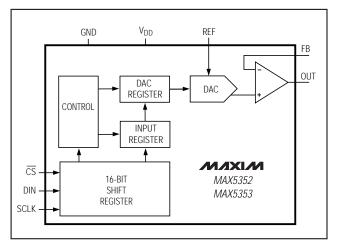


Low-Power, 12-Bit Voltage-Output DACs with Serial Interface

General Description


The MAX5352/MAX5353 combine a low-power, voltageoutput, 12-bit digital-to-analog converter (DAC) and a precision output amplifier in an 8-pin μ MAX or DIP package. The MAX5352 operates from a single +5V supply, and the MAX5353 operates from a single +3.3V supply. Both devices draw less than 280 μ A of supply current.

The output amplifier's inverting input is available to the user, allowing specific gain configurations, remote sensing, and high output current capability. This makes the MAX5352/MAX5353 ideal for a wide range of applications, including industrial process control. Other features include a software shutdown and power-on reset.

The serial interface is compatible with SPI™/QSPI™ and Microwire™. The DAC has a double-buffered input, organized as an input register followed by a DAC register. A 16-bit serial word loads data into the input register. The DAC register can be updated independently or simultaneously with the input register. All logic inputs are TTL/CMOS-logic compatible and buffered with Schmitt triggers to allow direct interfacing to optocouplers.

Applications

Industrial Process Controls Automatic Test Equipment Digital Offset and Gain Adjustment Motion Control Remote Industrial Controls Microprocessor-Controlled Systems

Functional Diagram

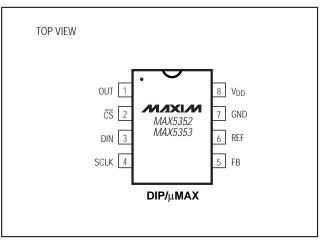
SPI and QSPI are registered trademarks of Motorola, Inc. Microwire is a registered trademark of National Semiconductor Corp.

M IXI M

_ Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800

Features


- 12-Bit DAC with Configurable Output Amplifier
- +5V Single-Supply Operation (MAX5352)
 +3.3V Single-Supply Operation (MAX5353)
- Low Supply Current: 0.28mA Normal Operation 2µA Shutdown Mode
- Available in 8-Pin µMAX
- Power-On Reset Clears DAC Output to Zero
- SPI/QSPI and Microwire Compatible
- Schmitt-Trigger Digital Inputs for Direct Optocoupler Interface
- + +3.3V MAX5353 Directly Interfaces with +5V Logic

Ordering Information

(LSB)
±1/2
±1
±1/2
±1

Ordering Information continued at end of data sheet. * Contact factory for availability of 8-pin SO package.

Pin Configuration

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	0.3V, +6V
REF, OUT, FB to GND	0.3V to (V _{DD} + 0.3V)
Digital Inputs to GND	0.3V to +6V
Continuous Current into Any Pin	±20mA
Continuous Power Dissipation ($T_A = +70^{\circ}$	C)
Plastic DIP (derate 9.09mW/°C above +70)°C)727mW
µMAX (derate 4.10mW/°C above +70°C)	330mW
CERDIP (derate 8.00mW/°C above +70°	C)640mW

Operating Temperature Ranges	
MAX5352_C_A/MAX5353_C_A	0°C to +70°C
MAX5352_E_A/MAX5353_E_A	40°C to +85°C
MAX5352BMJA/MAX5353BMJA	55°C to +125°C
Storage Temperature Range	
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: MAX5352

 $(V_{DD} = +5V \pm 10\%, REF = 2.5V, GND = 0V, R_L = 5k\Omega, C_L = 100pF, T_A = T_{MIN}$ to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C. Output buffer connected in unity-gain configuration (Figure 8).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE—AN	ALOG SECT	ION				
Resolution	Ν		12			Bits
		MAX5352A			±0.5	
Integral Nonlinearity (Note 1)	INL	MAX5352B			±1.0	LSB
		MAX5352BMJA			±2.0	1
Differential Nonlinearity	DNL	Guaranteed monotonic			±1.0	LSB
Offset Error	Vos			±0.3	±8	mV
Offset-Error Tempco	TCVOS			6		ppm/°C
Gain Error (Note 1)	GE			-0.3	±3	LSB
Gain-Error Tempco				1		ppm/°C
Power-Supply Rejection Ratio	PSRR	$4.5V \le V_{DD} \le 5.5V$			600	μV/V
REFERENCE INPUT						
Reference Input Range	VREF		0		V _{DD} - 1.4	V
Reference Input Resistance	R _{REF}	Code dependent, minimum at code 1554 hex	14	20		kΩ
MULTIPLYING-MODE PERFOR	RMANCE					
Reference -3dB Bandwidth		$V_{REF} = 0.67 Vp-p$		650		kHz
Reference Feedthrough		Input code = all 0s, V _{REF} = 3.6Vp-p at 1kHz		-84		dB
Signal-to-Noise Plus Distortion Ratio	SINAD	V _{REF} = 1Vp-p at 25kHz, code = full scale		77		dB
DIGITAL INPUTS						1
Input High Voltage	VIH		2.4			V
Input Low Voltage	VIL				0.8	V
Input Leakage Current	lin	$V_{IN} = 0V \text{ or } V_{DD}$		0.001	±0.5	μA
Input Capacitance	CIN			8		pF

ELECTRICAL CHARACTERISTICS: MAX5352 (continued)

 $(V_{DD} = +5V \pm 10\%, REF = 2.5V, GND = 0V, R_L = 5k\Omega, C_L = 100pF, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. Output buffer connected in unity-gain configuration (Figure 8).)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DYNAMIC PERFORMANCE	1	1	I			
Voltage Output Slew Rate	SR			0.6		V/µs
Output Settling Time		To $\pm 1/2$ LSB, V _{STEP} = 2.5V		14		μs
Output Voltage Swing		Rail-to-rail (Note 2)		0 to V_{DD}		V
Current into FB				0.001	±0.1	μA
Start-Up Time				20		μs
Digital Feedthrough		$\overline{\text{CS}}$ = V _{DD} , DIN = 100kHz		5		nV-s
POWER SUPPLIES						
Supply Voltage	Vdd		4.5		5.5	V
Supply Current	IDD	(Note 3)		0.28	0.4	mA
Supply Current in Shutdown		(Note 3)		4	20	μΑ
Reference Current in Shutdown				0.001	±0.5	μA
TIMING CHARACTERISTICS (Fi	gure 6)					
SCLK Clock Period	tcp		100			ns
SCLK Pulse Width High	tсн		40			ns
SCLK Pulse Width Low	tcL		40			ns
CS Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to $\overline{\text{CS}}$ Rise Hold Time	t _{CSH}		0			ns
DIN Setup Time	t _{DS}		40			ns
DIN Hold Time	tDH		0			ns
SCLK Rise to CS Fall Delay	t _{CS0}		40			ns
CS Rise to SCLK Rise Hold Time	tcs1		40			ns
CS Pulse Width High	tcsw		100			ns

Note 1: Guaranteed from code 11 to code 4095 in unity-gain configuration.

