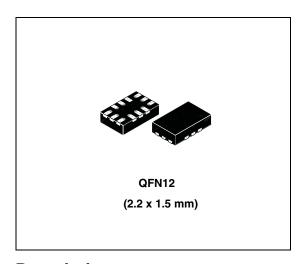


### STMPE321


### 3-channel capacitive touchkey controller

#### **Features**

- Up to 3 GPIOs
- Up to 3 capacitive touchkey inputs
- Operating voltage 1.65 1.95 V
- Interrupt output pin
- I<sup>2</sup>C interface (1.8 V operation, 3.3 V tolerant)
- 8 kV HBM ESD protection
- 40 fF resolution, 128-step capacitance measurement
- Advanced data filtering (AFS)
- Environment tracking calibration (ETC)
- Individually adjustable touch variance (TVR) settings for all channels
- Adjustable environmental variance (EVR) for optimal calibration
- Capacitive key sensing capability in 27 µA sleep mode

### **Applications**

- Mobile phones and smartphones
- Portable media players
- Game consoles



### **Description**

The STMPE321 is a 3-channel capacitive touchkey controller. Capacitance measurement is implemented in fully optimized hardware.

All 3 I/Os can be configured via an I<sup>2</sup>C bus to function as either capacitive touchkey, or as GPIOs (general purpose I/O).

Table 1. Device summary

| Order code  | Package              | Packing       |  |
|-------------|----------------------|---------------|--|
| STMPE321QTR | QFN12 (2.2 x 1.5 mm) | Tape and reel |  |

August 2009 Doc ID 15791 Rev 3 1/40

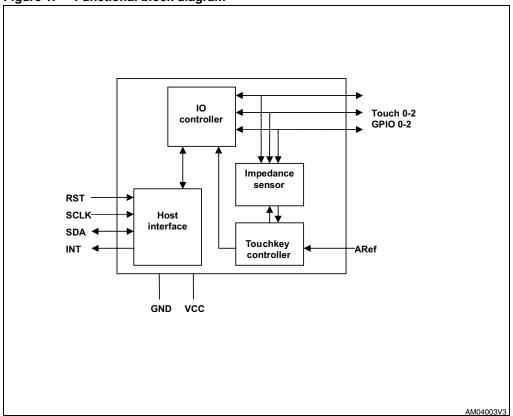
www.st.com

Contents STMPE321

# **Contents**

| 1  | STM                 | PE321 functional overview          | 3   |
|----|---------------------|------------------------------------|-----|
|    | 1.1                 | STMPE321 block diagram             | 3   |
|    | 1.2                 | Pin assignment and function        | 4   |
|    | 1.3                 | STMPE321 typical application       | 5   |
| 2  | Capa                | acitance compensation              | 6   |
|    | 2.1                 | Calibration algorithm              | 7   |
|    |                     | 2.1.1 Noise filtering              | . 8 |
|    |                     | 2.1.2 Data filtering               | . 8 |
|    | 2.2                 | Power management                   | S   |
| 3  | l <sup>2</sup> C iı | nterface 1                         | 10  |
| 4  | Regi                | ster map and function description  | 12  |
| 5  | Syst                | em and identification registers    | 14  |
| 6  | Inter               | rupt controller module1            | 17  |
| 7  | GPIC                | O controller                       | 22  |
| 8  | Сара                | acitive touch module registers     | 24  |
| 9  | Maxi                | imum rating                        | 33  |
| 10 | Elec                | trical specifications              | 34  |
|    | 10.1                | Capacitive sensing characteristics | 34  |
| 11 | Pack                | kage mechanical data               | 35  |
| 12 | Revi                | sion history                       | 30  |

577


# 1 STMPE321 functional overview

The STMPE321 consists of the following blocks:

- GPIO controller
- Impedance sensor
- Touchkey controller
- I<sup>2</sup>C interface

### 1.1 STMPE321 block diagram

Figure 1. Functional block diagram



# 1.2 Pin assignment and function



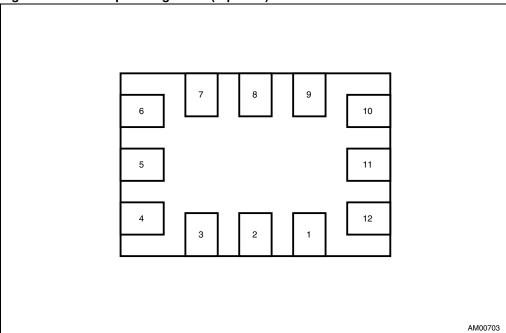
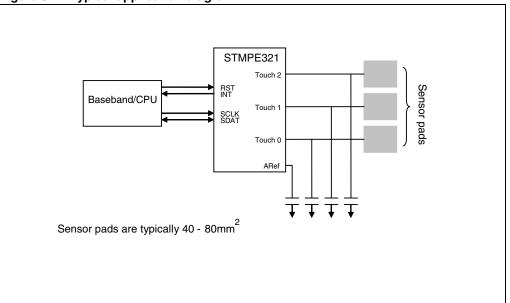



Table 2. Pin assignment and function

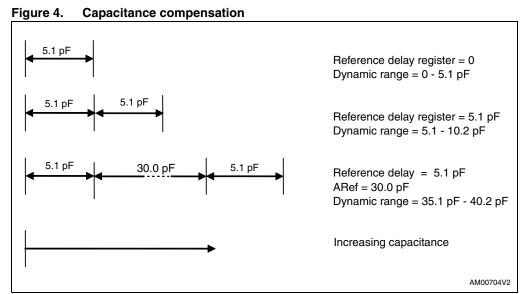

| Pin number | Pin name         | Description                                                            |
|------------|------------------|------------------------------------------------------------------------|
| 1          | GPIO_2 / touch 2 | GPIO 2                                                                 |
| 2          | GPIO_1 / touch 1 | GPIO 1                                                                 |
| 3          | GPIO_0 / touch 0 | GPIO 0                                                                 |
| 4          | NC               | -                                                                      |
| 5          | SDA              | I <sup>2</sup> C data                                                  |
| 6          | SCL              | I <sup>2</sup> C clock                                                 |
| 7          | GND              | GND                                                                    |
| 8          | VCC              | Supply voltage                                                         |
| 9          | ARef             | Reference capacitor for touch sensor                                   |
| 10         | NC               | -                                                                      |
| 11         | INT              | INT output (open drain)                                                |
| 12         | RST              | RESET (active low) This pin is internally pulled up to V <sub>CC</sub> |

477

# 1.3 STMPE321 typical application

The STMPE321 is capable of supporting capacitive sensors of up to 3 channels.

