Bit = 1 and PWDN IF Bit = 1).

LMX233xU Serial Data Input Timing

Notes:

1. Data is clocked into the 22-bit shift register on the rising edge of Clock
2. The MSB of Data is shifted in first.

1.0 Functional Description

The basic phase-lock-loop (PLL) configuration consists of a high-stability crystal reference oscillator, a frequency synthesizer such as the National Semiconductor LMX233xU, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, programmable reference R and feedback N frequency dividers. The VCO frequency is established by dividing the crystal reference signal down via the reference divider to obtain a comparison reference frequency. This reference signal, F_{r}, is then presented to the input of a phase/frequency detector and compared with the feedback signal, F_{p}, which was obtained by dividing the VCO frequency down by way of the feedback divider. The phase/ frequency detector measures the phase error between the F_{r} and F_{p} signals and outputs control signals that are directly proportional to the phase error. The charge pump then pumps charge into or out of the loop filter based on the magnitude and direction of the phase error. The loop filter converts the charge into a stable control voltage for the VCO. The phase/frequency detector's function is to adjust the voltage presented to the VCO until the feedback signal's frequency and phase match that of the reference signal. When this "Phase-Locked" condition exists, the VCO frequency will be N times that of the comparison frequency, where N is the feedback divider ratio.

1.1 REFERENCE OSCILLATOR INPUT

The reference oscillator frequency for both the RF and IF PLLs is provided from an external reference via the OSC ${ }_{\text {in }}$ pin. The reference buffer circuit supports input frequencies from 5 to 40 MHz with a minimum input sensitivity of $0.5 \mathrm{~V}_{\mathrm{PP}}$. The reference buffer circuit has an approximate $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate. Typically, the $\mathrm{OSC}_{\text {in }}$ pin is connected to the output of a crystal oscillator.

1.2 REFERENCE DIVIDERS (R COUNTERS)

The reference dividers divide the reference input signal, $\mathrm{OSC}_{\text {in }}$, by a factor of R . The output of the reference divider circuits feeds the reference input of the phase detector. This reference input to the phase detector is often referred to as the comparison frequency. The divide ratio should be chosen such that the maximum phase comparison frequency ($\mathrm{F}_{\mathrm{\phi RF}}$ or $F_{\phi I F}$) of 10 MHz is not exceeded.
The RF and IF reference dividers are each comprised of 15-bit CMOS binary counters that support a continuous integer divide ratio from 3 to 32767 . The RF and IF reference divider circuits are clocked by the output of the reference buffer circuit which is common to both.

1.3 PRESCALERS

The $\mathrm{f}_{\mathrm{IN}} R F\left(\mathrm{f}_{\mathrm{IN}} \mathrm{IF}\right)$ and $\overline{\mathrm{f}_{\mathrm{IN}}} \mathrm{RF}\left(\overline{\mathrm{f}_{I N}} \mathrm{IF}\right)$ input pins drive the input of a bipolar, differential-pair amplifier. The output of the bipolar, differential-pair amplifier drives a chain of ECL D-type flip-flops in a dual modulus configuration. The output of the prescaler is used to clock the subsequent feedback dividers. The RF and IF PLL complementary inputs can be driven differentially, or the negative input can be AC coupled to ground through an external capacitor for single ended configuration. A $32 / 33$ or a $64 / 65$ prescale ratio can be selected for the 2.5 GHz LMX2330U RF synthesizer. A 64/65 or a 128/129 prescale ratio can be selected for both the

LMX2331U and LMX2332U RF synthesizers. The IF circuitry contains an 8/9 or a 16/17 prescaler.

