Features

- Multiple output clocks at different frequencies
- Four pairs of differential CPU outputs, up to 133 MHz
- Ten synchronous PCI clocks, three free-running
- Six 3V66 clocks
- Two 48-MHz clocks
— One reference clock at 14.318 MHz
- One VCH clock
- Spread Spectrum clocking (down spread)
- Power-down features (PCI_STOP\#, PD\#)
- Three Select inputs (Mode select \& IC Frequency Select)
- OE and Test Mode support
- 56-pin SSOP package and 56-pin TSSOP package

Benefits

- Motherboard clock generator
- Support Multiple CPUs and a chipset
- Support for PCI slots and chipset
- Supports AGP and Hub Link
- Supports USB host controller and graphic controller
- Supports ISA slots and I/O chip
- Enables reduction of EMI and overall system cost
- Enables ACPI compliant designs
- Supports up to four CPU clock frequencies
- Enables ATE and "bed of nails" testing
- Widely available, standard package enables lower cost

Pin Description

Name	Pins	Description
REF	56	3.3V 14.318-MHz clock output
XTAL_IN	2	14.318-MHz crystal input
XTAL_OUT	3	14.318-MHz crystal input
CPU, CPU [0:3]\#	$\begin{aligned} & 44,45,48,49, \\ & 51,52,53,54 \end{aligned}$	Differential CPU clock outputs
3V66_0	33	3.3V 66-MHz clock output
3V66_1/VCH	35	3.3 V selectable through SMBus to be 66 MHz or 48 MHz
66IN/3V66_5	24	66-MHz input to buffered 66BUFF and PCI or $66-\mathrm{MHz}$ clock from internal VCO
$\begin{aligned} & \text { 66BUFF [0:2] } \\ & \text { /3V66 [2:4] } \end{aligned}$	21, 22, 23	66-MHz buffered outputs from 66Input or 66-MHz clocks from internal VCO
PCI_F [0:2]	5, 6, 7,	33-MHz clocks divided down from 66Input or divided down from 3V66
PCI [0:6]	$\begin{aligned} & 10,11,12,13,16 \\ & 17,18 \end{aligned}$	PCI clock outputs divided down from 66Input or divided down from 3V66
USB	39	Fixed 48-MHz clock output
DOT	38	Fixed 48-MHz clock output
S2	40	Special 3.3V 3-level input for Mode selection
S1	55	3.3V LVTTL inputs for CPU frequency selection
IREF	42	A precision resistor is attached to this pin which is connected to the internal current reference
MULT0	43	3.3V LVTTL input for selecting the current multiplier for the CPU outputs
PD\#	25	3.3V LVTTL input for Power_Down\# (active LOW). Do not add any decoupling capacitors. Use an external 1.0-K Ω pull-up resistor.
PCI_STOP\#	34	3.3V LVTTL input for PCI_STOP\# (active LOW)
VTTPWRGD\#	28	3.3V LVTTL input is a level-sensitive strobe used to determine when S[1:2] and MULTO inputs are valid and OK to be sampled (Active LOW). Once VTTPWRGD\# is sampled LOW, the status of this output will be ignored.
SDATA	29	SMBus-compatible SDATA
SCLK	30	SMBus-compatible Sclk
VDD_REF, VDD_PCI, VDD_3V66, VDD_48 MHz, VDD_CPU	$\begin{aligned} & 1,8,14,19,32, \\ & 37,46,50 \end{aligned}$	3.3V power supply for outputs
VDD_CORE	26	3.3V power supply for PLL
GND_REF, GND_PCI, GND_3V66, GND_IREF, VDD_CPU	$\begin{aligned} & 4,9,15,20,31, \\ & 36,41,47 \end{aligned}$	Ground for outputs
GND_CORE	27	Ground for PLL