Figure 3. Typical application diagram




### 2 Capacitance compensation

The STMPE321 is capable to measuring up to 5.1pF in capacitance difference between the reference point (Zref) and the individual channels. In the case where PCB connection between the sensor pads and the device is too long, the "REFERENCE DELAY" register is able to shift the reference by up to 5.1pF, allowing the TOUCH channels to measure added capacitance 5.1pF with offset of 5.1pF, as shown in following diagram.

In the case where this is still not enough to compensate for the capacitance on sensor lines (due to very long sensor trace), an external capacitor of up to 30 pF could be connected at the A\_Ref pin.

This would further shift up the dynamic range of the capacitance measurement.



The sensed capacitance is accessible to the host through the IMPEDANCE registers.

### 2.1 Calibration algorithm

The STMPE321 maintains 2 parameters for each touch channel: TVR and CALIBRATED IMPEDANCE. CALIBRATED IMPEDANCE is an internal reference which, if the currently measured IMPEDANCE exceeds the CALIBRATED IMPEDANCE by a magnitude of TVR, is considered a "TOUCH".

If the IMPEDANCE is higher than the CALIBRATED IMPEDANCE, but the magnitude does not exceed CALIBRATED IMPEDANCE by TVR, it is not considered a TOUCH. In this case, 2 scenarios are possible:

- 1. Environmental changes have caused the IMPEDANCE to increase
- 2. Finger is near the sensing pad, but not near enough

In case 1, the change in IMPEDANCE is expected to be small, as environmental changes are normally gradual. A value "EVR" is maintained to specify the maximum IMPEDANCE change that is still considered an environmental change.

Table 3. Calibration action under different scenarios

| Scenario                                                                                       | Touch sensing and calibration action                                   |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| IMP>CALIBRATED IMP + TVR                                                                       | TOUCH, no calibration                                                  |
| IMP <calibrated +="" imp="" tvr<br="">IMP&gt;CALIBRATED IMP + EVR</calibrated>                 | NO TOUCH, no calibration                                               |
| IMP <calibrated +="" evr="" imp="" imp<calibrated="" tvr="">CALIBRATED IMP</calibrated>        | NO TOUCH, new CALIBRATED IMP = previous CALIBRATED IMP + change in IMP |
| IMP>CALIBRATED IMP                                                                             | CALIBRATED IMP + change in IMP                                         |
| IMP <calibrated imp<="" td=""><td>NO TOUCH,<br/>new CALIBRATED IMP = new IMP</td></calibrated> | NO TOUCH,<br>new CALIBRATED IMP = new IMP                              |

'IMP' and 'CALIBRATED IMP' used in this table is not the direct register read-out.

IMP = 127 - impedance register readout

CALIBRATED IMP = 127 - calibrated impedance register readout.

The ETC WAIT register states a period of time for which all TOUCH inputs must remain "NO TOUCH" for the next calibration to be carried out.

The CAL INTERVAL states the period of time between successive calibrations when there are prolonged NO TOUCH conditions.

#### 2.1.1 Noise filtering

When the STMPE321 is operating in the vicinity of highly emissive circuits (DC-DC converters, PWM controllers/drives etc.), the sensor inputs can be affected by high-frequency noise. In this situation, the time-integrating function can be used to distinguish between a real touch, or an emission-related false touch.

The INTEGRATION TIME and STRENGTH THRES registers are used to configure the time-integrating function of the STMPE321.

#### 2.1.2 Data filtering

The output from the calibration unit provides an instantaneous TOUCH or NO TOUCH status. This output is directed to the filtering stage where the TOUCH is integrated across a programmable period of time. The output of the integration stage is a "STRENGTH" (in the STRENGTH register) that indicates the number of times a TOUCH is detected across the integration period.

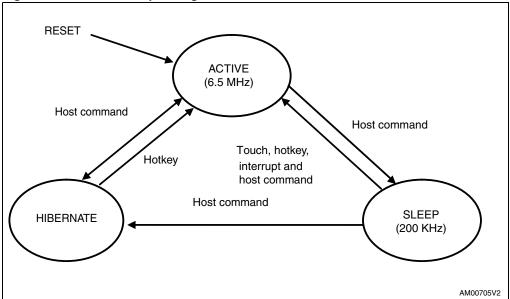
The STRENGTH is then compared to the value in STRENGTH THRESHOLD register. If STRENGTH exceeds the STRENGTH THRESHOLD, it is considered a final, filtered TOUCH status.

In the data filtering stage, 3 modes of operation are supported:

Mode 1: Only the touch channel with highest STRENGTH is taken

Mode 2: All touch channels with STRENGTH > STRENGTH THRESHOLD are taken

Mode 3: The 2 touch channels with the highest STRENGTH are taken.


These modes are selected using the FEATURE SELECTOR register. The final, filtered data is accessible through the Touch Byte register.



#### 2.2 Power management

The STMPE321 operates in 3 states, as described below:

Figure 5. STMPE321 operating states



On RESET, the STMPE321 enters the ACTIVE state immediately.

Upon a fixed period of inactivity, the device enters a SLEEP state. Any touch activity occurring during a SLEEP state causes the device to return to an ACTIVE state.

#### In SLEEP mode:

- -Calibration continues if the F2A bit is set in the CONTROL register
- -Calibration stops if the F2A bit is NOT set in the CONTROL register

If no touch activity is expected, the host may set the device to a HIBERNATE state to save power.

If any key is touched and held, the I<sup>2</sup>C command to enter SLEEP or HIBERNATE is put on hold until the key is released.