Note 2: Accuracy is better than 1LSB for $V_{OUT} = 8mV$ to V_{DD} - 100mV, guaranteed by a power-supply rejection test at the end points.

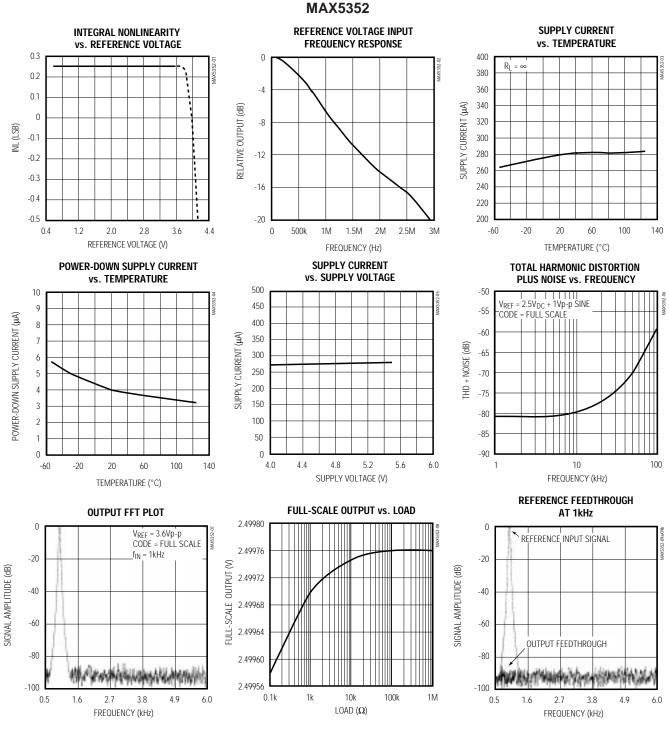
Note 3: $R_L = \infty$, digital inputs at GND or V_{DD}.

ELECTRICAL CHARACTERISTICS: MAX5353

 $(V_{DD} = +3.15V \text{ to } +3.6V, \text{REF} = 1.25V, \text{GND} = 0V, \text{R}_{L} = 5k\Omega, \text{C}_{L} = 100\text{pF}, \text{T}_{A} = \text{T}_{MIN} \text{ to } \text{T}_{MAX}$, unless otherwise noted. Typical values are at T_A = +25°C. Output buffer connected in unity-gain configuration (Figure 8).)