Function Table ${ }^{[1]}$

S2	S1	CPU (MHz)	$\begin{gathered} 3 \mathrm{~V} 66[0: 1](\\ \mathrm{MHz}) \end{gathered}$	$\begin{gathered} \text { 66BUFF[0:2]/ } \\ \text { 3V66[2:4] } \\ \text { (MHz) } \end{gathered}$	$\begin{gathered} \text { 66IN/3V66_5 } \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \text { PCI_F/PCI } \\ (\overline{\mathrm{MHz}}) \end{gathered}$	REF0(MHz)	$\begin{gathered} \text { USB/DOT } \\ (\mathrm{MHz}) \end{gathered}$	Notes
1	0	100 MHz	66 MHz	66IN	66-MHz Input	66IN/2	14.318 MHz	48 MHz	2, 3, 4
1	1	133 MHz	66 MHz	66 IN	66-MHz Input	66IN/2	14.318 MHz	48 MHz	2, 3, 4
0	0	100 MHz	66 MHz	66 MHz	66-MHz Input	33 MHz	14.318 MHz	48 MHz	2, 3, 4
0	1	133 MHz	66 MHz	66 MHz	66-MHz Input	33 MHz	14.318 MHz	48 MHz	2, 3, 4
Mid	0	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	Hi-Z	Hi-Z	5, 6
Mid	1	TCLK/2	TCLK/4	TCLK/4	TCLK/4	TCLK/8	TCLK	TCLK/2	1,6

Swing Select Functions

Mult0	Board Target Trace/Term Z	Reference R, IREF $\mathbf{V}_{\mathbf{D D}} /\left(3^{*} \mathbf{R r}\right)$	Output Current	$\mathbf{V}_{\mathbf{O H}}$ @ Z,

Clock Driver Impedances

			Impedance		
Buffer Name	$\mathbf{V}_{\text {DD }}$ Range	Buffer Type	Min. (Ohm)	Typ. (Ohm)	Max. (Ohm)
CPU, CPU\#		Type X1		50	
REF	$3.135-3.465$	Type 3	20	40	60
PCI, 3V66, 66BUFF	$3.135-3.465$	Type 5	12	30	55
USB	$3.135-3.465$	Type 3A	12	30	55
DOT	$3.135-3.465$	Type 3B	12	30	55

Clock Enable Configuration

PD\#	PCI_STOP\#	CPU	CPU\#	3V66	66BUFF	PCI_F	PCI	USB/DOT	VCOS/OSC
0	X	IREF*2 2	FLOAT	LOW	LOW	LOW	LOW	LOW	OFF
1	0	ON	ON	ON	ON	ON	OFF	ON	ON
1	1	ON							

Notes:

1. TCLK is a test clock driven in on the XTALIN input in test mode.
2. "Normal" mode of operation.
3. Range of reference frequency allowed is $\min .=14.316$ nominal $=14.31818 \mathrm{MHz}, \max .=14.32 \mathrm{MHz}$
4. Frequency accuracy of 48 MHz must be +167 PPM to match USB default.
5. Required for board level "bed of nails" testing.
6. Mid is defined a Voltage level between 1.0 V and 1.8 V for 3 level input functionality. Low is below 0.8 V . High is above 2.0 V .

Serial Data Interface (SMBus)

To enhance the flexibility and function of the clock synthesizer, a two-signal SMBus interface is provided according to SMBus specification. Through the Serial Data Interface, various device functions such as individual clock output buffers, etc. can be individually enabled or disabled. CY28329 support both block read and block write operations.
The registers associated with the Serial Data Interface initializes to its default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts only Block Writes from the controller. The bytes must be accessed in sequential order from lowest to highest byte, (most significant bit first) with the ability to stop after any complete byte has been transferred. Indexed bytes are not allowed.

A Block write begins with a slave address and a WRITE condition. The R/W bit is used by the SMBus controller as a data direction bit. A zero indicates a WRITE condition to the clock device. The slave receiver address is 11010010 (D2h).

A command code of 00000000 (00 h) and the byte count bytes are required for any transfer. After the command code, the core logic issues a byte count, which describes number of additional bytes required for the transfer, not including the command code and byte count bytes. For example, if the host has 20 data bytes to send, the first byte would be the number 20 (14h), followed by the 20 bytes of data. The byte count byte is required to be a minimum of 1 byte and a maximum of 32 bytes It may not be 0 . Figure 1 shows an example of a block write.
A transfer is considered valid after the acknowledge bit corresponding to the byte count is read by the controller.

