

October 1987 Revised March 2002

CD4046BC Micropower Phase-Locked Loop

General Description

The CD4046BC micropower phase-locked loop (PLL) consists of a low power, linear, voltage-controlled oscillator (VCO), a source follower, a zener diode, and two phase comparators. The two phase comparators have a common signal input and a common comparator input. The signal input can be directly coupled for a large voltage signal, or capacitively coupled to the self-biasing amplifier at the signal input for a small voltage signal.

Phase comparator I, an exclusive OR gate, provides a digital error signal (phase comp. I Out) and maintains 90° phase shifts at the VCO center frequency. Between signal input and comparator input (both at 50% duty cycle), it may lock onto the signal input frequencies that are close to harmonics of the VCO center frequency.

Phase comparator II is an edge-controlled digital memory network. It provides a digital error signal (phase comp. II Out) and lock-in signal (phase pulses) to indicate a locked condition and maintains a 0° phase shift between signal input and comparator input.

The linear voltage-controlled oscillator (VCO) produces an output signal (VCO Out) whose frequency is determined by the voltage at the VCO $_{\rm IN}$ input, and the capacitor and resistors connected to pin C1 $_{\rm A}$, C1 $_{\rm B}$, R1 and R2.

The source follower output of the VCO $_{IN}$ (demodulator Out) is used with an external resistor of 10 k Ω or more.

The INHIBIT input, when high, disables the VCO and source follower to minimize standby power consumption. The zener diode is provided for power supply regulation, if necessary.

Features

- Wide supply voltage range: 3.0V to 18V
- Low dynamic power consumption: 70 μ W (typ.) at $f_0 = 10$ kHz, $V_{DD} = 5$ V
- VCO frequency: 1.3 MHz (typ.) at V_{DD} = 10V
- Low frequency drift: 0.06%/°C at V_{DD} = 10V with temperature
- High VCO linearity: 1% (typ.)

Applications

- · FM demodulator and modulator
- · Frequency synthesis and multiplication
- · Frequency discrimination
- · Data synchronization and conditioning
- Voltage-to-frequency conversion
- · Tone decoding
- · FSK modulation
- · Motor speed control

Ordering Code:

Order Number	Package Number	Package Description
CD4046BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4046BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 2002 Fairchild Semiconductor Corporation

DS005968

www.fairchildsemi.com

Connection Diagram PHASE PULSES PHASE COMP | OUT 13 PHASE COMP II OUT DEMODULATOR OUT **Top View Block Diagram** COMPARATOR PHASE COMP I DUT PHASE COMP II OUT O PHASE PULSES DEMODULATOR 10 OUT ZENER FIGURE 1.

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

(Note 2)

 $\begin{array}{ll} \text{DC Supply Voltage (V}_{\text{DD}}) & -0.5 \text{ to } +18 \text{ V}_{\text{DC}} \\ \text{Input Voltage (V}_{\text{IN}}) & -0.5 \text{ to V}_{\text{DD}} +0.5 \text{ V}_{\text{DC}} \\ \text{Storage Temperature Range (T}_{\text{S}}) & -65^{\circ}\text{C to } +150^{\circ}\text{C} \end{array}$

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V_{DD}) 3 to 15 V_{DC} Input Voltage (V_{IN}) 0 to V_{DD} V_{DC} Operating Temperature Range (T_A) -55°C to +125°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