STATIC PERFORMANCE—ANALOG SECTIONResolutionNIntegral Nonlinearity (Note 4)NINLMAX5353ADifferential NonlinearityDNLGuaranteed monotonicOffset ErrorVosGuaranteed monotonicOffset Error TempcoTCVosGain Error (Note 4)GEGain Error TempcoPSRRReference Input RangeVREFReference Input RangeVREFReference Input RangeVREFReference 3dB BandwidthVREF = 0.67Vp-pReference FeedthroughInput code = all 0s, VREF = 1.9Vp-p at 1kHzSignal-to-Noise Plus Distortion RatioSINADVREFVILInput Leakage CurrentIINInput Leakage CurrentIINViLInput Code = all 0s, VREF = 1.9Vp-p at 1kHzSignal-to-Noise Plus Distortion RatioSINADVREFTo $\pm 1/2LSB$, VSTEP = 1.25VOutput Stating RateSROutput Stew RateSROutput Stew RateSROutput Stew RateSROutput Stew RateSROutput Voltage SwingRail-to-rail (Note 5)Current Into FBInput Lase Supple SDigital Feedthrough $\overline{CS} = VDD$, DIN = 100kHz	MIN	ТҮР	MAX	UNITS
$\begin{tabular}{ c c c c c } \hline MAX5353A & MAX5353A & MAX5353B & $				1
Integral Nonlinearity (Note 4)INLMAX5353B MAX5353BMJADifferential NonlinearityDNLGuaranteed monotonicOffset ErrorVOS0Offset Error TempcoTCVOSGain Error (Note 4)GEGain-Error TempcoPSRRPower-Supply Rejection RatioPSRRReference Input RangeVREFReference Input ResistanceRREFCode dependent, minimum at code 1554 hexMULTIPLYING-MODE PERFORMANCE ($V_{DD} = +3.3V$)Reference - 3dB BandwidthVREF = 0.67Vp-pReference FeedthroughInput code = all 0s, VREF = 1.9Vp-p at 1kHzSignal-to-Noise Plus Distortion RatioSINADVREF = 1Vp-p at 25kHz, code = full scaleInput code = all 0s, VREF = 1.9Vp-p at 1kHzInput Leakage CurrentINInput Leakage CurrentINInput CapacitanceCINDYNAMIC PERFORMANCEVILVoltage Output Slew RateSROutput Voltage SwingRail-to-rail (Note 5)Current into FBEat-10-rail (Note 5)Current into FBEat-10-rail (Note 5)Digital Feedthrough $\overline{CS} = VDD, DIN = 100kHz$	12			Bits
INLMAX533B MAX5353BMJADifferential NonlinearityDNLGuaranteed monotonicOffset ErrorVOSGuaranteed monotonicOffset Error TempcoTCVOSGain Error (Note 4)Gain Error (Note 4)GEGGain-Error TempcoPSRRPPower-Supply Rejection RatioPSRRIReference Input RangeVREFCode dependent, minimum at code 1554 hexMULTIPLYING-MODE PERFORMANCE (VDD = +3.3V)Reference Input ResistanceRREFReference - 3dB BandwidthVREF = 0.67VP-PIReference FeedthroughInput code = all 0S, VREF = 1.9VP-p at 1kHzISignal-to-Noise Plus Distortion RatioSINADVREF = 1.9VP-p at 25kHz, code = full scaleIDigital INPUTSInput Leakage CurrentIIInput Leakage CurrentIVIIIInput CapacitanceCINIIDYNAMIC PERFORMANCEVILIIVoltage Output Slew RateSROutput Voltage SwingIOutput Voltage SwingRail-to-rail (Note 5)IIOutput Voltage SwingRail-to-rail (Note 5)IIDigital FeedthroughIIIIDigital FeedthroughIIIIDigital FeedthroughIIIIDigital FeedthroughIIIIInput Leakage CurrentIINIIInput Leakage CurrentIIIIInp			±1	
MAX5353BMJADifferential NonlinearityDNLGuaranteed monotonicOffset ErrorVosGOffset Error TempcoTCVosGGain Error (Note 4)GEGGain-Error TempcoPSRPPower-Supply Rejection RatioPSRPReference Input RangeVREFRReference Input ResistanceRREFCode dependent, minimum at code 1554 hexMULTIPLYING-MODE PERFORMANCE (VDD = +3.3V)Reference -3dB BandwidthVREF = 0.67Vp-pReference -3dB BandwidthVREF = 0.67Vp-pIReference FeedthroughInput code = all 0s, VREF = 1.9Vp-p at 1KHzISignal-to-Noise Plus Distortion RatioSINADVREF = 1Vp-p at 25KHz, code = full scaleDIGITAL INPUTSInput Leakage CurrentINVIN = 0V or VDDInput Leakage CurrentINVIN = 0V or VDDIInput CapacitanceCINIIDYNAMIC PERFORMANCEVILIIVoltage Output Slew RateSRIIOutput Voltage SwingRail-to-rail (Note 5)IIOutput Voltage SwingRail-to-rail (Note 5)IIDigital FeedthroughFI/2 LSB, VSTEP = 1.25VIOutput Voltage SwingCS = VDD, DIN = 100KHzI			±2	LSB
Offset Error V_{OS} Offset-Error TempcoTCVosGain Error (Note 4)GEGain-Error TempcoPower-Supply Rejection RatioPower-Supply Rejection RatioPSRR REFERENCE INPUT Reference Input Range V_{REF} Reference Input ResistanceRREFCode dependent, minimum at code 1554 hex MULTIPLYING-MODE PERFORMANCE (VDD = +3.3V)Reference - 3dB BandwidthVREF = 0.67Vp-pReference FeedthroughInput code = all 0s, VREF = 1.9Vp-p at 1kHzSignal-to-Noise Plus Distortion RatioSINADVREF = 1Vp-p at 25kHz, code = full scale DIGITAL INPUTS Input High VoltageVILInput Leakage CurrentIINInput CapacitanceCIN DYNAMIC PERFORMANCE VVoltage Output Slew RateSROutput Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up TimeDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz			±4	
Offset-Error TempcoTCVosGain Error (Note 4)GEGain-Error TempcoPSRRPower-Supply Rejection RatioPSRR REFERENCE INPUT Reference Input Range V_{REF} Reference Input ResistanceRREFCode dependent, minimum at code 1554 hex MULTIPLYING-MODE PERFORMANCE ($V_{DD} = +3.3V$)Reference - 3dB Bandwidth $V_{REF} = 0.67Vp \cdot p$ Reference FeedthroughInput code = all 0s, $V_{REF} = 1.9Vp \cdot p$ at 1kHzSignal-to-Noise Plus Distortion RatioSINADVREF = 1Vp · p at 25kHz, code = full scaleInput Low VoltageVILInput Leakage CurrentI _{IN} Input Leakage CurrentI _{IN} VINOV or VDDInput CapacitanceCIN DYNAMIC PERFORMANCE YoltageVoltage Output Slew RateSROutput Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up TimeDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz			±1.0	LSB
Gain Error (Note 4)GEGain-Error TempcoPSRRPower-Supply Rejection RatioPSRRREFERENCE INPUTReference Input Range V_{REF} Reference Input Resistance R_{REF} Code dependent, minimum at code 1554 hexMULTIPLYING-MODE PERFORMANCE ($V_{DD} = +3.3V$)Reference -3dB Bandwidth $V_{REF} = 0.67Vp$ -pReference FeedthroughInput code = all 0s, $V_{REF} = 1.9Vp$ -p at 1kHzSignal-to-Noise Plus Distortion RatioSINADVREF = 1Vp-p at 25kHz, code = full scaleInput Low VoltageVILInput Leakage CurrentINInput Leakage CurrentINVILInput CapacitanceCINDYNAMIC PERFORMANCEYotage Output Slew RateSROutput Settling TimeTo $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Voltage SwingCurrent into FBSatt-Up TimeInput For 200, DIN = 100kHz		±0.3	±8	mV
Gain-Error TempcoPSRRPower-Supply Rejection RatioPSRRREFERENCE INPUTReference Input Range V_{REF} Reference Input Resistance R_{REF} Code dependent, minimum at code 1554 hexMULTIPLYING-MODE PERFORMANCE ($V_{DD} = +3.3V$)Reference -3dB Bandwidth $V_{REF} = 0.67Vp-p$ Reference FeedthroughInput code = all 0s, $V_{REF} = 1.9Vp-p$ at 1kHzSignal-to-Noise Plus Distortion RatioSINADVREF = 1Vp-p at 25kHz, code = full scaleDIGITAL INPUTSInput Low Voltage V_{IL} Input Leakage Current I_{IN} VIN = 0V or VDDInput CapacitanceDYNAMIC PERFORMANCESROutput Slew RateSROutput Settling TimeTo $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Voltage SwingRail-to-rail (Note 5)Current into FBSStart-Up TimeDigital Feedthrough		6		ppm/°C
Power-Supply Rejection RatioPSRRReFERENCE INPUTReference Input Range V_{REF} Reference Input Resistance R_{REF} Code dependent, minimum at code 1554 hexMULTIPLYING-MODE PERFORMANCE ($V_{DD} = +3.3V$)Reference -3dB Bandwidth $V_{REF} = 0.67Vp$ -pReference -3dB BandwidthInput code = all 0s, $V_{REF} = 1.9Vp$ -p at 1kHzSignal-to-Noise Plus Distortion RatioSINADVREF = 1Vp-p at 25kHz, code = full scaleDIGITAL INPUTSInput High Voltage V_{IL} Input Leakage Current I_{IN} $V_{IN} = 0V \text{ or } V_{DD}$ Input Capacitance C_{IN} DYNAMIC PERFORMANCEVoltage Output Slew RateSROutput Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up Time $\overline{CS} = V_{DD}$, DIN = 100kHz		-0.3	±3	LSB