Start bit	$\begin{aligned} & \text { Slave Address } \\ & 11010010 \end{aligned}$	$\begin{gathered} \text { R/W } \\ 0 / 1 \end{gathered}$	A	$\begin{aligned} & \text { Command Code } \\ & 0000000000 \end{aligned}$	A	$\begin{gathered} \text { Byte Count }= \\ \mathrm{N} \end{gathered}$	A	Data Byte 0	A		Data Byte N-1	A	Stop bit
1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1		8 bits	1	1 bit

Figure 1. An Example of a Block Write

Data Byte Configuration Map

Data Byte 0: Control Register ($0=$ Enable, 1 = Disable)

Bit	Affected Pin\#	Name	Description	Type	Power On Default
Bit 7	$\begin{gathered} 5,6,7,10, \\ 11,12,13, \\ 16,17,18, \\ 33,35 \end{gathered}$	$\begin{aligned} & \mathrm{PCI}[0: 6] \\ & \mathrm{CPU}[3: 0] \\ & 3 \mathrm{~V} 66[1: 0] \end{aligned}$	Spread Spectrum Enable 0 = Spread Off, 1 = Spread On	R/W	0
Bit 6	-	-	Reserved, set $=0$	R	0
Bit 5	35	3V66_1/VCH	$\begin{aligned} & \text { VCH Select } 66 \mathrm{MHz} / 48 \mathrm{MHz} \\ & 0=66 \mathrm{MHz}, 1=48 \mathrm{MHz} \end{aligned}$	R/W	0
Bit 4	-	-	Reserved	R	1
Bit 3	$\begin{gathered} \hline 10,11,12 \\ 13,16,17 \\ 18 \end{gathered}$	PCI [6:0]	PCI_STOP\#, 0 = stopped, 1 = running (Does not affect PCI_F [2:0] pins)	R/W	1
Bit 2	40	S2	S2 Reflects the value of the S 2 pin sampled on Power-up	R	HW
Bit 1	55	S1	S1 Reflects the value of the S1 pin sampled on Power-up	R	HW
Bit 0	-	-	Reserved	R	1

Data Byte 1:

Bit	Pin\#	Name	Description	Type	Power On Default
Bit 7	-		CPU Mult0 Value	R	HW
Bit 6	53, 54	$\begin{aligned} & \text { CPU3 } \\ & \text { CPU3\# } \end{aligned}$	CPU3 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 5	-	-	Reserved, set = 0	R/W	0
Bit 4	-	-	Reserved, set = 0	R/W	0
Bit 3	-	-	Reserved, set = 0	R/W	0
Bit 2	44, 45	$\begin{aligned} & \hline \text { CPU2 } \\ & \text { CPU2\# } \end{aligned}$	CPU2 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 1	48, 49	$\begin{aligned} & \text { CPU1 } \\ & \text { CPU1\# } \end{aligned}$	CPU1Output Enable 1 = Enabled; 0= Disabled	R/W	1
Bit 0	51, 52	$\begin{aligned} & \text { CPU0 } \\ & \text { CPUO\# } \end{aligned}$	CPU0 Output Enable 1 = Enabled; 0 = Disabled	R/W	1

Data Byte 2:

Bit	Pin\#	Name	Pin Description	Type	Power On Default
Bit 7	-	-	Reserved, set = 0	R	0
Bit 6	18	PCI6	PCI6 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 5	17	PCI5	PCI5 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 4	16	PCI4	PCI4 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 3	13	PCI3	PCI3 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 2	12	PCI2	PCI2 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 1	11	PCI1	PCI1 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 0	10	PCIO	PCIO Output Enable 1 = Enabled; 0 = Disabled	R/W	1

Data Byte 3:

Bit	Pin\#	Name	Pin Description	Type	Power On Default
Bit 7	38	DOT	DOT 48 MHz Output Enable, 1 = enabled, 0 = disabled	R/W	1
Bit 6	39	USB	USB 48 MHz Output Enable, 1 = enabled, $0=$ disabled	R/W	1
Bit 5	7	PCI_F2	Allow control of PCI_F2 with assertion of PCI_STOP\# 0 = Free running; 1 = Stopped with PCI_STOP̄	R/W	0
Bit 4	6	PCI_F1	Allow control of PCI_F1 with assertion of PCI_STOP\# 0 = Free running; 1 = Stopped with PCI_STO $\overline{\mathrm{P}} \#$	R/W	0
Bit 3	5	PCI_F0	Allow control of PCI_F0 with assertion of PCI_STOP\# 0 = Free running; $1=$ Stopped with PCI_STOP\#	R/W	0
Bit 2	7	PCI_F2	PCI_F2 Output Enable, 1 = enabled, $0=$ disabled	R/W	1
Bit 1	6	PCI_F1	PCI_F1Output Enable, 1 = enabled, 0 = disabled	R/W	1
Bit 0	5	PCI_F0	PCI_F0 Output Enable, 1 = enabled, 0 = disabled	R/W	1

Data Byte 4:

Bit	Pin\#	Name	Pin Description	Type	Power On Default
Bit 7	-		Reserved, set = 0	R	0
Bit 6	-		Reserved, set = 0	R	0
Bit 5	33	3V66_0	3V66_0 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 4	35	3V66_1/VCH	3V66_1/VCH Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 3	24	66IN/3V66_5	3V66_5 Output Enable 1 = Enable; 0 = Disable Note: This bit should be used when pin 24 is configured as 3V66_5 output. do not clear this bit when pin 24 is configured as 66 IN input.	R/W	1
Bit 2	23	66BUFF2	66-MHz Buffered 2 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 1	22	66BUFF1	66-MHz Buffered 1 Output Enable 1 = Enabled; $0=$ Disabled	R/W	1
Bit 0	21	66BUFF0	66-MHz Buffered 0 Output Enable 1 = Enabled; 0 = Disabled	R/W	1

Data Byte 5:

Bit	Pin\#	Name	Pin Description	Type	Power On Default
Bit 7			Reserved, set = 0	R	0
Bit 6			Reserved, set = 0	R	0
Bit 5	21,22,23	66BUFF [2:0]	Tpd 66IN to 66BUFF propagation delay control	R/W	0
Bit 4				R/W	0
Bit 3	38	DOT	DOT edge rate control	R/W	0
Bit 2				R/W	0
Bit 1	39	USB	USB edge rate control	R/W	0
Bit 0				R/W	0

Byte 6: Vendor ID

Bit	Description	Type	Power On Default
Bit 7	Revision Code Bit 3	R	0
Bit 6	Revision Code Bit 2	R	0
Bit 5	Revision Code Bit 1	R	0
Bit 4	Revision Code Bit 0	R	0
Bit 3	Vendor ID Bit 3	R	1
Bit 2	Vendor ID Bit 2	R	0
Bit 1	Vendor ID Bit 1	R	0
Bit 0	Vendor ID Bit 0	R	0

Absolute Maximum Conditions

(Above which the useful life may be impaired. For user guidelines, not tested.)
Supply Voltage ...-0.5 to +7.0V
Input Voltage
-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5$

Storage Temperature (Non-Condensing).... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Max. Soldering Temperature (10 sec.) $+260^{\circ} \mathrm{C}$ Junction Temperature ... $+150^{\circ} \mathrm{C}$ Package Power Dissipation.. 1W