I2C interface STMPE321

### 3 I<sup>2</sup>C interface

The following features are supported by the I<sup>2</sup>C interface:

- I<sup>2</sup>C slave device
- Compliance with Philips I<sup>2</sup>C specification version 2.1
- Standard (up to 100 kbps) and fast (up to 400 kbps) modes.
- 7-bit and 10-bit device addressing modes
- General call
- Start/Restart/Stop
- I<sup>2</sup>C address is 0x58 (0xB0/0xB1 for write/read, including the LSB)

#### Start condition

A Start condition is identified by a falling edge of SDATA while SCLK is stable at high state. A Start condition must precede any data/command transfer. The device continuously monitors for a Start condition and does not respond to any transaction unless one is encountered.

#### Stop condition

A Stop condition is identified by a rising edge of SDATA while SCLK is stable at high state. A Stop condition terminates communication between the slave device and bus master. A read command that is followed by NoAck can be followed by a Stop condition to force the slave device into idle mode. When the slave device is in idle mode, it is ready to receive the next I<sup>2</sup>C transaction. A Stop condition at the end of a write command stops the write operation to the registers.

#### Acknowledge bit (ACK)

The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter releases the SDATA after sending eight bits of data. During the ninth bit, the receiver pulls the SDATA low to acknowledge the receipt of the eight bits of data. The receiver may leave the SDATA in high state if it does not acknowledge the receipt of the data.

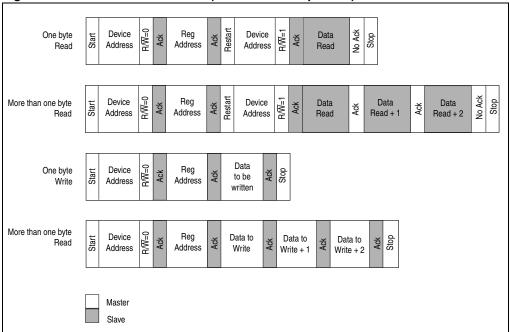
#### **Data Input**

The device samples the data input on SDATA on the rising edge of the SCLK. The SDATA signal must be stable during the rising edge of SCLK and the SDATA signal must change only when SCLK is driven low.

#### Memory addressing

For the bus master to communicate to the slave device, the bus master must initiate a Start condition, followed by the slave device address. Accompanying the slave device address, there is a Read/ $\overline{\text{WRITE}}$  bit (R/ $\overline{\text{W}}$ ). The bit is set to 1 for a read operation, and 0 for a write operation.

If a match occurs on the slave device address, the corresponding device gives an acknowledgement on the SDA during the 9th bit time. If there is no match, it deselects itself from the bus by not responding to the transaction.


10/40 Doc ID 15791 Rev 3

STMPE321 I2C interface

Table 4. Operation modes

| Mode  | Byte | Programming sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |      | Start, Device address, $R/\overline{W} = 0$ , Register address to be read                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |      | Restart, Device address, R/W = 1, Data Read, STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Read  | ≥1   | If no Stop is issued, the Data Read can be continuously performed. If the register address falls within the range that allows an address auto-increment, then the register address auto-increments internally after every byte of data being read. For those register addresses that fall within a non-incremental address range, the address is kept static throughout the entire write operations. Refer to the memory map table for the address ranges that are auto and non-increment. An example of such a non-increment address is FIFO. |
|       |      | Start, Device address, $R/\overline{W} = 0$ , Register address to be written, Data Write, Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Write | ≥1   | If no Stop is issued, the Data Write can be continuously performed. If the register address falls within the range that allows address auto-increment, then the register address auto-increments internally after every byte of data being written in. For those register addresses that fall within a non-incremental address range, the address is kept static throughout the entire write operations. Refer to the memory map table for the address ranges that are auto and non-increment.                                                 |

Figure 6. Read and write modes (random and sequential)



# 4 Register map and function description

This section lists and describes the registers in the STMPE321 device starting with a register map, and then provides detailed descriptions of the register types.

Table 5. Register summary map table

| Address        | Register name     | Bit | Туре | Reset value | Function                          |
|----------------|-------------------|-----|------|-------------|-----------------------------------|
| 0x00           | CHIP_ID_0         | 8   | R    | 0x03        | Device identification             |
| 0x01           | CHIP_ID_1         | 8   | R    | 0x21        | Device identification             |
| 0x02           | ID_VER            | 8   | R    | 0x03        | Revision number                   |
| 0x03           | SYS_CFG_1         | 8   | R/W  | 0x00        | System configuration 1            |
| 0x04           | SYS_CFG_2         | 8   | R/W  | 0xEF        | System configuration 2            |
| 0x08           | INT_CTRL          | 8   | R/W  | 0x01        | Interrupt control register        |
| 0x09           | INT_EN            | 8   | R/W  | 0x01        | Interrupt enable register         |
| 0x0A           | INT_STA           | 8   | R    | 0x09        | Interrupt status register         |
| 0x0B           | GPIO_INT_EN_lsb   | 8   | R/W  | 0x00        | GPIO interrupt enable register    |
| 0x0C           | GPIO_INT_EN_msb   | 8   | R/W  | 0x00        | GPIO interrupt enable register    |
| 0x0D           | GPIO_INT_STA_lsb  | 8   | R/W  | 0x00        | GPIO interrupt status register    |
| 0x0E           | GPIO_INT_STA_msb  | 8   | R/W  | 0x00        | GPIO interrupt status register    |
| 0x10           | GPIO_MR           | 8   | R/W  | 0x00        | GPIO monitor pin                  |
| 0x12           | GPIO_SET          | 8   | R/W  | 0x00        | GPIO set pin state register       |
| 0x14           | GPIO_DIR          | 8   | R/W  | 0x00        | GPIO set pin direction register   |
| 0x16           | GPIO_FUNCT        | 8   | R/W  | 0x00        | GPIO function register            |
| 0x18           | TOUCH_FIFO        | 64  | R    | 0x00        | Fifo access for touch data buffer |
| 0x20           | FEATURE_SEL       | 8   | R/W  | 0x04        | Feature selection                 |
| 0x21           | ETC_WAIT          | 8   | R/W  | 0x27        | Wait time                         |
| 0x22           | CAL_INTERVAL      | 8   | R/W  | 0x30        | Calibration interval              |
| 0x23           | INTEGRATION_ TIME | 8   | R/W  | 0x0F        | Integration time                  |
| 0x25           | CTRL              | 8   | R/W  | 0x00        | Control                           |
| 0x26           | INT_MASK          | 8   | R/W  | 0x08        | Interrupt mask                    |
| 0x27           | INT_CLR           | 8   | R/W  | 0x00        | Interrupt clear                   |
| 0x28           | FILTER_PERIOD     | 8   | R/W  | 0x00        | Filter period                     |
| 0x29           | FILTER_THRESHOLD  | 8   | R/W  | 0x00        | Filter threshold                  |
| 0x2A           | REF_DLY           | 8   | R/W  | 0x00        | Reference delay                   |
| 0x30 -<br>0x32 | TVR [0-2]         | 8   | R/W  | 0x08        | Touch variance setting            |
| 0x40           | EVR               | 8   | R/W  | 0x04        | Environmental variance            |