REFERENCE INPUTReference Input Range V_{REF} Reference Input Resistance R_{REF} Code dependent, minimum at code 1554 hexMULTIPLYING-MODE PERFORMANCE ($V_{DD} = +3.3V$)Reference -3dB Bandwidth $V_{REF} = 0.67Vp-p$ Reference FeedthroughInput code = all 0s, $V_{REF} = 1.9Vp-p$ at 1kHzSignal-to-Noise Plus Distortion RatioSINADVREF = 1Vp-p at 25kHz, code = full scaleDIGITAL INPUTSInput High Voltage V_{IH} Input Leakage Current I_{IN} Input Capacitance C_{IN} DYNAMIC PERFORMANCEYoltage Output Slew RateVoltage Output Slew RateSROutput Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up TimeDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz		1		ppm/°C
Reference Input Range V_{REF} Code dependent, minimum at code 1554 hexReference Input Resistance R_{REF} Code dependent, minimum at code 1554 hexMULTIPLYING-MODE PERFORMANCE ($V_{DD} = +3.3V$)Reference -3dB Bandwidth $V_{REF} = 0.67Vp$ -pReference FeedthroughInput code = all 0s, $V_{REF} = 1.9Vp$ -p at 1kHzSignal-to-Noise Plus Distortion RatioSINAD $V_{REF} = 1Vp$ -p at 25kHz, code = full scaleDIGITAL INPUTSInput High Voltage V_{IL} Input Low Voltage V_{IL} Input capacitanceDYNAMIC PERFORMANCEVIN = 0V or V_{DD}Voltage Output Slew RateSROutput Settling TimeTo $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Voltage SwingRail-to-rail (Note 5)Current into FBEStart-Up TimeEDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz			600	μV/V
Reference Input Resistance R_{REF} Code dependent, minimum at code 1554 hexMULTIPLYING-MODE PERFORMANCE ($V_{DD} = +3.3V$)Reference -3dB Bandwidth $V_{REF} = 0.67Vp-p$ Reference FeedthroughInput code = all 0s, $V_{REF} = 1.9Vp-p$ at 1kHzSignal-to-Noise Plus Distortion RatioSINAD $V_{REF} = 1Vp-p$ at 25kHz, code = full scaleDIGITAL INPUTSInput High Voltage V_{IH} Input Leakage CurrentIIN $V_{IN} = 0V \text{ or } V_{DD}$ Input Capacitance C_{IN} To $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Settling TimeSROutput Voltage SwingRail-to-rail (Note 5)Current into FBRail-to-rail (Note 5)Digital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz				
MULTIPLYING-MODE PERFORMANCE ($V_{DD} = +3.3V$)Reference -3dB Bandwidth $V_{REF} = 0.67Vp-p$ Reference FeedthroughInput code = all 0s, $V_{REF} = 1.9Vp-p$ at 1kHzSignal-to-Noise Plus Distortion RatioSINAD $V_{REF} = 1Vp-p$ at 25kHz, code = full scaleDIGITAL INPUTSInput High Voltage V_{IH} Input Low Voltage V_{IL} Input Leakage Current I_{IN} $V_{IN} = 0V \text{ or } V_{DD}$ Input Capacitance C_{IN} DYNAMIC PERFORMANCEVoltage Output Slew RateSROutput Settling TimeTo $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Voltage SwingRail-to-rail (Note 5)Current into FBInput Fight RedthroughDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz	0	١	V _{DD} - 1.4	V
Reference -3dB Bandwidth $V_{REF} = 0.67Vp-p$ Reference FeedthroughInput code = all 0s, $V_{REF} = 1.9Vp-p$ at 1kHzSignal-to-Noise Plus Distortion RatioSINAD $V_{REF} = 1Vp-p$ at 25kHz, code = full scale DIGITAL INPUTS Input High Voltage V_{IH} Input Low Voltage V_{IL} Input Leakage Current I_{IN} VIN = 0V or VDDInput Capacitance C_{IN} DYNAMIC PERFORMANCE Voltage Output Slew RateSROutput Settling TimeTo $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up TimeDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz	14	20		kΩ
Reference FeedthroughInput code = all 0s, $V_{REF} = 1.9Vp-p$ at 1kHzSignal-to-Noise Plus Distortion RatioSINAD $V_{REF} = 1Vp-p$ at 25kHz, code = full scale DIGITAL INPUTS Input High Voltage V_{IH} Input Low Voltage V_{IL} Input Leakage Current I_{IN} $V_{IN} = 0V$ or V_{DD} Input Capacitance C_{IN} DYNAMIC PERFORMANCE Voltage Output Slew RateSROutput Settling TimeTo $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up TimeDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz				•
Signal-to-Noise Plus Distortion RatioSINAD $V_{REF} = 1Vp-p \text{ at } 25kHz, code = full scaleDIGITAL INPUTSInput High VoltageV_{IH}Input Low VoltageV_{IL}Input Leakage CurrentI_{IN}Input CapacitanceC_{IN}DYNAMIC PERFORMANCEVoltage Output Slew RateSROutput Settling TimeTo \pm 1/2LSB, V_{STEP} = 1.25VOutput Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up TimeDigital Feedthrough\overline{CS} = V_{DD}, DIN = 100kHz$		650		kHz
Distortion RatioSINAD $V_{REF} = IVp-p$ at 25kHz, code = full scaleDIGITAL INPUTSInput High Voltage V_{IH} Input Low Voltage V_{IL} Input Leakage Current I_{IN} Input Capacitance C_{IN} DYNAMIC PERFORMANCEVoltage Output Slew RateSROutput Settling TimeTo $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up TimeDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz		-84		dB
Input High Voltage V_{IH} Input Low Voltage V_{IL} Input Leakage Current I_{IN} $V_{IN} = 0V \text{ or } V_{DD}$ Input Capacitance C_{IN} DYNAMIC PERFORMANCEVoltage Output Slew RateSROutput Settling TimeTo $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up TimeDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz		72		dB
Input Low Voltage V_{IL} Input Leakage Current I_{IN} $V_{IN} = 0V \text{ or } V_{DD}$ Input Capacitance C_{IN} DYNAMIC PERFORMANCEVoltage Output Slew RateSROutput Settling TimeTo $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up TimeDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz				
Input Leakage Current I_{IN} $V_{IN} = 0V \text{ or } V_{DD}$ Input Capacitance C_{IN} DYNAMIC PERFORMANCEVoltage Output Slew RateSROutput Settling TimeTo $\pm 1/2LSB$, $V_{STEP} = 1.25V$ Output Voltage SwingRail-to-rail (Note 5)Current into FBStart-Up TimeDigital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz	2.4			V
Input Capacitance CIN DYNAMIC PERFORMANCE Voltage Output Slew Rate SR Output Settling Time To ±1/2LSB, VSTEP = 1.25V Output Voltage Swing Rail-to-rail (Note 5) Current into FB Start-Up Time Digital Feedthrough CS = VDD, DIN = 100kHz			0.6	V
DYNAMIC PERFORMANCE Voltage Output Slew Rate SR Output Settling Time To ±1/2LSB, VSTEP = 1.25V Output Voltage Swing Rail-to-rail (Note 5) Current into FB Start-Up Time Digital Feedthrough CS = VDD, DIN = 100kHz		0.001	±0.5	μA
Voltage Output Slew Rate SR Output Settling Time To ±1/2LSB, VSTEP = 1.25V Output Voltage Swing Rail-to-rail (Note 5) Current into FB Start-Up Time Digital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz		8		pF
Output Settling Time To ±1/2LSB, VSTEP = 1.25V Output Voltage Swing Rail-to-rail (Note 5) Current into FB Start-Up Time Digital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz				
Output Voltage Swing Rail-to-rail (Note 5) Current into FB Start-Up Time Digital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz		0.6		V/µs
Current into FB Start-Up Time Digital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz		14		μs
Start-Up Time CS VDD, DIN = 100kHz Digital Feedthrough CS = VDD, DIN = 100kHz CS = VDD, DIN = 100kHz		0 to V _{DD})	V
Digital Feedthrough $\overline{CS} = V_{DD}$, DIN = 100kHz		0.001	±0.1	μA
		20		μs
		5		nV-s
				1
	3.15		3.6	V
Supply Current I _{DD} (Note 6)	-	0.24	0.4	mA
Supply Current in Shutdown (Note 6)		1.6	10	μΑ
Reference Current in Shutdown		0.001	±0.5	μΑ