1.4 PROGRAMMABLE FEEDBACK DIVIDERS (N COUNTERS)

The programmable feedback dividers operate in concert with the prescalers to divide the input signal, f_{IN}, by a factor of N . The output of the programmable reference divider is provided to the feedback input of the phase detector circuit. The divide ratio should be chosen such that the maximum phase comparison frequency ($\mathrm{F}_{\text {¢RF }}$ or $\mathrm{F}_{\text {申IF }}$) of 10 MHz is not exceeded.
The programmable feedback divider circuit is comprised of an A counter (swallow counter) and a B counter (programmble binary counter). The RF N_CNTRA counter is a 7-bit CMOS swallow counter, programmable from 0 to 127. The IF N_CNTRA counter is also a 7-bit CMOS swallow counter, but programmable from 0 to 15 . The three most significant bits are 'don't cares' in this case. The RF N_CNTRB and IF N_CNTRB counters are both 11-bit CMOS binary counters, programmable from 3 to 2047. A continuous integer divide ratio is achieved if $N \geq P^{*}(P-1)$, where P is the value of the prescaler selected. Divide ratios less than the minimum continuous divide ratio are achievable as long as the binary programmable counter value is greater than the swallow counter value (N_CNTRB \geq N_CNTRA). Refer to Sections 2.5.1, 2.5.2, 2.7.1 and 2.7.2 for details on how to program the N_CNTRA and N_CNTRB counters. The following equations are useful in determining and programming a particular value of N :

$$
\begin{aligned}
& N=\left(P \times N_{-} C N T R B\right)+N _C N T R A \\
& f_{\mathrm{IN}}=N \times F_{\phi}
\end{aligned}
$$

Definitions:

$F_{\text {¢ }}$:	RF or IF phase detector comparison frequency
f_{IN} :	RF or IF input frequency
N_CNTRA:	RF or IF A counter value
N_CNTRB:	RF or IF B counter value
P:	Preset modulus of the dual modulus prescaler
	LMX2330U RF synthesizer: $\mathrm{P}=32$ or 64
	LMX2331U RF synthesizer: $P=64$ or 128
	LMX2332U RF synthesizer: $\mathrm{P}=64$ or 128
	LMX233xU IF synthesizer: $\mathrm{P}=8$ or 16

1.5 PHASE/FREQUENCY DETECTORS

The RF and IF phase/frequency detectors are driven from their respective N and R counter outputs. The maximum frequency for both the RF and IF phase detector inputs is 10 MHz . The phase/frequency detector outputs control the respective charge pumps. The polarity of the pump-up or pump-down control signals are programmed using the PD_POL RF or PD_POL IF control bits, depending on whether the RF or IF VCO characteristics are positive or negative. Refer to Sections 2.4.2 and 2.6.2 for more details. The phase/frequency detectors have a detection range of -2π to $+2 \pi$. The phase/frequency detectors also receive a feedback signal from the charge pump in order to eliminate dead zone.

1．0 Functional Description（Continued）

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

Notes：
1．The minimum width of the pump－up and pump－down current pulses occur at the $D_{0} R F$ or D_{0} IF pins when the loop is phase locked．
2．The diagram assumes positive VCO characteristics，i．e．PD＿POL RF or PD＿POL IF＝ 1 ．
3．F_{r} is the phase detector input from the reference divider（ R counter）．
4．$\quad F_{p}$ is the phase detector input from the programmable feedback divder（ N counter）．
5．D_{0} refers to either the RF or IF charge pump output．

1．6 CHARGE PUMPS

The charge pump directs charge into or out of an external loop filter．The loop filter converts the charge into a stable control voltage which is applied to the tuning input of the VCO．The charge pump steers the VCO control voltage towards V_{P} RF or V_{P} IF during pump－up events and towards GND during pump－down events．When locked，DoRF or D_{o} IF are primarily in a TRI－STATE mode with small corrections occuring at the phase comparator rate．The charge pump output current magnitude can be selected by toggling the ID。 RF or ID。 IF control bits．

1．7 MICROWIRE SERIAL INTERFACE

The programmable register set is accessed via the MI－ CROWIRE serial interface．The interface is comprised of three signal pins：Clock，Data and LE（Latch Enable）．Serial data is clocked into the 22－bit shift register on the rising edge of Clock．The last two bits decode the internal control regis－ ter address．When LE transitions HIGH，data stored in the shift register is loaded into one of four control registers depending on the state of the address bits．The MSB of Data is loaded in first．The synthesizers can be programmed even in power down mode．A complete programming description is provided in Section 2．0 Programming Description．

1．8 MULTI－FUNCTION OUTPUTS

The LMX233xU device＇s F_{0} LD output pin is a multi－function output that can be configured as the RF FastLock output，a push－pull analog lock detect output，counter reset，or used to monitor the output of the various reference divider（ R counter）or feedback divider（ N counter）circuits．The F。LD control word is used to select the desired output function． When the PLL is in powerdown mode，the F_{o} LD output is pulled to a LOW state．A complete programming description of the multi－function output is provided in Section 2．8 FoLD．