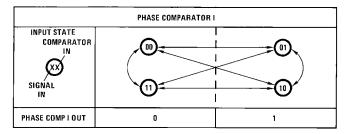
Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	-5	5°C		+25°C		+12	5°C	Units
Cyllibol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Min Max	
I _{DD}	Quiescent Device Current	Pin 5 = V _{DD} , Pin 14 = V _{DD} ,								
		Pin 3, $9 = V_{SS}$								
		$V_{DD} = 5V$		5		0.005	5		150	
		$V_{DD} = 10V$		10		0.01	10		300	μΑ
		$V_{DD} = 15V$		20		0.015	20		600	
		Pin 5 = V _{DD} , Pin 14 = Open,								
		Pin 3, $9 = V_{SS}$								
		$V_{DD} = 5V$		45		5	35		185	
		$V_{DD} = 10V$		450		20	350		650	μΑ
		$V_{DD} = 15V$		1200		50	900		1500	
V _{OL}	LOW Level Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{IL}	LOW Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	
	Comparator and Signal In	$V_{DD} = 10V$, $V_O = 1V$ or $9V$		3.0		4.5	3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6.25	4.0		4.0	
V _{IH}	HIGH Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		
	Comparator and Signal In	$V_{DD} = 10V$, $V_O = 1V$ or $9V$	7.0		7.0	5.5		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	8.25		11.0		
I _{OL}	LOW Level Output Current	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	(Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output Current	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	(Note 4)	$V_{DD} = 10V, \ V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	All Inputs Except Signal Input								
		$V_{DD}=15V,\ V_{IN}=0V$		-0.1		-10^{-5}	-0.1		-1.0	μА
		$V_{DD}=15V,\ V_{IN}=15V$		0.1		10 ⁻⁵	0.1		1.0	μΑ
C _{IN}	Input Capacitance	Any Input (Note 3)							7.5	pF
P _T	Total Power Dissipation	$f_0 = 10 \text{ kHz}, R1 = 1 \text{ M}\Omega,$								
		$R2 = \infty, VCO_{IN} = V_{CC}/2$								
		$V_{DD} = 5V$				0.07				
		$V_{DD} = 10V$				0.6				mW
		$V_{DD} = 15V$				2.4				

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: \mathbf{I}_{OH} and \mathbf{I}_{OL} are tested one output at a time.


Symbol	5°C, C _L = 50 pF Parameter	Conditions	Min	Тур	Max	Units
CO SEC	TION					
DD	Operating Current	$f_0 = 10 \text{ kHz}, R1 = 1 \text{ M}\Omega,$				
		$R2 = \infty$, $VCO_{IN} = V_{CC}/2$				
		$V_{DD} = 5V$		20		
		$V_{DD} = 10V$		90		μΑ
		V _{DD} = 15V		200		
MAX	Maximum Operating Frequency	C1 = 50 pF, R1 = 10 k Ω ,				
		$R2 = \infty$, $VCO_{IN} = V_{DD}$				
		$V_{DD} = 5V$	0.4	8.0		
		V _{DD} = 10V	0.6	1.2		МН
		$V_{DD} = 15V$	1.0	1.6		
	Linearity	$VCO_{IN} = 2.5V \pm 0.3V,$				
		$R1 \ge 10 \text{ k}\Omega, \text{ V}_{DD} = 5\text{V}$		1		
		$VCO_{IN} = 5V \pm 2.5V$,				%
		$R1 \ge 400 \text{ k}\Omega, V_{DD} = 10V$		1		/0
		$VCO_{IN} = 7.5V \pm 5V,$				
		$R1 \ge 1 M\Omega$, $V_{DD} = 15V$		1		
	Temperature-Frequency Stability	%/°C < 5c1/f. V _{DD}				
	No Frequency Offset, f _{MIN} = 0	R2 = ∞				
		$V_{DD} = 5V$		0.12-0.24		
		V _{DD} = 10V		0.04-0.08		%/°
		V _{DD} = 15V		0.015-0.03		
	Frequency Offset, f _{MIN} ≠ 0	$V_{DD} = 5V$		0.06-0.12		
		V _{DD} = 10V		0.05-0.1		%/°
		V _{DD} = 15V		0.03-0.06		
VCOIN	Input Resistance	$V_{DD} = 5V$		10 ⁶		
		V _{DD} = 10V		10 ⁶		MΩ
		V _{DD} = 15V		10 ⁶		
VCO	Output Duty Cycle	$V_{DD} = 5V$		50		
		V _{DD} = 10V		50		%
		V _{DD} = 15V		50		
t _{THL}	VCO Output Transition Time	$V_{DD} = 5V$		90	200	ns
t _{THL}	7	V _{DD} = 10V		50	100	
		V _{DD} = 15V		45	80	ns
PHASE C	OMPARATORS SECTION		•			
R _{IN}	Input Resistance					
	Signal Input	$V_{DD} = 5V$	1	3		
		V _{DD} = 10V	0.2	0.7		
		V _{DD} = 15V	0.1	0.3		Mo
	Comparator Input	$V_{DD} = 5V$		10 ⁶		ΩΜ
		V _{DD} = 10V		10 ⁶		
		V _{DD} = 15V		10 ⁶		
	AC-Coupled Signal Input Voltage Sensitivity	C _{SERIES} = 1000 pF				
	Gensiavity	f = 50 kHz				
		$V_{DD} = 5V$		200	400	
		$V_{DD} = 10V$		400	800	m۷
	1	$V_{DD} = 15V$		700	1400	1