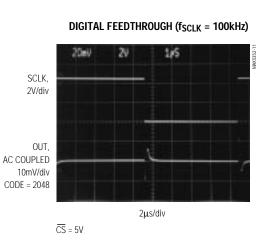
ELECTRICAL CHARACTERISTICS: MAX5353 (continued)

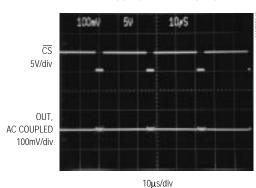

 $(V_{DD} = +3.15V \text{ to } +3.6V, \text{ REF} = 1.25V, \text{ GND} = 0V, \text{ R}_{L} = 5k\Omega, \text{ C}_{L} = 100\text{pF}, \text{ T}_{A} = \text{T}_{MIN} \text{ to } \text{T}_{MAX}$, unless otherwise noted. Typical values are at T_A = +25°C. Output buffer connected in unity-gain configuration (Figure 8).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
TIMING CHARACTERISTICS (Figure 6)							
SCLK Clock Period	tcp		100			ns	
SCLK Pulse Width High	tсн		40			ns	
SCLK Pulse Width Low	tcl		40			ns	
CS Fall to SCLK Rise Setup Time	tcss		40			ns	
SCLK Rise to \overline{CS} Rise Hold Time	tcsh		0			ns	
DIN Setup Time	t _{DS}		40			ns	
DIN Hold Time	tdн		0			ns	
SCLK Rise to \overline{CS} Fall Delay	t _{CS0}		40			ns	
CS Rise to SCLK Rise Hold Time	tCS1		40			ns	
CS Pulse Width High	tcsw		100			ns	

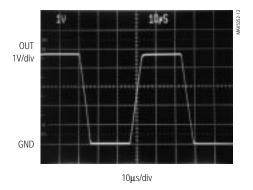
Note 4: Guaranteed from code 22 to code 4095 in unity-gain configuration.

Note 5: Accuracy is better than 1LSB for $V_{OUT} = 8mV$ to $V_{DD} - 150mV$, guaranteed by a power-supply rejection test at the end points.


Note 6: $R_L = \infty$, digital inputs at GND or V_{DD}.

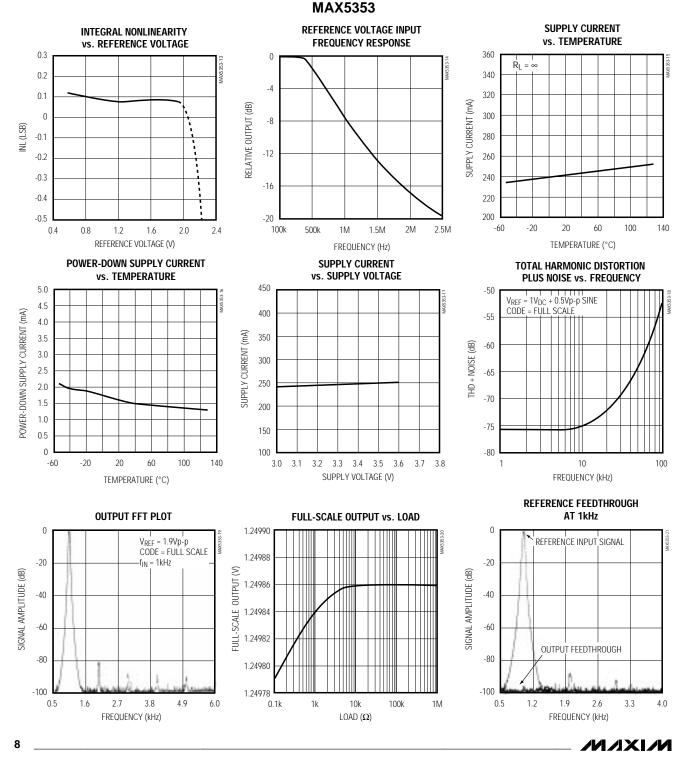

_Typical Operating Characteristics (continued)

(MAX5352 only, V_{DD} = +5V, R_L = 5k Ω , C_L = 100pF, T_A = +25°C, unless otherwise noted.)