1．8．1 Push－Pull Analog Lock Detect Output

An analog lock detect status generated from the phase detector is available on the F_{0} LD output pin if selected．The lock detect output goes HIGH when the charge pump is inactive．It goes LOW when the charge pump is active during a comparison cycle．When viewed with an oscilloscope， narrow negative pulses are observed when the charge pump turns on．The lock detect output signal is a push－pull con－ figuration．
Three separate lock detect signals are routed to the multi－ plexer．Two of these monitor the＇lock＇status of the individual synthesizers．The third detects the condition when both the RF and IF synthesizers are in a＇locked state＇．External circuitry however，is required to provide a steady DC signal to indicate when the PLL is in a locked state．Refer to Section $2.8 \mathrm{~F}_{\mathrm{o}}$ LD for details on how to program the different lock detect options．

1．0 Functional Description

1．8．2 Open Drain FastLock Output

The LMX233xU Fastlock feature allows faster loop response time during lock aquisition．The loop response time（lock time）can be approximately halved if the loop bandwidth is doubled．In order to achieve this，the same gain／phase relationship at twice the loop bandwidth must be maintained． This can be achieved by increasing the charge pump current from $0.95 \mathrm{~mA}\left(\mathrm{ID}_{\mathrm{o}}\right.$ RF Bit $\left.=0\right)$ in the steady state mode，to 3.8 mA （ID。RF Bit＝1）in Fastlock．When the FoLD output is configured as a FastLock output，an open drain device is enabled．The open drain device switches in a parallel resis－ tor R2＇to ground，of equal value to resistor R2 of the external loop filter．The loop bandwidth is effectively doubled and stability is maintained．Once locked to the correct frequency， the PLL will return to a steady state condition．Refer to Section 2．8 $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ for details on how to configure the $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ output to an open drain Fastlock output．

1．8．3 Counter Reset

Three separate counter reset functions are provided．When the $F_{0} L D$ is programmed to Reset IF Counters，both the IF feedback divider and the IF reference divider are held at their load point．When the Reset RF Counters is programmed， both the RF feedback divider and the RF reference divider are held at their load point．When the Reset All Counters mode is enabled，all feedback dividers and reference divid－ ers are held at their load point．When the device is pro－ grammed to normal operation，both the feedback divider and reference divider are enabled and resume counting in＇close＇ alignment to each other．Refer to Section 2.8 FoLD for more details．

1．8．4 Reference Divider and Feedback Divider Output

The outputs of the various N and R dividers can be moni－ tored by selecting the appropriate $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ word．This is essen－ tial when performing OSC $_{\text {in }}$ or f_{IN} sensitivity measurements． Refer to the Test Setups section for more details．Refer to Section 2．8 $\mathrm{F}_{\mathrm{o}} \mathrm{LD}$ for more details on how to route the appropriate divider output to the F_{o} LD pin．

1．9 POWER CONTROL

Each synthesizer in the LMX233xU device is individually power controlled by device powerdown bits．The powerdown word is comprised of the PWDN RF（PWDN IF）bit，in conjuction with the TRI－STATE ID。RF（TRI－STATE ID ${ }_{\mathbf{o}}$ IF） bit．The powerdown control word is used to set the operating mode of the device．Refer to Sections 2．4．4，2．5．4，2．6．4， and 2．7．4 for details on how to program the RF or IF power－ down bits．
When either the RF synthesizer or the IF synthesizer enters the powerdown mode，the respective prescaler，phase de－ tector，and charge pump circuit are disabled．The D_{0} RF（ D_{\circ} $I F$ ），$f_{I N} R F\left(f_{I N} I F\right)$ ，and $\overline{f_{I N}} R F\left(\overline{f_{I N}} \operatorname{IF}\right.$ ）pins are all forced to a high impedance state．The reference divider and feedback divider circuits are held at the load point during powerdown． The oscillator buffer is disabled when both the RF and IF synthesizers are powered down．The $\mathrm{OSC}_{\text {in }}$ pin is forced to a HIGH state through an approximate $100 \mathrm{k} \Omega$ resistance when this condition exists．When either synthesizer is acti－ vated，the respective prescaler，phase detector，charge pump circuit，and the oscillator buffer are all powered up． The feedback divider，and the reference divider are held at load point．This allows the reference oscillator，feedback divider，reference divider and prescaler circuitry to reach proper bias levels．After a finite delay，the feedback and reference dividers are enabled and they resume counting in ＇close＇alignment（the maximum error is one prescaler cycle）． The MICROWIRE control register remains active and ca－ pable of loading and latching data while in the powerdown mode．