12/40 Doc ID 15791 Rev 3

Table 5. Register summary map table (continued)

| Address        | Register name           | Bit | Туре | Reset value | Function                                       |
|----------------|-------------------------|-----|------|-------------|------------------------------------------------|
| 0x50-0x52      | STRENGTH_THRES<br>[0-2] | 8   | R/W  | 0x01        | Setting of strength threshold for each channel |
| 0x60 -<br>0x62 | STRENGTH [0-2]          | 8   | R    | 0x00        | Strength                                       |
| 0x70 -<br>0x72 | CAL_IMPEDANCE [0-2]     | 8   | R    | 0x00        | Calibrated impedance                           |
| 0x80 -<br>0x82 | IMPEDANCE [0-2]         | 8   | R    | 0x00        | Impedance                                      |
| 0x92           | INT_PENDING             | 8   | R/W  | 0x00        | Status of GINT interrupt sources               |

# 5 System and identification registers

Table 6. System and identification registers map

| Address | Register name | Bit | Туре | Reset | Function               |
|---------|---------------|-----|------|-------|------------------------|
| 0x00    | CHIP_ID_0     | 8   | R    | 0x03  | Device identification  |
| 0x01    | CHIP_ID_1     | 8   | R    | 0x21  | Device identification  |
| 0x02    | ID_VER        | 8   | R    | 0x03  | Revision number        |
| 0x03    | SYS_CFG_1     | 8   | R/W  | 0x00  | System configuration 1 |
| 0x04    | SYS_CFG_2     | 8   | R/W  | 0xEF  | System configuration 2 |

CHIP\_ID\_x Device identification

**Address:** 0x00, 0x01

Type: R

**Reset:** 0x03, 0x21

**Description:** 16(8+8)-bit device identification

ID\_VER Revision number

 Address:
 0x02

 Type:
 R

 Reset:
 0x03

**Description:** 8-bit revision number

#### SYS\_CFG\_1

#### System configuration 1

| 7        | 6 | 5 | 4     | 3          | 2          | 1         | 0 |
|----------|---|---|-------|------------|------------|-----------|---|
| RESERVED |   |   | SLEEP | WARM_RESET | SOFT_RESET | HIBERNATE |   |

 Address:
 0x03

 Type:
 R/W

 Reset:
 0x00

**Description:** The reset control register enables the reset of the device

[7:4] **RESERVED** 

[3] **SLEEP**:

Write '1' to enable sleep mode. Hardware resets this bit to '0' after it successfully enters sleep mode.

[2] WARM\_RESET:

Write '1' to initiate a warm reset. Register content remains, state machine reset.

[1] SOFT\_RESET:

Write '1' to initiate a soft reset. All registers content and state machines reset.

[0] **HIBERNATE**: Force the device into hibernation mode.

Write '1' to enter hibernate mode. Hardware resets this bit to '0' after it successfully enters hibernate mode.

5/

#### SYS\_CFG\_2

### System configuration 2

 7
 6
 5
 4
 3
 2
 1
 0

 SENSOR CLOCK 2
 SENSOR CLOCK 1
 SENSOR CLOCK 0
 RESERVED
 GPIO CLOCK DISABLE
 FIFO CLOCK DISABLE
 TOUCH CLOCK DISABLE

 Address:
 0x04

 Type:
 R/W

 Reset:
 0xEF

**Description:** This register enables the switching off of the clock supply

[7:5] SENSOR CLOCK: See description in Table 7.

[4] **RESERVED** 

[3] RESERVED

[2] GPIO CLOCK DISABLE:

Write '1' to disable the clock to GPIO unit.

[1] FIFO CLOCK DISABLE:

Write '1' to disable the clock to FIFO unit. This must be set to '0' if touch interrupt is required.

[0] TOUCH CLOCK DISABLE:

Write '1' to disable the clock to TOUCH unit.

Table 7. Sensor clock setting

| Mode                     | Divider | Sensor clock<br>[2:0] | Active   | Calibration |
|--------------------------|---------|-----------------------|----------|-------------|
|                          | 1       | 000                   | 12.8 kHz | 100 kHz     |
|                          | 2       | 001                   | 6.4 kHz  | 50 kHz      |
| Operational<br>(6.5 MHz) | 4       | 010                   | 3.2 kHz  | 25 kHz      |
| (0.3 Wii 12)             | 8       | 011                   | 1.6 kHz  | 12.5 kHz    |
|                          | 16      | 1xx                   | 800 Hz   | 6.25 kHz    |
|                          | 1       | 000                   | 400 Hz   | 3.2 kHz     |
| A 11                     | 2       | 001                   | 200 Hz   | 1.6 kHz     |
| Autosleep<br>(200 kHz)   | 4       | 010                   | 100 Hz   | 800 Hz      |
| (200 Ki iz)              | 8       | 011                   | 50 Hz    | 400 Hz      |
|                          | 16      | 1xx                   | 25 Hz    | 200 Hz      |

# 6 Interrupt controller module

Interrupt controller module block diagram Figure 7. Interrupt INT status pending INT AND Interrupt enable INT MASK **GPIO** interrupt status AND **GPIO** interrupt enable

**477** 

#### INT\_CTRL

#### Interrupt control register

| 7 | 6 | 5        | 4 | 3 | 2        | 1    | 0      |
|---|---|----------|---|---|----------|------|--------|
|   |   | RESERVED |   |   | POLARITY | TYPE | INT_EN |

 Address:
 0x08

 Type:
 R/W

 Reset:
 0x01

**Description:** This register is used to enable control of the polarity, edge/level and enabling of the

interrupt system device.