AC Electrical Characteristics (Continued)

Parameter	Conditions	Min	Тур	Max	Units
Offset Voltage	$RS \ge 10 \text{ k}\Omega, V_{DD} = 5V$		1.50	2.2	
	$RS \geq 10~k\Omega,~V_{DD} = 10V$		1.50	2.2	V
	$RS \geq 50~k\Omega,~V_{DD} = 15V$		1.50	2.2	
Linearity	$RS \ge 50 \text{ k}\Omega$				
	$VCO_{IN}=2.5V\pm0.3V,V_{DD}=5V$		0.1		
	$VCO_{IN} = 5V \pm 2.5V, V_{DD} = 10V$		0.6		%
	$VCO_{IN} = 7.5V \pm 5V, \ V_{DD} = 15V$		0.8		
DE					
Zener Diode Voltage	$I_Z = 50 \mu A$	6.3	7.0	7.7	V
Zener Dynamic Resistance	I _Z = 1 mA		100		Ω
	Offset Voltage Linearity DE Zener Diode Voltage	$\begin{array}{c} \text{Offset Voltage} & \text{RS} \geq 10 \ k\Omega, \ V_{DD} = 5V \\ \text{RS} \geq 10 \ k\Omega, \ V_{DD} = 10V \\ \text{RS} \geq 50 \ k\Omega, \ V_{DD} = 15V \\ \\ \text{Linearity} & \text{RS} \geq 50 \ k\Omega \\ \text{VCO}_{\text{IN}} = 2.5V \pm 0.3V, \ V_{DD} = 5V \\ \text{VCO}_{\text{IN}} = 5V \pm 2.5V, \ V_{DD} = 10V \\ \text{VCO}_{\text{IN}} = 7.5V \pm 5V, \ V_{DD} = 15V \\ \\ \text{DE} \\ \\ \text{Zener Diode Voltage} & I_Z = 50 \ \mu\text{A} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note 5: AC Parameters are guaranteed by DC correlated testing.

Phase Comparator State Diagrams

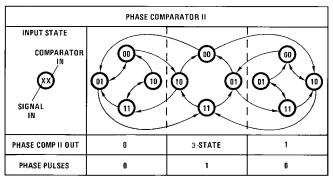
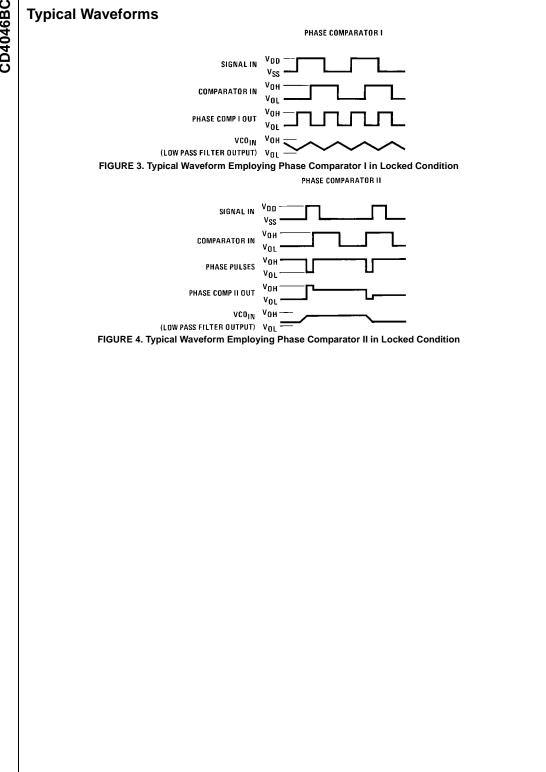
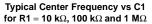
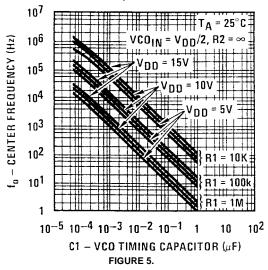
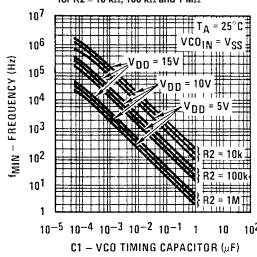