Synchronous Powerdown Mode

In this mode，the powerdown function is gated by the charge pump．When the device is configured for synchronous pow－ erdown，the device will enter the powerdown mode upon completion of the next charge pump pulse event．

Asynchronous Powerdown Mode

In this mode，the powerdown function is NOT gated by the completion of a charge pump pulse event．When the device is configured for asynchronous powerdown，the part will go into powerdown mode immediately．

TRI－STATE ID．	PWDN	Operating Mode
0	0	PLL Active，Normal Operation
1	0	PLL Active，Charge Pump Output in High Impedance State
0	1	Synchronous Powerdown
1	1	Asynchronous Powerdown

Notes：
1．TRI－STATE ID。 refers to either the TRI－STATE ID。RF or TRI－STATE ID。 IF bit ．
2．PWDN refers to either the PWDN RF or PWDN IF bit．

2.0 Programming Description

2.1 MICROWIRE INTERFACE

The 22-bit shift register is loaded via the MICROWIRE interface. The shift register consists of a 20-bit Data[19:0] Field and a 2-bit Address[1:0] Field as shown below. The Address Field is used to decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of 4 control registers depending on the state of the address bits. The MSB of Data is loaded in first. The Data Field assignments are shown in Section 2.3 CONTROL REGISTER CONTENT MAP.

MSB		LSB	
	Data[19:0]		Address[1:0]
21	21	0	

2.2 CONTROL REGISTER LOCATION

The address bits Address[1:0] decode the internal register address. The table below shows how the address bits are mapped into the target control register.

Address[1:0] Field		Target Register
0	0	IF R
0	1	IF N
1	0	RF R
1	1	RF N

2.3 CONTROL REGISTER CONTENT MAP

The control register content map describes how the bits within each control register are allocated to specific control functions.
2.0 Programming Description (Continued)

Reg.	Most S	Significa	ant Bit			SHIFT REGISTER BIT LOCATION														Least Significant Bit		
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Data Field																				Address Field	
IF R	FoLD0	FoLD2	TRI- STATE ID ID IF	$\begin{aligned} & \mathrm{ID}_{\mathrm{o}} \\ & \mathrm{IF} \end{aligned}$	$\begin{gathered} \hline \mathrm{PD}_{-} \\ \mathrm{POL} \\ \mathrm{IF} \end{gathered}$	IF R_CNTR[14:0]															0	0
IF N	$\begin{gathered} \text { PWDN } \\ \text { IF } \end{gathered}$	$\begin{gathered} \hline \text { PRE } \\ \text { IF } \end{gathered}$	IF N_CNTRB[10:0]											IF N_CNTRA[6:0]							0	1
RF R	FoLD1	FoLD3	$\begin{array}{\|c\|} \hline \text { TRI- } \\ \text { STATE } \\ \text { ID } \\ \text { RF } \end{array}$	$\begin{aligned} & \mathrm{ID}_{\mathrm{o}} \\ & \mathrm{RF} \end{aligned}$	$\begin{gathered} \hline \mathrm{PD}_{-} \\ \mathrm{POL} \\ \mathrm{RF} \end{gathered}$	RF R_CNTR[14:0]															1	0
RF N	$\begin{gathered} \hline \text { PWDN } \\ \text { RF } \end{gathered}$	$\begin{gathered} \text { PRE } \\ \text { RF } \end{gathered}$	RF N_CNTRB[10:0]											RF N_CNTRA[6:0]							1	1

2.0 Programming Description
 (Continued)

2.4 IF R REGISTER

The IF R register contains the IF R_CNTR, PD_POL IF, ID IF, and TRI-STATE ID。 IF control words, in addition to two bits that compose the F_{o} LD control word. The detailed descriptions and programming information for each control word is discussed in the following sections. IF R_CNTR[14:0]