#### [7:3] **RESERVED**

#### [2] POLARITY:

'0' for active low

'1' for active high

For active low operation, the INT pin should be externally pulled high. The INT pin is pulled to GND when there is a pending interrupt.

For active high operation, the INT pin should be externally pulled to GND. In this mode, the INT pin is pulled to  $V_{\rm CC}$  by the device when there is a pending interrupt.

#### [1] **TYPE**:

'0' for level trigger

'1' for edge trigger (pulse width is 200 nS)

#### [0] **INT\_EN**:

'0' to disable all interrupts

'1' to enable all interrupts

#### INT\_EN

#### Interrupt enable register

| 7    | 6        | 5 | 4 | 3 | 2   | 1    | 0   |
|------|----------|---|---|---|-----|------|-----|
| GPIO | RESERVED |   |   |   | GEN | FIFO | POR |

 Address:
 0x09

 Type:
 R/W

 Reset:
 0x01

**Description:** 

This register is used to enable the interruption from a system related interrupt source to the host. Writing '1' in this register enables the corresponding interrupt event to generate interrupt signal at the INT pin. Note that even if the interrupt is not enabled, an interrupt event is still reflected in the interrupt status register.

[7] **GPIO**:

One or more level transition in enabled GPIOs

[6:3] RESERVED

Must be set to '0' at all times.

[2] **GEN**:

System INT (A2I, I2A, EOC)

[1] **FIFO**:

Data available in FIFO. This interrupt can be cleared only if FIFO is empty.

[0] **POR**:

Power-on reset

5/

#### INT\_STA

#### Interrupt status register

| 7    | 6        | 5 | 4 | 3   | 2    | 1   | 0 |
|------|----------|---|---|-----|------|-----|---|
| GPIO | RESERVED |   |   | GEN | FIFO | POR |   |

 Address:
 0x0A

 Type:
 R/W

 Reset:
 0x09

**Description:** 

This register is used to enable the interruption from a system related interrupt source to the host. Regardless of whether or not the IESYSIOR bits are enabled, the ISSYSIOR bits are still updated. Writing '1' clears a bit in this register. Writing '0' has no effect.

[7] **GPIO**:

One or more level transition in enabled GPIOs

[6:3] **RESERVED**:

Some of these bits might be set to '1' by hardware during normal operation. The content of these bit is for internal operation and are not required for normal use of device.

[2] GEN:

System INT (A2I, IA2, EOC)

[1] **FIFO**:

Data available in FIFO

[0] **POR**:

Power-on reset

#### **GPIO\_INT\_EN**

#### **GPIO** interrupt enable registerl

| 7 | 6        | 5 | 4 | 3 | 2 | 1   | 0 |
|---|----------|---|---|---|---|-----|---|
|   | RESERVED |   |   |   |   | IEG |   |

Address: 0x0B, 0x0C

**Type:** R/W **Reset:** 0x00

**Description:** The GPIO interrupt enable register is used to enable the interruption from a particular

GPIO interrupt source to the host. The IEg[2:0] bits and the interrupt enable mask bits

correspond to the GPIO[2:0] pins.

[7:3] RESERVED

[2:0] **IEG[2:0]** 

Interrupt enable GPIO mask (where x = 2 to 0)

Writing a '1' to the IE[x] bit enables the interruption to the host.

#### **GPIO\_INT\_STA**

#### **GPIO** interrupt status register

7 6 5 4 3 2 1 0 ISG

Address: 0x0D, 0x0E

**Type:** R/W **Reset:** 0x00

**Description:** The GPIO interrupt status register LSB monitors the status of the interruption from a

particular GPIO pin interrupt source to the host. Regardless of whether or not the IEGPIOR bits are enabled, the INT\_STA\_GPIO\_LSB bits are still updated. The ISG[2:0] bits are the interrupt status bits correspond to the GPIO[2:0] pins.

[7:0] **ISG[x]**:

Interrupt status GPIO (where x = 2 to 0)

Read:

Interrupt status of the GPIO[x]. Writing '1' clears a bit. Writing '0' has no effect.

5/

Doc ID 15791 Rev 3

21/40

GPIO controller STMPE321

### 7 GPIO controller

A total of 3 GPIOs are available in the STMPE321. The GPIO controller contains the registers that allow the host system to configure each of the pins into either a GPIO or Touch input. Unused GPIOs should be configured as outputs to minimize power consumption.

A group of registers is used to control the exact function of each of the 3 GPIOs. The registers and their respective addresses are listed in *Table 8*.

Table 8. GPIO controller registers summary map

| Address | Register name  | Description            | Auto-increment |
|---------|----------------|------------------------|----------------|
| 0x10    | GPIO_MR_LSB    | GPIO monitor pin state | Yes            |
| 0x11    | GPIO_MR_MSB    | register               | 165            |
| 0x12    | GPIO_SET_LSB   | GPIO set pin state     | Yes            |
| 0x13    | GPIO_SET_MSB   | register               | 165            |
| 0x14    | GPIO_DIR_LSB   | GPIO set pin direction | Yes            |
| 0x15    | GPIO_DIR_MSB   | register               | 165            |
| 0x16    | GPIO_FUNCT_LSB | GPIO function register | Yes            |
| 0x17    | GPIO_FUNCT_MSB | GF10 function register | 165            |

All GPIO registers are named GPxx, where:

Xxx represents the functional group

For LSB registers:

| 7 | 6       | 5          | 4 | 3    | 2    | 1    | 0 |
|---|---------|------------|---|------|------|------|---|
|   |         | RESERVED   |   | IO-2 | IO-1 | IO-0 |   |
|   | For MSB | registers: |   |      |      |      |   |

| 7 | 6 | 5 | 4 | 3        | 2 | 1 | 0 |
|---|---|---|---|----------|---|---|---|
|   |   |   |   | RESERVED | ) |   |   |

22/40 Doc ID 15791 Rev 3

STMPE321 GPIO controller

The function of each bit is shown in Table 9:

Table 9. GPIO control bits function

| Register name          | Function                                                                                                                                          |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| GPIO monitor pin state | Reading this bit yields the current state of the bit. Writing has no effect.                                                                      |
| GPIO set pin state     | Writing '1' to this bit causes the corresponding GPIO to go to '1' state Writing '0' to this bit causes the corresponding GPIO to go to '0' state |
| GPIO set pin direction | '0' sets the corresponding GPIO to input state, and '1' sets it to output state. All bits are '0' on reset.                                       |
| GPIO function          | '1' sets the corresponding GPIO to function as GPIO, and '0' sets it to touchkey mode.                                                            |

### 8 Capacitive touch module registers

Table 10. TOUCH\_FIFO summary table

| Address | Function    |
|---------|-------------|
| 0x18    | FIFO-0, LSB |
| 0x19    | FIFO-0, MSB |
| 0x1A    | FIFO-1, LSB |
| 0x1B    | FIFO-1, MSB |
| 0x1C    | FIFO-2, LSB |
| 0x1D    | FIFO-2, MSB |
| 0x1E    | FIFO-3, LSB |
| 0x1F    | FIFO-3, MSB |

 TOUCH\_FIFO

 7
 6
 5
 4
 3
 2
 1
 0

 T7
 T6
 T5
 T4
 T3
 T2
 T1
 T0

**Address:** 0x19, 0x18

**Description:** TOUCH\_FIFO is the access port for the internal 4-level FIFO used for buffering the

touch events. While it is possible to access each byte in the data structure directly, it is recommended that the FIFO is accessed only via the 0x18 address.

The FIFO must be accessed in multiples of 2 bytes (LSB, MSB). For the STMPE321,

MSB is reserved and LSB contains a snapshot of the recent touch event.

Where Tn is touch status of touch sensing channel n.

#### FEATURE\_SELECT

#### **Feature select**



 Address:
 0x20

 Type:
 R/W

 Reset:
 0x04

**Description:** Controls AFS (advanced filtering system and second level filtering feature)

[7:3] **RESERVED** 

[2:1] **AFS[1:0]**:

"00": reserved

"01' AFS mode 1 (only 1 strongest key)

'10': AFS mode 2 (all keys that are above threshold)

'11': AFS mode 3 (the 2 strongest keys)

[0] Filter EN:

Write '1' to enable filter

ETC\_WAIT Wait time setting

7 6 5 4 3 2 1 0 ETC\_WAIT[7:0]

 Address:
 0x21

 Type:
 R/W

 Reset:
 0x27

**Description:** Sets the wait time between the calibration and the last button touch

[7:0] **ETC\_WAIT[7:0]**:

ETC wait time = ETC\_Wait[7:0] \*64 + sensor clock period

A "non-touch" condition must persist for this wait time, before an ETC operation is carried out

Range: 5 mS - 20 s

57

CAL\_INTERVAL

**Calibration interval** 

7 6 5 4 3 2 1 0

CAL\_INTERVAL

 Address:
 0x22

 Type:
 R/W

 Reset:
 0x30

**Description:** Calibration interval

[7:0] CALIBRATION INTERVAL:

Interval between calibration = calibration interval [7:0] \* sensor clock period \* 50

Range: 4 ms - 16 s

**INTEGRATION TIME** 

Integration time

7 6 5 4 3 2 1 0 INTEGRATION\_TIME[7:0]

 Address:
 0x23

 Type:
 R/W

 Reset:
 0x0F

**Description:** Integration time

[7:0] Integration time in AFS mode

Total period of integration = sensor clock period \* integration time [7:0]

78 µs - 320 ms

 CTRL
 Control

 7
 6
 5
 4
 3
 2
 1
 0

 RESERVED
 F2A
 HDC\_U
 HDC\_C
 HOLD

 Address:
 0x25

 Type:
 R/W

 Reset:
 0x00

 Description:
 Control

#### [7:4] **RESERVED**

#### [3] **F2A**:

Write '1' to force device to remain in ACTIVE state at all times

#### [2] **HDC\_U**:

Write '1' to perform unconditional host driven calibration Cleared to '0' when calibration is completed

Only applicable HOLD is '1'

#### [1] **HDC\_C**:

Write '1' to perform conditional host driven calibration Calibration is performed if and only if no touch is detected Cleared to '0' when calibration is completed

Only applicable HOLD is '1'

#### [0] **HOLD**:

'0' to enable ETC

'1' to disable ETC

INT\_MASK Interrupt mask

7 6 5 4 3 2 1 0

RESERVED EOC RESERVED

 Address:
 0x26

 Type:
 R/W

 Reset:
 0x08

**Description:** Writing '1' to this register disables the corresponding interrupt source.

[7:4] RESERVED

[3] **EOC**:

End of calibration

This interrupt occurs on both automatic and forced calibration

[2:0] RESERVED

INT\_CLR Interrupt clear

7 6 5 4 3 2 1 0

RESERVED EOC RESERVED

 Address:
 0x27

 Type:
 R/W

 Reset:
 0x00

**Description:** Writing '1' to this register clears the corresponding interrupt source in INT\_PENDING

register.

[7:4] RESERVED

[3] **EOC**:

End of calibration

This interrupt occurs on both automatic and forced calibration

[2:0] RESERVED

# FILTER\_PERIOD Filter period

7 6 5 4 3 2 1 0 FILTER\_COUNT

 Address:
 0x28

 Type:
 R/W

 Reset:
 0x00

**Description:** Filter period.

#### [7:0] **FILTER\_COUNT**:

Additional filter to stabilize touch output in AFS mode.

AFS touch output is monitored for Filter Count [7:0] times every integration time. For each time a "touch status" is detected, an internal "Filter Counter" is incremented once. This counter value is then compared with Filter Threshold (register 0x29).

#### FILTER\_THRESHOLD

#### Filter threshold

7 6 5 4 3 2 1 0 FILTER\_THRESHOLD

 Address:
 0x29

 Type:
 R/W

 Reset:
 0x00

**Description:** Filter threshold.

#### [7:0] **FILTER\_THRESHOLD**:

An internal "Filter Counter" is compared with Filter Threshold [7:0] to determine if a valid touch has occurred.