MAX5352 (continued)

MAJOR-CARRY TRANSITION

DYNAMIC RESPONSE



GAIN = 2, SWITCHING FROM CODE 0 TO 4020

MAX5352/MAX5353

PIN	NAME	FUNCTION
1	OUT	DAC Output Voltage
2	CS	Chip-Select Input. Active low.
3	DIN	Serial-Data Input
4	SCLK	Serial-Clock Input
5	FB	DAC Output Amplifier Feedback
6	REF	Reference Voltage Input
7	GND	Ground
8	V _{DD}	Positive Power Supply

_Pin Description

Detailed Description

The MAX5352/MAX5353 contain a voltage-output digital-to-analog converter (DAC) that is easily addressed using a simple 3-wire serial interface. Each IC includes a 16-bit shift register, and has a double-buffered input composed of an input register and a DAC register (see *Functional Diagram*). In addition to the voltage output, the amplifier's negative input is available to the user.

The DAC is an inverted R-2R ladder network that converts a digital input (12 data bits plus one sub-bit) into an equivalent analog output voltage in proportion to the applied reference voltage. Figure 1 shows a simplified circuit diagram of the DAC.

Reference Inputs

The reference input accepts positive DC and AC signals. The voltage at the reference input sets the full-scale output voltage for the DAC. The reference input voltage range is 0V to (V_{DD} - 1.4V). The output voltage (V_{OUT}) is represented by a digitally programmable voltage source, as expressed in the following equation:

VOUT = (VREF x NB / 4096) x Gain

where NB is the numeric value of the DAC's binary input code (0 to 4095), VREF is the reference voltage, and Gain is the externally set voltage gain.

The impedance at the reference input is code dependent, ranging from a low value of $14k\Omega$ when the DAC has an input code of 1554 hex, to a high value exceeding several giga ohms (leakage currents) with an input code of 0000 hex. Because the input impedance at the reference pin is code dependent, load regulation of the reference source is important.

M/X/M

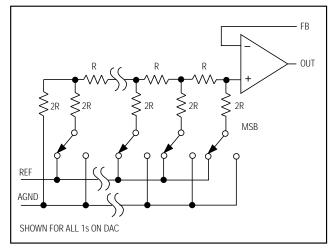


Figure 1. Simplified DAC Circuit Diagram

In shutdown mode, the MAX5352/MAX5353's REF input enters a high-impedance state with a typical input leakage current of $0.001 \mu A$.

The reference input capacitance is also code dependent and typically ranges from 15pF (with an input code of all 0s) to 50pF (at full scale).

The MAX873 +2.5V reference is recommended for the MAX5352.

Output Amplifier

The MAX5352/MAX5353's DAC output is internally buffered by a precision amplifier with a typical slew rate of 0.6V/µs. Access to the output amplifier's inverting input provides the user greater flexibility in output gain setting/signal conditioning (see the *Applications Information* section).

With a full-scale transition at the MAX5352/MAX5353 output, the typical settling time to $\pm 1/2LSB$ is 14µs when loaded with 5k Ω in parallel with 100pF (loads less than 2k Ω degrade performance).

The amplifier's output dynamic responses and settling performances are shown in the *Typical Operating Characteristics*.

Shutdown Mode

The MAX5352/MAX5353 feature a software-programmable shutdown that reduces supply current to a typical value of 4μ A. Writing 111X XXXX XXXX XXXX as the inputcontrol word puts the device in shutdown mode (Table 1).

In shutdown mode, the amplifier's output and the reference input enter a high-impedance state. The serial interface remains active. Data in the input registers is retained in shutdown, allowing the MAX5352/MAX5353

to recall the output state prior to entering shutdown. Exit shutdown mode by either recalling the previous configuration or by updating the DAC with new data. When powering up the device or bringing it out of shutdown, allow $20\mu s$ for the output to stabilize.

Serial-Interface Configurations

The MAX5352/MAX5353's 3-wire serial interface is compatible with both Microwire[™] (Figure 2) and SPI[™]/QSPI[™] (Figure 3). The serial input word consists of three control bits followed by 12+1 data bits (MSB first), as shown in Figure 4. The 3-bit control code determines the MAX5352/MAX5353's response outlined in Table 1.

The MAX5352/MAX5353's digital inputs are double buffered. Depending on the command issued through the serial interface, the input register can be loaded without affecting the DAC register, the DAC register can be loaded directly, or the DAC register can be updated from the input register (Table 1).

The +3.3V MAX5353 can also directly interface with +5V logic.

Serial-Interface Description

The MAX5352/MAX5353 require 16 bits of serial data. Table 1 lists the serial-interface programming commands. For certain commands, the 12+1 data bits are "don't cares." Data is sent MSB first and can be sent in two 8-bit packets or one 16-bit word (CS must remain low until 16 bits are transferred). The serial data is composed of three control bits (C2, C1, C0), followed by the 12+1 data bits D11...D0, S0 (Figure 4). Set the sub-bit (S0) to zero. The 3-bit control code determines:

- the register to be updated,
- the configuration when exiting shutdown.

Figure 5 shows the serial-interface timing requirements. The chip-select pin $\overline{(CS)}$ must be low to enable the DAC's serial interface. When \overline{CS} is high, the interface control circuitry is disabled. \overline{CS} must go low at least tCSS before the rising serial clock (SCLK) edge to properly clock in the first bit. When \overline{CS} is low, data is clocked into the internal shift register via the serial-data input pin (DIN) on SCLK's rising edge. The maximum guaranteed clock frequency is 10MHz. Data is latched into the MAX5352/MAX5353 input/DAC register on \overline{CS} 's rising edge.