Reg.	Most Significant Bit								SHIFT REGISTER BIT LOCATION										Least Significant Bit			
	21	20	19	18	17	16	15	14	13	12	11	10	9	8		6	5	4	3	2	1	0
	Data Field																				Address Field	
$\begin{gathered} \text { IF } \\ \text { R } \end{gathered}$	FoLDo	FoLD2	$\begin{array}{\|c\|} \hline \text { TRI- } \\ \hline \text { STATE } \\ \hline \text { IDo } \\ \text { IF } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ID}_{0} \\ & \text { IF } \end{aligned}$	PD_ POL IF	IF R_CNTR[14:0]															0	0

2.4.1 IF R_CNTR[14:0] IF Synthesizer Programmable Reference Divider (R Counter)

IF R[2:16]
The IF reference divider (IF R_CNTR) can be programmed to support divide ratios from 3 to 32767. Divide ratios less than 3 are prohibited.

Divide Ratio	IF R_CNTR[14:0]														
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

2.4.2 PD_POL IF

IF Synthesizer Phase Detector Polarity
IF R[17]
The PD_POL IF bit is used to control the IF synthesizer's phase detector polarity based on the VCO tuning characteristics.

Control Bit	Register Location	Description	Function	
		0	1	
PD_POL IF	IF R[17]	IF Phase Detector Polarity	IF VCO Negative Tuning Characteristics	IF VCO Positive Tuning Characteristics

2.4.3 ID IF IF Synthesizer Charge Pump Current Gain
The ID IF bit controls the IF synthesizer's charge pump gain. Two current levels are available.

Control Bit	Register Location	Description	Function	
			0	1
ID。IF	IF R[18]	IF Charge Pump	LOW	HIGH
		Current Gain	0.95 mA	3.80 mA

2．0 Programming Description
 （Continued）

2．4．4 TRI－STATE ID。 IF
IF Synthesizer Charge Pump Tri－state Current
IF R［19］

The TRI－STATE ID。 IF bit allows the charge pump to be switched between a normal operating mode and a high impedance output state．This happens asynchronously with the change in the TRI－STATE ID IF bit．
Furthermore，the TRI－STATE ID。 IF bit operates in conjuction with the PWDN IF bit to set a synchronous or an asynchronous powerdown mode．

Control Bit	Register Location	Description	Function	
			0	1
TRI－STATE ID．IF	IF R［19］	IF Charge Pump TRI－STATE Current	IF Charge Pump Normal Operation	IF Charge Pump Output in High Impedance State

2．5 IF N REGISTER

The IF N register contains the IF N＿CNTRA，IF N＿CNTRB，PRE IF，and PWDN IF control words．The IF N＿CNTRA and IF N＿CNTRB control words are used to setup the programmable feedback divider．The detailed description and programming information for each control word is discussed in the following sections．

2．5．1 IF N＿CNTRA［6：0］IF Synthesizer Swallow Counter（A Counter）
 IF N［2：8］

The IF N＿CNTRA control word is used to setup the IF synthesizer＇s A counter．The A counter is a 7－bit swallow counter used in the programmable feedback divider．The IF N＿CNTRA control word can be programmed to values ranging from 0 to 15 ．The three most significant bits are＇don＇t care bits＇in this case．

Divide Ratio	IF N＿CNTRA［6：0］							
	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
0	X	X	X	0	0	0	0	
1	X	X	X	0	0	0	1	
\bullet								
15	X	X	X	1	1	1	1	

2．5．2 IF N＿CNTRB［10：0］IF Synthesizer Programmable Binary Counter（B Counter）

IF N［9：19］
The IF N＿CNTRB control word is used to setup the IF synthesizer＇s B counter．The B counter is an 11－bit programmable binary counter used in the programmable feedback divider．The IF N＿CNTRB control word can be programmed to values ranging from 3 to 2047.

Divide Ratio	IF N＿CNTRB［10：0］										
	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\bullet	－	－	－	－	－	－	－	－	－	－	－
2047	1	1	1	1	1	1	1	1	1	1	1

2．5．3 PRE IF

IF Synthesizer Prescaler Select
IF N［20］
The IF synthesizer utilizes a selectable dual modulus prescaler．

Control Bit	Register Location	Description	Function	
			0	1
PRE IF	IF N［20］	IF Prescaler Select	8／9 Prescaler Selected	$16 / 17$ Prescaler Selected

2．0 Programming Description（Continued）

2．5．4 PWDN IF
 IF SYNTHESIZER POWERDOWN

The PWDN IF bit is used to switch the IF PLL between a powered up and powered down mode．
Furthermore，the PWDN IF bit operates in conjuction with the TRI－STATE ID。 IF bit to set a synchronous or an asynchronous powerdown mode．