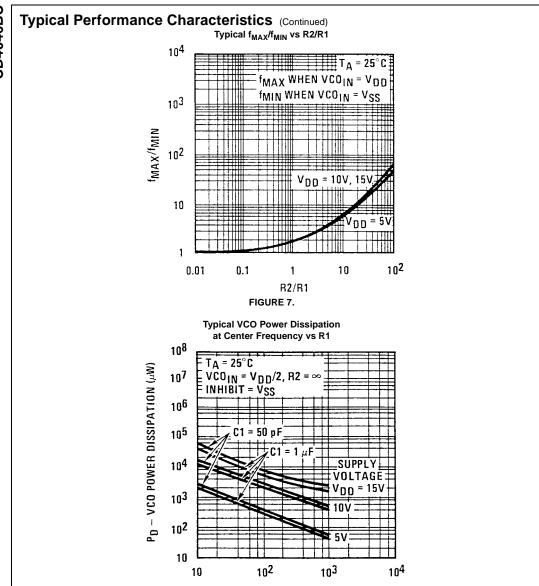
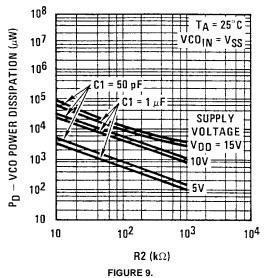
FIGURE 2.

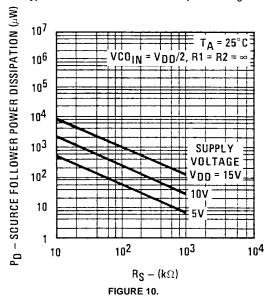


Typical Performance Characteristics

Typical Frequency vs C1 for R2 = 10 k Ω , 100 k Ω and 1 M Ω

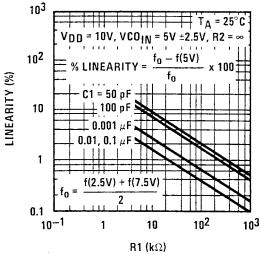
Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_{O}) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).


FIGURE 8. Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_O) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).

R1 ($k\Omega$)

Typical Performance Characteristics (Continued) Typical VCO Power Dissipation at f_{MIN} vs R2



Typical Source Follower Power Dissipation vs R_S

Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_O) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).

Typical Performance Characteristics (Continued)

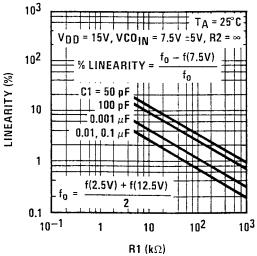


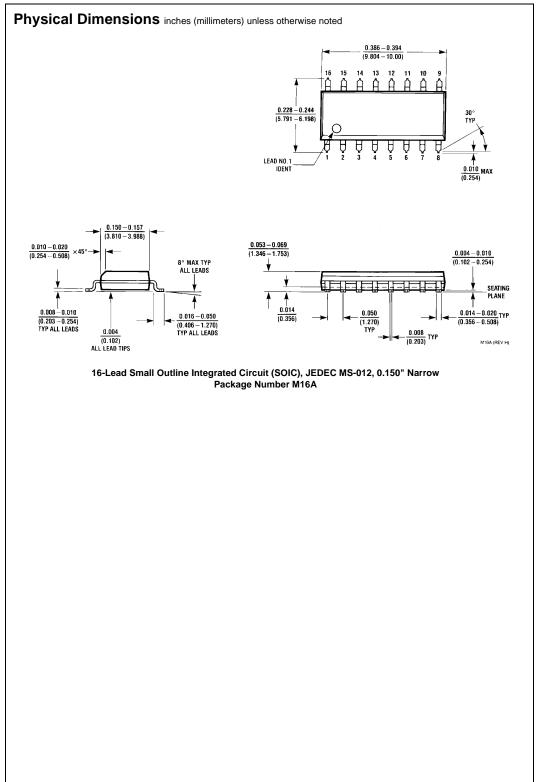
FIGURE 11. Typical VCO Linearity vs R1 and C1

Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_{O}) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).