#### REFERENCE\_DELAY

#### Reference delay

7 6 5 4 3 2 1 0

RESERVED REFERENCE\_DELAY

 Address:
 0x2A

 Type:
 R/W

 Reset:
 0x00

**Description:** Shifting of capacitive sensor dynamic range. The capacitance value set into this

register is in effect, equivalent to capacitor connected to the A\_Ref pin.

[7] **RESERVED** 

[6:0] **REFERENCE\_DELAY**:

Valid range = 0-127

Each step represents capacitance value of 0.04 pF Warm reset is required after this value is updated

47/

Doc ID 15791 Rev 3

29/40

#### **TVR Touch variance setting** 3 RESERVED TVR Address: 0x30 - 0x32 Type: R/W Reset: 80x0 **Description:** Touch variance setting [7] RESERVED [6:0] **TVR**: Setting TVR between 0-99 A high TVR value decreases sensitivity of the sensor, but increases its tolerance to ambient noise A small TVR value increases the sensitivity **EVR Environmental variance** 7 3 2 RESERVED TVR Address: 0x40 R/W Type: Reset: 0x04 Description: Environmental variance setting. [7] RESERVED [6] **EVR**: EVR is used to detect "Non-Touch" condition STRENGTH\_THRESHOLD Strength threshold 3 STRENGTH\_THRESHOLD Address: 0x50 - 0x52 R/W Type: Reset: 0x01 **Description:** Strength threshold. [7:0] STRENGTH\_THRESHOLD: Setting threshold to be used in AFS mode to determine valid touch

STRENGTH Strength

7 6 5 4 3 2 1 0 STRENGTH

**Address:** 0x60 - 0x62

**Description:** The number of times a sensed capacitance exceeds the calibrated reference

impedance

#### [7:0] STRENGTH:

Read-only field

Counts the number of times a sensed impedance exceeds calibrated reference impedance and integration time. Maximum strength equals Integration Time [7:0]

5/

#### CALIBRATED\_IMPEDANCE

#### **Calibrated impedance**

7 6 5 4 3 2 1 0

CAL\_IMPEDANCE

**Address:** 0x70 - 0x72

**Description:** Calibrated impedance is a reference value maintained by the device.

[7:0] **CALIBRATED IMPEDANCE**: Calibrated reference impedance

IMPEDANCE Impedance

7 6 5 4 3 2 1 0 IMPEDANCE

**Address:** 0x80 - 0x82

**Description:** Impedance is the instantaneous impedance value seen at the input pin of each

capacitive sensing pin.

[7:0] **IMPEDANCE**:

Currently sensed impedance. This impedance reading decreases with the increase of the capacitance at the sensing channel.

When this register reads 0x7F, reference capacitance should be reduced.

When this register reads 0x00, reference capacitance should be increased.

#### TINT\_PENDING

#### Interrupt pending

7 6 5 4 3 2 1 0

RESERVED EOC RESERVED

 Address:
 0x92

 Type:
 R

 Reset:
 0x00

**Description:** Reflects the status of each interrupt source.

[7:4] **RESERVED** 

[3] **EOC**:

End of calibration

[2:0] RESERVED

32/40 Doc ID 15791 Rev 3

STMPE321 Maximum ratings

## 9 Maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only, and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 11. Absolute maximum ratings

| Symbol           | Parameter                             |     | Value       | Value |    |  |
|------------------|---------------------------------------|-----|-------------|-------|----|--|
| Symbol           | r al allielei                         | Min | Min Typ Max |       |    |  |
| V <sub>CC</sub>  | Power supply                          | _   | _           | 2.5   | V  |  |
| V <sub>ESD</sub> | ESD protection on each GPIO/touch pin | _   | _           | 8     | kV |  |

# 10 Electrical specifications

Table 12. DC electrical characteristics (-40 - 85 °C unless otherwise stated)

| Cumbal                                | Parameter                        | Test condition                                                    |         | Unit |                       |       |
|---------------------------------------|----------------------------------|-------------------------------------------------------------------|---------|------|-----------------------|-------|
| Symbol                                | Parameter                        | rest condition                                                    | Min     | Тур  | Max                   | Offic |
| V <sub>CC</sub>                       | Core supply voltage              |                                                                   | 1.65    | -    | 1.95                  | V     |
| I <sub>hibernate</sub>                | HIBERNATE current                | No touch sensing capability                                       | -       | 1.8  | 3.0                   | μΑ    |
| I <sub>sleep</sub>                    | SLEEP current                    | Touch sensing active, no touch                                    | -       | 27   | 43                    | μΑ    |
| I <sub>active</sub>                   | ACTIVE current                   | 100% touch activity                                               | -       | 280  | 470                   | μΑ    |
| V <sub>IL</sub>                       | Input voltage low state          | V <sub>CC</sub> =1.8 V                                            | -0.3V   | -    | 0.2V <sub>CC</sub>    | ٧     |
| V <sub>IH</sub>                       | Input voltage high state         | V <sub>CC</sub> =1.8 V                                            | 0.8Vcc  | -    | V <sub>CC</sub> +0.3V | V     |
| V <sub>OL</sub>                       | Output voltage low state         | V <sub>CC</sub> =1.8 V,<br>I <sub>OUT</sub> = 4 mA                | -0.3V   | -    | 0.25V <sub>CC</sub>   | V     |
| V <sub>OH</sub>                       | Output voltage high state        | V <sub>CC</sub> =1.8 <sub>OUT</sub> V,<br>I <sub>OUT</sub> = 4 mA | 0.75Vcc | -    | V <sub>CC</sub> +0.3V | V     |
| V <sub>OL</sub><br>(I <sup>2</sup> C) | Output voltage low state         | I <sub>OL</sub> =4 mA                                             | -0.3V   | -    | 0.25V <sub>CC</sub>   | V     |
|                                       | Input leakage (GPIO)             | GPIO as input,<br>V <sub>IN</sub> = 2.0 V                         | -       | -    | 0.5                   | μΑ    |
| lleakage                              | Input leakage<br>(SCL, SDA, RST) | V <sub>IN</sub> = V <sub>CC</sub> = 1.95 V                        | -       | -    | 0.5                   | μΑ    |