Control Bit	Register Location	Description	Function	
			0	1
PWDN IF	IF N［21］	IF Powerdown	IF PLL Active	IF PLL Powerdown

2．6 RF R REGISTER

The RF R register contains the RF R＿CNTR，PD＿POL RF，ID。RF，and TRI－STATE ID。RF control words，in addition to two bits that compose the F_{0} LD control word．The detailed descriptions and programming information for each control word is discussed in the following sections．

Reg	Most Significant Bit								SHIFT REGISTER BIT LOCATION										Least Significant Bit			
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Data Field																				Address Field	
$\begin{gathered} \mathrm{RF} \\ \mathrm{R} \end{gathered}$	FoLD1	FoLD3	$\begin{array}{\|c\|} \hline \text { TRI- } \\ \text { STATE } \\ \text { ID。 } \\ \text { RF } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ID}_{0} \\ & \mathrm{RF} \end{aligned}$	PD＿ POL RF	RF R＿CNTR［14：0］															1	0

2．6．1 RF R＿CNTR［14：0］RF Synthesizer Programmable Reference Divider（R Counter）RF R［2：16］

The RF reference divider（RF R＿CNTR）can be programmed to support divide ratios from 3 to 32767 ．Divide ratios less than 3 are prohibited．

Divide Ratio	RF R＿CNTR［14：0］														
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

2．6．2 PD＿POL RF
RF Synthesizer Phase Detector Polarity
RF R［17］

The PD＿POL RF bit is used to control the RF synthesizer＇s phase detector polarity based on the VCO tuning characteristics．

Control Bit	Register Location	Description	Function	
		0	1	
PD＿POL RF	RF R［17］	RF Phase Detector Polarity	RF VCO Negative Tuning Characteristics	RF VCO Positive Tuning Characteristics

2．0 Programming Description（Continued）

2．6．3 ID RF RF Synthesizer Charge Pump Current Gain
RF R［18］
The ID。RF bit controls the RF synthesizer＇s charge pump gain．Two current levels are available．

Control Bit	Register Location	Description	Function	
			0	1
ID。RF	RF R［18］	RF Charge Pump	LOW	HIGH
		Current Gain	0.95 mA	3.80 mA

2．6．4 TRI－STATE ID．RF RF Synthesizer Charge Pump TRI－STATE Current RF R［19］

The TRI－STATE ID。RF bit allows the charge pump to be switched between a normal operating mode and a high impedance output state．This happens asynchronously with the change in the TRI－STATE ID。RF bit．
Furthermore，the TRI－STATE ID ，RF bit operates in conjuction with the PWDN RF bit to set a synchronous or an asynchronous powerdown mode．

Control Bit	Register Location	Description	Function	
			0	1
TRI－STATE ID。RF	RF R［19］	RF Charge Pump TRI－STATE Current	RF Charge Pump Normal Operation	RF Charge Pump Output in High Impedance State

2．7 RF N REGISTER

The RF N register contains the RF N＿CNTRA，RF N＿CNTRB，PRE RF，and PWDN RF control words．The RF N＿CNTRA and RF N＿CNTRB control words are used to setup the programmable feedback divider．The detailed description and programming information for each control word is discussed in the following sections．

2．7．1 RF N＿CNTRA［6：0］RF Synthesizer Swallow Counter（A Counter）RF N［2：8］

The RF N＿CNTRA control word is used to setup the RF synthesizer＇s A counter．The A counter is a 7－bit swallow counter used in the programmable feedback divider．The RF N＿CNTRA control word can be programmed to values ranging from 0 to 127.

Divide Ratio	RF N＿CNTRA［6：0］						
	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet	$\boldsymbol{\bullet}$						
127	1	1	1	1	1	1	1

2．7．2 RF N＿CNTRB［10：0］RF Synthesizer Programmable Binary Counter（B Counter）RF N［9：19］
The RF N＿CNTRB control word is used to setup the RF synthesizer＇s B counter．The B counter is an 11－bit programmable binary counter used in the programmable feedback divider．The RF N＿CNTRB control word can be programmed to values ranging from 3 to 2047.