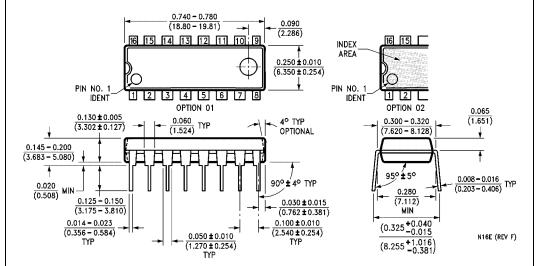
Design Information

This information is a guide for approximating the value of external components for the CD4046B in a phase-locked-loop system. The selected external components must be within the following ranges: R1, R2 \geq 10 k Ω , R_S \geq 10 k Ω , C1 \geq 50 pE

In addition to the given design information, refer to Figure 5, Figure 6, Figure 7 for R1, R2 and C1 component selections.


	Using Phase	Comparator I	Using Phase Comparator II		
Characteristics	VCO Without Offset	VCO With Offset	VCO Without Offset	VCO With Offset	
	R2 = ∞		R2 = ∞		
VCO Frequency	IMAX To VDD/2 VDD VCO IRPUT VOLTAGE	MAX To SMIN VOD/2 VOD INPUT VOLTAGE	MAN VDD/2 VDD VCO INPUT VOLTAGE	*MAX To 21L Y TO YOU YOU NAUT VOLTAGE	
For No Signal Input	VCO in PLL sy:	stem will adjust	will adjust VCO in PLL system will adjust to		
	to center fr	equency, f _o	lowest operating frequency, f _{min}		
Frequency Lock	2 f _L = full VCO frequency range				
Range, 2 f _L	$2 f_{L} = f_{max} - f_{min}$				
Frequency Capture Range, 2 f _C	11 = R3 C2 = C2	$2 f_{\mathbb{C}} pprox rac{1}{\pi} \sqrt{rac{2 \pi f_{\mathbb{L}}}{ au 1}}$			
Loop Filter Component Selection	1N O RJ O GUT	For 2 f _C , see Ref.	$f_{\mathbf{C}} = f_{L}$		
Phase Angle Between	90° at center frequen	cy (f _o), approximating	Always 0° in lock		
Single and Comparator					
Locks on Harmonics of Center Frequency	Ye	es	No		
Signal Input Noise Rejection	Hi	gh	Lo	DW .	

Design Information (Continued)


	Using Phase	Comparator I	Using Phase Comparator II			
Characteristics	VCO Without Offset	VCO With Offset	VCO Without Offset	VCO With Offset		
	R2 = ∞		R2 = ∞			
VCO Component	Given: f _o .	Given: fo and fL.	Given: f _{max} .	Given: f _{min} and f _{max} .		
Selection	Use fo with	Calculate f _{min}	Calculate fo from	Use f _{min} with		
	Figure 5 to	from the equation	the equation	Figure 6 to		
	determine R1 and C1.	$f_{min} = f_o - f_L.$	$f_0 = \frac{f_{max}}{2}$.	to determine R2 and C1.		
		Use f _{min} with Figure 6 to		Calculate		
		determine R2 and C1.		f _{max} f _{min}		
			Use fo with Figure 5 to			
		Calculate	determine R1 and C1.	Use		
		f _{max}		f _{max}		
		f _{min}		f _{min} with Figure 7		
		from the equation		to determine ratio		
		$\frac{f_{\text{max}}}{f_{\text{min}}} = \frac{f_0 + f_L}{f_0 - f_L}.$		R2/R1 to obtain R1.		
		Use				
		f _{max} f _{min} with Figure 7				
		to determine ratio R2/				
		R1 to obtain R1.				

References

G.S. Moschytz, "Miniaturized RC Filters Using Phase-Locked Loop", BSTJ, May, 1965. Floyd Gardner, "Phaselock Techniques", John Wiley & Sons, 1966.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com