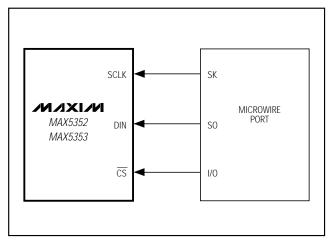


Figure 2. Connections for Microwire

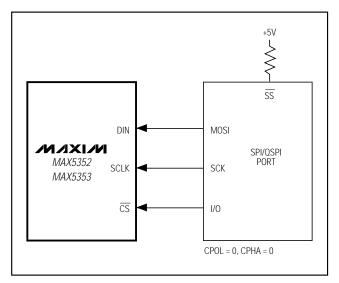


Figure 3. Connections for SPI/QSPI

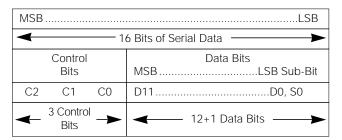


Figure 4. Serial-Data Format

Table 1. Serial-Interface Programming Commands

	16	BIT SEF				
C2	C1	C0	D11D0 MSB LSB	S0	FUNCTION	
Х	0	0	12 bits of data	0	Load input register; DAC register immediately updated (also exit shutdown).	
Х	0	1	12 bits of data	0	Load input register; DAC register unchanged.	
Х	1	0	xxxxxxxxxxxx	х	Update DAC register from input register (also exit shutdown; recall previous state).	
1	1	1	XXXXXXXXXXXXX	Х	Shutdown	
0	1	1	XXXXXXXXXXXXX	Х	No operation (NOP)	

"X" = Don't care

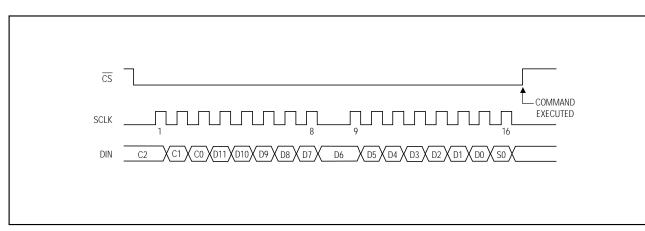


Figure 5. Serial-Interface Timing Diagram

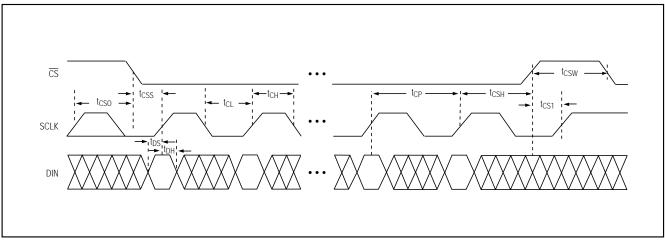


Figure 6. Detailed Serial-Interface Timing Diagram

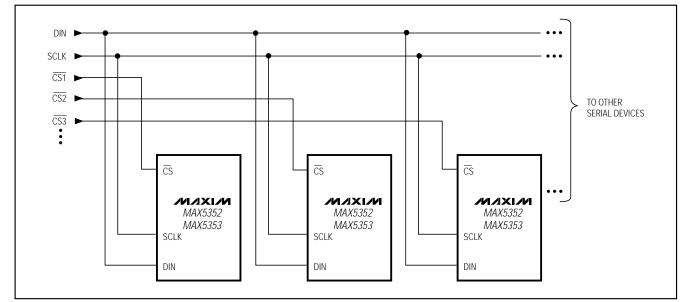


Figure 7. Multiple MAX5352/MAX5353s Sharing Common DIN and SCLK Lines

Figure 7 shows a method of connecting several MAX5352/MAX5353s. In this configuration, the clock and the data bus are common to all devices, and separate chip-select lines are used for each IC.

Applications Information

Unipolar Output

For a unipolar output, the output voltage and the reference input have the same polarity. Figure 8 shows the MAX5352/MAX5353 unipolar output circuit, which is also the typical operating circuit. Table 2 lists the unipolar output codes.

Figure 9 illustrates a rail-to-rail output. This circuit shows the MAX5352 with the output amplifier configured with a closed-loop gain of +2 to provide a 0V to 5V full-scale range when a 2.5V reference is used. When the MAX5353 is used with a 1.25V reference, this circuit provides a 0V to 2.5V full-scale range.

Bipolar Output

The MAX5352/MAX5353 output can be configured for bipolar operation using Figure 10's circuit according to the following equation:

where NB is the numeric value of the DAC's binary input code. Table 3 shows digital codes (offset binary) and the corresponding output voltage for Figure 10's circuit.

Table 2. Unipolar Code Table

• • • • •							
DAC CONTENTS MSB LSB	ANALOG OUTPUT						
1111 1111 1111 (0)	$+ V_{\text{REF}} \left(\frac{4095}{4096} \right)$						
1000 0000 0001 (0)	$+V_{REF}\left(\frac{2049}{4096}\right)$						
1000 0000 0000 (0)	$+V_{\text{REF}}\left(\frac{2048}{4096}\right) = \frac{+V_{\text{REF}}}{2}$						
0111 1111 1111 (0)	$+ V_{REF} \left(\frac{2047}{4096} \right)$						
0000 0000 0001 (0)	$+V_{\text{REF}}\left(\frac{1}{4096}\right)$						
0000 0000 0000 (0)	0V						

NOTE: () are for sub-bit.

Using an AC Reference

In applications where the reference has AC-signal components, the MAX5352/MAX5353 have multiplying capability within the reference input range specifications. Figure 11 shows a technique for applying a sinewave signal to the reference input where the AC signal is offset before being applied to REF. The reference voltage must never be more negative than GND.

Table 3. Bipolar Code Table

DAC CONTENTS MSB LSB	ANALOG OUTPUT
1111 1111 1111 (0)	$+V_{REF}\left(\frac{2047}{2048}\right)$
1000 0000 0001 (0)	$+V_{REF}\left(\frac{1}{2048}\right)$
1000 0000 0000 (0)	0V
0111 1111 1111 (0)	$-V_{REF}\left(\frac{1}{2048}\right)$
0000 0000 0001 (0)	$-V_{\text{REF}}\left(\frac{2047}{2048}\right)$
0000 0000 0000 (0)	$-V_{REF}\left(\frac{2048}{2048}\right) = -V_{REF}$

NOTE: () are for sub-bit.