Divide Ratio	RF N＿CNTRB［10：0］										
	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
－	－	－	－	－	－	－	－	－	－	－	－
2047	1	1	1	1	1	1	1	1	1	1	1

2.0 Programming Description
 (Continued)

2.7.3 PRE RF

RF Synthesizer Prescaler Select
RF N[20]
The RF synthesizer utilizes a selectable dual modulus prescaler.
LMX2330U RF Synthesizer Prescaler Select

Control Bit	Register Location	Description	Function	
			0	1
PRE RF	RF N[20]	RF Prescaler Select	$32 / 33$ Prescaler Selected	$64 / 65$ Prescaler Selected

LMX2331U and LMX2332U RF Synthesizer Prescaler Select

Control Bit	Register Location	Description	Function	
			0	1
PRE RF	RF N[20]	RF Prescaler Select	64/65 Prescaler Selected	$128 / 129$ Prescaler Selected

2.7.4 PWDN RF

RF SYNTHESIZER POWERDOWN
RF N[21]
The PWDN RF bit is used to switch the RF PLL between a powered up and powered down mode.
Furthermore, the PWDN RF bit operates in conjuction with the TRI-STATE ID。RF bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Function	
			0	1
PWDN RF	RF N[21]	RF Powerdown	RF PLL Active	RF PLL Powerdown

2.0 Programming Description (Continued)

2.8 FoLD[3:0]

MULTI-FUNCTION OUTPUT SELECT
[RF R[20], IF R[20], RF R [21], IF R[21]]
The $F_{0} L D$ control word is used to select which signal is routed to the $F_{0} L D$ pin.

F $_{\mathbf{o}}$ LD3	F $_{\mathbf{o}}$ LD2	Fob $_{\mathbf{o}}$ LD1	F $_{\mathbf{o}}$ LD0	FoLD Output State $^{\prime 0}$
0	0	0	0	LOW Logic State Output
0	0	0	1	IF PLL R Divider Output, Push-Pull Output
0	0	1	0	RF PLL R Divider Output, Push-Pull Output
0	0	1	1	Open Drain Fastlock Output
0	1	0	0	IF PLL Analog Lock Detect, Push-Pull Output
0	1	0	1	IF PLL N Divider Output, Push-Pull Output
0	1	1	0	RF PLL N Divider Output, Push-Pull Output
0	1	1	1	Reset IF Counters, LOW Logic State Output
1	0	0	0	RF Analog Lock Detect, Push-Pull Output
1	0	0	1	IF PLL R Divider Output, Push-Pull Output
1	0	1	0	RF PLL R Divider Output, Push-Pull Output
1	0	1	1	Reset RF Counters, LOW Logic State Output
1	1	0	0	RF and IF Analog Lock Detect, Push-Pull Output
1	1	0	1	IF PLL N Divider Output, Push-Pull Output
1	1	1	0	RF PLL N Divider Output, Push-Pull Output
1	1	1	1	Reset All Counters, LOW Logic State Output

Physical Dimensions inches (millimeters) unless otherwise noted

MTC20 (Rev E)

RECOMMENDED LAND PATTERN
1:1 RATIO WITH PACKAGE SOLDER PADS

24-Pin Chip Scale Package (SLB) NS Package Number SLB24A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

dIMENSIONS ARE IN MILLIMETERS
RECOMMENDED LAND PATTERN
1:1 RATIO WITH PACKAGE SOLDER PADS

20-Pin Ultra Thin Chip Scale Package (SLE) NS Package Number SLE20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

1 National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Americas Customer	Europe Customer Support Center	Asia Pacific Customer	Japan Customer Support Center
Support Center	Fax: +49 (0) 180-530 8586	Support Center	Fax: 81-3-5639-7507
Email: new.feedback@nsc.com	Email: europe.support@ nsc.com	Email: ap.support@nsc.com	Email: jpn.feedback@nsc.com
Tel: 1-800-272-9959	Deutsch Tel: +49 (0) 6995086208		Tel: 81-3-5639-7560
	English Tel: +44 (0) 8702402171		
www.national.com	Français Tel: +33 (0) 141918790		

[^0]: Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, refer to the Electrical Characteristics section. The guaranteed specifications apply only for the conditions listed.
 Note 2: This device is a high performance RF integrated circuit with an ESD rating <2 kV and is ESD sensitive. Handling and assembly of this device should only be done at ESD protected work stations.
 Note 3: GND = OV