### 10.1 Capacitive sensing characteristics

Table 13. Capacitive sensing characteristics

| Symbol | Parameter                               | Test condition                                                                                 |     | Value | Unit    |    |  |
|--------|-----------------------------------------|------------------------------------------------------------------------------------------------|-----|-------|---------|----|--|
| Symbol | Farameter                               | rest condition                                                                                 | Min | Тур   | Тур Мах |    |  |
| Res    | Capacitive<br>measurement<br>resolution | Aref = not connected                                                                           | -   | 40    | -       | fF |  |
| DR     | Dynamic range                           | Aref = not connected                                                                           | -   | 5.1   | -       | pF |  |
| L      | Linearity of sensor                     | Aref = not connected Maximum deviation calculated from full scale capacitance measurement data | •   | 10    | •       | %  |  |

34/40 Doc ID 15791 Rev 3

### 11 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: www.st.com. ECOPACK<sup>®</sup> is an ST trademark.

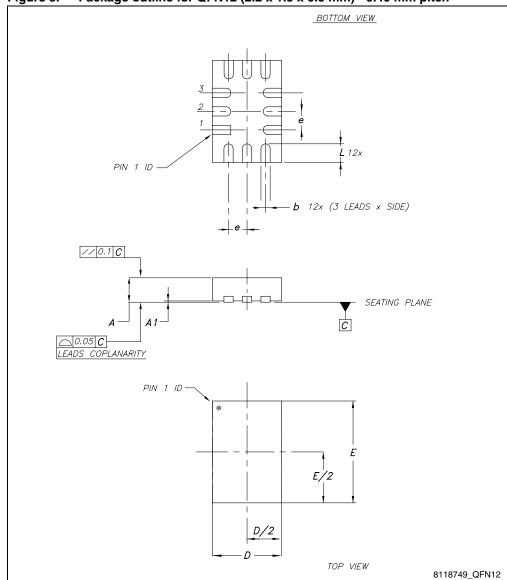
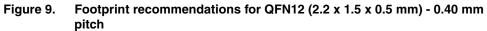


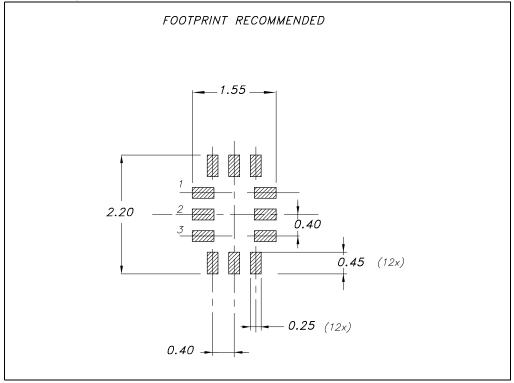

Figure 8. Package outline for QFN12 (2.2 x 1.5 x 0.5 mm) - 0.40 mm pitch

- 1. Drawing not to scale.
- 2. Dimensions are in millimeters.

5/


Doc ID 15791 Rev 3

35/40


0.45

**Millimeters Symbol** Min Max Тур 0.50 Α 0.60 Α1 0 b 0.15 0.25 D 1.50 Ε \_ 2.20 0.40 е

Table 14. Mechanical data for QFN12 (2.2 x 1.5 x 0.5 mm) - 0.40 mm pitch



0.35



- 1. Drawing not to scale.
- 2. Dimensions are in millimeters.

L

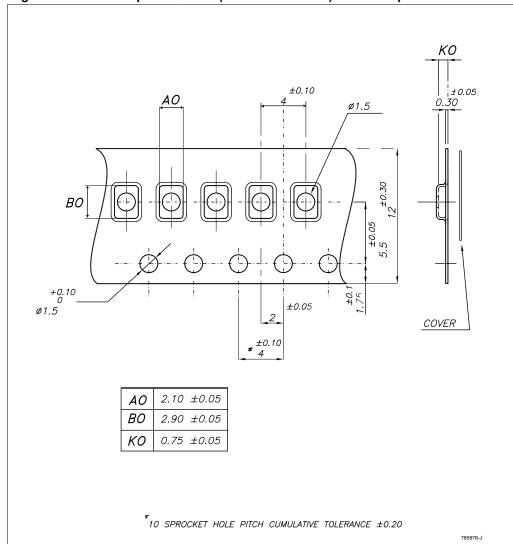



Figure 10. Carrier tape for QFN12 (2.2 x 1.5 x 0.5 mm) - 0.40 mm pitch

577

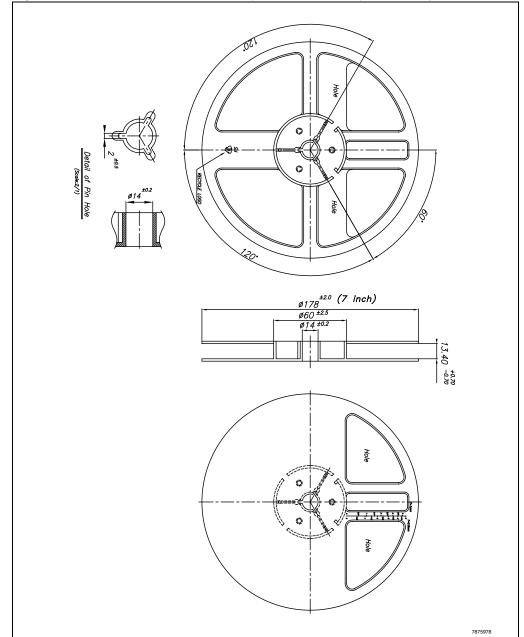



Figure 11. Reel information for QFN12 (2.2 x 1.5 x 0.5 mm) - 0.40 mm pitch

- 1. Drawing not to scale.
- 2. Dimensions are in millimeters

577

STMPE321 Revision history

# 12 Revision history

Table 15. Document revision history

| Date        | Revision | Changes                                                                                                                                               |
|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19-Jun-2009 | 1        | Initial release.                                                                                                                                      |
| 29-Jul-2009 | 2        | Deleted "internal regulator" from the Features section.  Modified: Figure 1, Chapter 2, Figure 4. Chapter 4 and Chapter 5, Chapter 1.3 and Chapter 7. |
| 12-Aug-2009 | 3        | Modified: Figure 4.                                                                                                                                   |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

40/40 Doc ID 15791 Rev 3