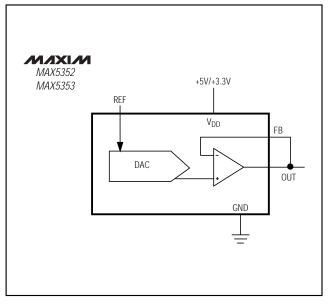


Figure 8. Unipolar Output Circuit

The MAX5352's total harmonic distortion plus noise (THD+N) is typically less than -77dB (full-scale code), and the MAX5353's THD+N is typically less than -72dB (full-scale code), given a 1Vp-p signal swing and input frequencies up to 25kHz. The typical -3dB frequency is 650kHz for both devices, as shown in the *Typical Operating Characteristics* graphs.

Digitally Programmable Current Source

The circuit of Figure 12 places an NPN transistor (2N3904 or similar) within the op-amp feedback loop to implement a digitally programmable, unidirectional current source. The output current is calculated with the following equation:

$IOUT = (V_{REF}/R) \times (NB/4096)$

where NB is the numeric value of the DAC's binary input code and R is the sense resistor shown in Figure 12.

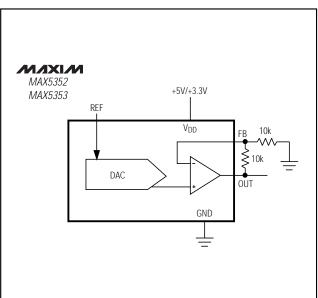
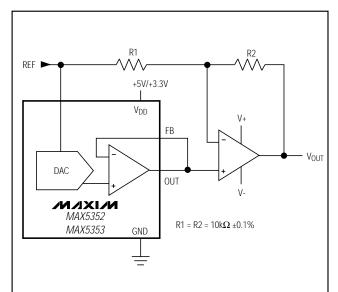



Figure 9. Unipolar Rail-to-Rail Output Circuit

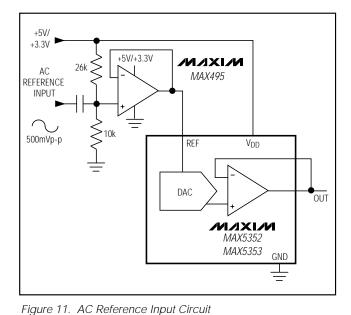


Figure 10. Bipolar Output Circuit

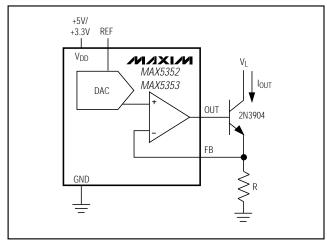


Figure 12. Digitally Programmable Current Source

Power-Supply Considerations

On power-up, the input and DAC registers are cleared (set to zero code).

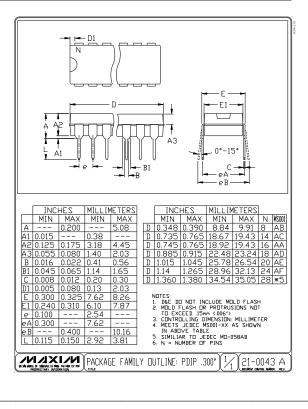
For rated MAX5352/MAX5353 performance, REF must be at least 1.4V below V_{DD}. Bypass V_{DD} with a 4.7 μ F capacitor in parallel with a 0.1 μ F capacitor to GND. Use short lead lengths and place the bypass capacitors as close to the supply pins as possible.

Grounding and Layout Considerations

Digital or AC transient signals on GND can create noise at the analog output. Tie GND to the highest-quality ground available.

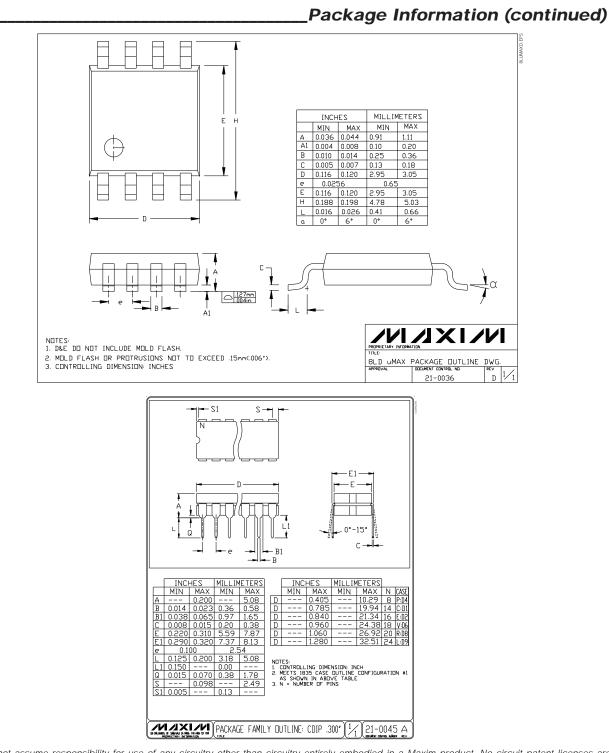
Good printed circuit board ground layout minimizes crosstalk between the DAC output, reference input, and digital input. Reduce crosstalk by keeping analog lines away from digital lines. Wire-wrapped boards are not recommended.

_Ordering Information (continued)


PART*	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX5352AEPA	-40°C to +85°C	8 Plastic DIP	±1/2
MAX5352BEPA	-40°C to +85°C	8 Plastic DIP	±1
MAX5352AEUA	-40°C to +85°C	8 μΜΑΧ	±1/2
MAX5352BEUA	-40°C to +85°C	8 μΜΑΧ	±1
MAX5352BMJA	-55°C to +125°C	8 CERDIP**	±2
MAX5353ACPA	$0^{\circ}C$ to $+70^{\circ}C$	8 Plastic DIP	±1
MAX5353BCPA	0°C to +70°C	8 Plastic DIP	±2
MAX5353ACUA	0°C to +70°C	8 μΜΑΧ	±1
MAX5353BCUA	0°C to +70°C	8 μΜΑΧ	±2
MAX5353AEPA	-40°C to +85°C	8 Plastic DIP	±1
MAX5353BEPA	-40°C to +85°C	8 Plastic DIP	±2
MAX5353AEUA	-40°C to +85°C	8 μΜΑΧ	±1
MAX5353BEUA	-40°C to +85°C	8 μΜΑΧ	±2
MAX5353BMJA	-55°C to +125°C	8 CERDIP**	±4

*Contact factory for availability of 8-pin SO package.

** Contact factory for availability and processing to MIL-STD-883.


__Chip Information

TRANSISTOR COUNT: 1677

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

Printed USA

© 1997 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products.