Static Discharge Voltage. (per MIL-STD-883, Method 3015) ... 2000 V

Operating Conditions over which electrical parameters are guaranteed ${ }^{[7]}$

Parameter	Description	Min.	Max.	Unit
$\mathrm{V}_{\mathrm{DD} \text { _REF, }} \mathrm{V}_{\mathrm{DD} \text { PPII }}, \mathrm{V}_{\mathrm{DD}}$ CORE, $\mathrm{V}_{\mathrm{DD}} 3 \mathrm{~V} 66, \mathrm{~V}_{\mathrm{DD}}$ _ 48 MHz , $\mathrm{V}_{\mathrm{DD}} \mathrm{CPU}$,	3.3V Supply Voltages	3.135	3.465	V
$\mathrm{T}_{\text {A }}$	Operating Temperature, Ambient	0	70	${ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {in }}$	Input Pin Capacitance		5	pF
$\mathrm{C}_{\text {XTAL }}$	XTAL Pin Capacitance		22.5	pF
C_{L}	Max. Capacitive Load on USBCLK, REF PCICLK, 3V66		$\begin{aligned} & 20 \\ & 30 \end{aligned}$	pF
$\mathrm{f}_{\text {(REF })}$	Reference Frequency, Oscillator Nominal Value	14.318	14.318	MHz

DC Electrical Specifications Over the Operating Range

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{IH}	High-level Input Voltage	Except Crystal Pads. Threshold voltage for crystal pads = $\mathrm{V}_{\mathrm{DD}} / 2$		2.0		V
V_{IL}	Low-level Input Voltage	Except Crystal Pads			0.8	V
V_{OH}	High-level Output Voltage	USB, REF, 3V66	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4		V
		PCI	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4		V
V_{OL}	Low-level Output Voltage	USB, REF, 3V66	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$		0.4	V
		PCI	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$		0.55	V
$\mathrm{IIH}^{\text {H }}$	Input High Current	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}$		-5	5	mA
IIL	Input Low Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$		-5	5	mA
IOH^{\prime}	High-level Output Current	CPU For $\mathrm{I}_{\mathrm{OH}}=6^{*}$ IRef Configuration	Type $\mathrm{X} 1, \mathrm{~V}_{\mathrm{OH}}=0.65 \mathrm{~V}$	12.9		mA
			Type $\mathrm{X} 1, \mathrm{~V}_{\mathrm{OH}}=0.74 \mathrm{~V}$		14.9	
		REF, DOT, USB	Type 3, $\mathrm{V}_{\mathrm{OH}}=1.00 \mathrm{~V}$	-29		
			Type 3, $\mathrm{V}_{\mathrm{OH}}=3.135 \mathrm{~V}$		-23	
		3V66, DOT, PCI	Type 5, $\mathrm{V}_{\mathrm{OH}}=1.00 \mathrm{~V}$	-33		
			Type 5, $\mathrm{V}_{\mathrm{OH}}=3.135 \mathrm{~V}$		-33	
I_{OL}	Low-level Output Current	REF, DOT, USB	Type 3, $\mathrm{V}_{\mathrm{OL}}=1.95 \mathrm{~V}$	29		mA
			Type 3, $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		27	
		3V66, PCI	Type 5, $\mathrm{V}_{\mathrm{OL}}=1.95 \mathrm{~V}$	30		
			Type 5, $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		38	
I_{Oz}	Output Leakage Current	Three-state			10	mA
IDD3	3.3V Power Supply Current	$\mathrm{V}_{\text {DD_CORE }} / \mathrm{V}_{\mathrm{DD} 3.3}=3.465 \mathrm{~V}, \mathrm{~F}_{\mathrm{CPU}}=133 \mathrm{MHz}$			360	mA
IDDPD3	3.3V Shutdown Current	$\mathrm{V}_{\text {DD_CORE }} / \mathrm{V}_{\text {DD3.3 }}=3.465 \mathrm{~V}$ and @ IREF $=2.32 \mathrm{~mA}$			25	mA
IDDPD3	3.3V Shutdown Current	$\mathrm{V}_{\mathrm{DD} \text { _CORE }} / \mathrm{V}_{\text {DD3.3 }}=3.465 \mathrm{~V}$ and @ IREF $=5.0 \mathrm{~mA}$			45	mA

Note:

7. Multiple Supplies: the voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

CY28329

Switching Characteristics Over the Operating Range ${ }^{[8]}$

Parameter	Output	Description	Test Conditions	Min.	Max.	Unit
t_{1}	All	Output Duty Cycle ${ }^{[9]}$	Measured at 1.5 V	45	55	\%
t_{2}	CPU	Rise Time	Measured differential waveform from -0.35 V to +0.35 V	175	700	ns
t_{2}	$\begin{aligned} & \text { USB, REF, } \\ & \text { DOT } \end{aligned}$	Rising Edge Rate	Between 0.4 V and 2.4 V	0.5	2.0	ns
t_{2}	PCI, 3V66	Rising Edge Rate	Between 0.4 V and 2.4 V	1.0	4.0	V/ns
t_{3}	CPU	Fall Time	Measured differential waveform from -0.35 V to +0.35 V	175	700	ps
t_{3}	$\begin{aligned} & \text { USB, REF, } \\ & \text { DOT } \end{aligned}$	Falling Edge Rate	Between 2.4V and 0.4V	0.5	2.0	ns
t_{3}	PCI, 3V66	Falling Edge Rate	Between 2.4 V and 0.4V	1.0	4.0	V/ns
t_{4}	CPU	CPU-CPU Skew	Measured at Crossover		150	ps
t_{5}	3V66 [0:1]	3V66-3V66 Skew	Measured at 1.5 V		500	ps
t_{5}	66BUFF[0:2]	66BUFF-66BUFF Skew	Measured at 1.5 V		175	ps
t_{6}	PCI	PCI-PCI Skew	Measured at 1.5 V		500	ps
t_{7}	3V66, PCI	3V66-PCI Clock Skew	3 V 66 leads. Measured at 1.5 V	1.5	3.5	ns
t_{8}	CPU	Cycle-Cycle Clock Jitter	Measured at Crossover $\mathrm{t}_{8}=\mathrm{t}_{8 \mathrm{~A}}-\mathrm{t}_{8 B}$ With all outputs running		150	ps
t_{9}	3V66	Cycle-Cycle Clock Jitter	Measured at $1.5 \mathrm{~V} \mathrm{t}_{9}=\mathrm{t}_{9 \mathrm{~A}}-\mathrm{t}_{98}$		250	ps
t_{9}	USB, DOT	Cycle-Cycle Clock Jitter	Measured at $1.5 \mathrm{~V} \mathrm{t}_{9}=\mathrm{t}_{9 A}-\mathrm{t}_{98}$		350	ps
t_{9}	PCI	Cycle-Cycle Clock Jitter	Measured at $1.5 \mathrm{~V} \mathrm{t}_{9}=\mathrm{t}_{9 \mathrm{~A}}-\mathrm{t}_{9 \mathrm{~B}}$		500	ps
t_{9}	REF	Cycle-Cycle Clock Jitter	Measured at $1.5 \mathrm{~V} \mathrm{t}_{9}=\mathrm{t}_{9 \mathrm{~A}}-\mathrm{t}_{98}$		1000	ps
t_{10}	ALL	POR timing	Measured at $1.5 \mathrm{~V}^{[10,11]}$	1.0	4.0	ms
	CPU	Rise/Fall Matching	Measured with test loads ${ }^{[12,13]}$		235	mV
$V_{\text {oh }}$	CPU	High-level Output Voltage including overshoot	Measured with test loads ${ }^{[13]}$	0.92	1.45	V
$\mathrm{V}_{\text {ol }}$	CPU	Low-level Output Voltage including undershoot	Measured with test loads ${ }^{[13]}$	-0.2	0.35	V
$\mathrm{V}_{\text {crossover }}$	CPU	Crossover Voltage	Measured with test loads ${ }^{[13]}$	0.250	0.550	V

Notes:
8. All parameters specified with loaded outputs
9. Duty cycle is measured at 1.5 V when $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$. When $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$, duty cycle is measured at 1.25 V .
10. POR starts when $V_{D D}$ reaches 1.5 V .
11. All PULL-UPs must ramp at the same rate as $V_{D D}$.
12. Determined as a fraction of $2^{*}(\operatorname{Trp}-\operatorname{Trn}) /(\operatorname{Trp}+\operatorname{Trn})$ Where Trp is a rising edge and Trn is an intersecting falling edge.
13. The test load is $R_{s}=33.2 \Omega, R_{p}=49.9 \Omega$ in test circuit.

CYPRESS

Definition and Application of VTTPWRGD\# Signal

Switching Waveforms

Duty Cycle Timing (Single-Ended Output)

Duty Cycle Timing (CPU Differential Output)

All Outputs Rise/Fall Time

CPU-CPU Clock Skew

3V66-3V66 Clock Skew

3V66

3V66

PCI-PCI Clock Skew

$$
\mathrm{PCl}
$$

PCl

Switching Waveforms (continued)
3V66-PCI Clock Skew

CPU Clock Cycle-Cycle Jitter

Cycle-Cycle Clock Jitter

VDD and POR Timing

VTTPWRGD\# Timing Diagrams

Figure 2. CPU Power BEFORE Clock Power

CLOCK OUTPUTS
Figure 3. CPU Power AFTER Clock Power

PD\# Assertion

PD\# Deassertion

CYPRESS

Layout Example

FB = Dale ILB1206-300 or 2TDKACB2012L-120 or 2 Murata BLM21B601S
Ceramic Caps C1 $=\mathbf{1 0 - 2 2 ~} \mu \mathrm{F} \quad \mathrm{C} 2=\mathbf{0 . 0 0 5} \mu \mathrm{F} \mathbf{C} 5=0.1 \mu \mathrm{~F} \mathbf{C}=10 \mu \mathrm{~F}$ (G) = VIA to GND plane layer $\quad(\mathrm{V}=$ VIA to respective supply plane layer Note: Each supply plane or strip should have a ferrite bead and capacitors

CY28329

Test Circuit

Ordering Information

Ordering Code	Package Type	Operating Range		
Standard	56-Pin Small Shrunk Outline Package (SSOP)	Commercial		
CY28329PVC	56-Pin Small Shrunk Outline Package (SSOP) - Tape and Reel	Commercial		
CY28329PVCT	56-Pin Thin Small Shrunk Outline Package (TSSOP)	Commercial		
CY28329ZC	56-Pin Thin Small Shrunk Outline Package (TSSOP) - Tape and Reel	Commercial		
CY28329ZCT				
Lead-free	56-Pin Small Shrunk Outline Package (SSOP)	Commercial		
CY28329OXC	56-Pin Small Shrunk Outline Package (SSOP) -Tape and Reel	Commercial		
CY28329OXCT	56-Pin Thin Small Shrunk Outline Package (TSSOP)	Commercial		
CY28329ZXC	56-Pin Thin Small Shrunk Outline Package (TSSOP)	Commercial		
CY28329ZXCT				

Package Diagrams

56-Lead Shrunk Small Outline Package 056

56-Lead Thin Shrunk Small Outline Package, Type II (6 mm x 12 mm) Z56

DIMENSIONS IN MM[INCHES] MIN.

REFERENCE JEDEC MO-153
PACKAGE WEIGHT 0.42gms

PART \#
Z5624 STANDARD PKG.
ZZ5624 LEAD FREE PKG.

Intel and Pentium are registered trademarks of Intel Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY28329 133-MHz Spread Spectrum Clock Synthesizer/Driver with Differential CPU Outputs Document Number: 38-07040

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
${ }^{* *}$	115133	$04 / 26 / 02$	DSG	Changed from Spec number: 38-01147 to 38-07040 Preliminary to Final
${ }^{* A}$	122733	$12 / 14 / 02$	RBI	Added power-up requirements to operating conditions information.
${ }^{*}$ B	127128	$06 / 13 / 03$	RGL	Added t10 timing AC specification. Added Notes 10 and 11. Added VDD to POR diagram. Added pull-up resistor to PD\# in Layout example.Verified I2C default values Added "Use an external 1.0 to 4.7K Ω pull-up resistor" to Pin 25 description.
${ }^{*} \mathrm{C}$	127899	$06 / 26 / 03$	DMG	Changed Pin 25 description to "Use an external 1.0 K Ω pull-up resistor".
${ }^{* D}$	128179	$06 / 27 / 03$	LJN	Updated Document History Page to reflect *C changes.
${ }^{* E}$	310457	See ECN	RGL	Added Lead-free devices

