FEATURES

Low Power: 940 mW
53 dB SNR @ $10 \mathrm{MHz} \mathrm{A}_{\text {IN }}$ On-Chip Track-and-Hold, Reference CMOS Compatible
2 V p-p Analog Input
Fully Characterized Dynamic Performance
APPLICATIONS
Ultrasqund Medical Imaging
Digital Oscilloscopes
Professiohal Vide
Digita Communications
Advanced T/LlevistontivusE(Deqoders)

GENERAL DESCRIPTION

The AD9040A is a complete 10 -bit monolithic samplyg analog-to-digital converter (ADC) with on-board track-and-hold (I / H) and reference. The unit is designed for low cost, high performance applications and requires only an encode signal to achieve 40 MSPS sample rates with 10 -bit resolution.
Digital inputs and outputs are CMOS compatible; the analog input requires a signal of 2 V p-p amplitude. The two-step architecture used in the AD9040A is optimized to provide the best dynamic performance available while maintaining low power requirements of only 940 mW typically; maximum dissipation is 1.1 W at 40 MSPS .
The signal-to-noise ratio (SNR), including harmonics, is 53 dB , or 8.5 ENOB, when sampling an analog input of 10.3 MHz at 40 MSPS. Competitive devices perform at less than 7.5 ENOB and require external references and larger input signals.
The AD9040A A/D converter is available in either a 28 -lead PDIP or a 28 -lead SOIC package. The two models operate over a commercial temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Contact the factory regarding availability of ceramic military temperature range devices.

REV. D

FUNCTIONAL BLOCK DIAGRAM

2. On-board thack and hold provides excellent bigh frequency
performanqe oh analog inputs, cfitichl for conmenications and medicalimaging applications.
3. High input impedanee and $2 \mathrm{~V} / \mathrm{p}-\mathrm{p}$ input range rectuen for external amplifiers.
4. Easy to use; no cumbersome external votage references required, allowing denser packing of ADCs for muttinnel applications.
5. Available in 28-lead PDIP and SOIC packages.
6. Evaluation board includes AD9040AJR, reconstruction DAC, and latches. Space is available near the analog input and digital outputs of the converter for additional circuits. Order as part number AD9040A/PCB (schematic shown in data sheet).

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A

EXPLANATION OF TEST LEVELS

Test Level
I 100% production tested.
II 100% production tested at $25^{\circ} \mathrm{C}$ and sample tested at specified temperatures. AC testing done on sample basis.
III Sample tested only.
IV Parameter is guaranteed by design and characterization testing.
V Parameter is a typical value only.
VI All devices are 100% production tested at $25^{\circ} \mathrm{C} .100 \%$ production tested at temperature extremes for military temperature devices; guaranteed by design and characterization testing for industrial devices.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$	
$\pm \mathrm{V}_{\text {S }}$	$\pm 7 \mathrm{~V}$
V_{D}	7 V
Analog Inputs	$-\mathrm{V}_{\mathrm{S}}$ to $+\mathrm{V}_{\mathrm{S}}$
Digital Inputs	0 V to $+\mathrm{V}_{\text {S }}$
$\mathrm{V}_{\text {REF }}$ Input	0 V to $+\mathrm{V}_{\text {S }}$
Digital Output Current	20 mA
Operating Temperature	
AD9040AJN/AD9040AJR	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Maximum Junction Temperature ${ }^{2}$ (JN/JR Suffixes) $150^{\circ} \mathrm{C}$
Lead Soldering Temp (10 sec) $300^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Absolute maximum ratings are limiting values to be applied individually and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.
${ }^{2}$ Typical thermal impedances (parts soldered to board):
N Package (PDIP): $\theta_{\mathrm{JA}}=42^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=10^{\circ} \mathrm{C} / \mathrm{W}$.
R Package (SOIC): $\theta_{\mathrm{JA}}=47^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=10^{\circ} \mathrm{C} / \mathrm{W}$.

ORDERING GUIDE

Figure 1. Timing Diagram

PIN FUNCTION DESCRIPTIONS

Pin No.	Mnemonic	Function
1, 12, 21	- $\mathrm{V}_{\text {S }}$	5 V Power Supply.
2, 4, 11, 14, 22	GND	Ground.
3, 10	$+\mathrm{V}_{\text {S }}$	Analog 5 V Power Supply.
5	$\mathrm{V}_{\text {OUT }}$	Internal Band Gap Voltage Reference (Nominally 2.5 V).
6	$\mathrm{V}_{\text {ReF }}$	Noninverting Input to Reference Amplifier. Voltage reference for ADC is connected here.
7	$\mathrm{BP}_{\text {REF }}$	External Connection for ($0.1 \mu \mathrm{~F}$) Reference Bypass Capacitor.
8	NC	No Connection Internally.
9	ENCODE	Encode Clock Input to ADC. Internal track-and-hold placed in hold mode (ADC is encoding) on rising edge.
13	$\mathrm{A}_{\text {IN }}$	Noninverting Input to Track-and-Hold Amplifier.
15	OR	Out-of-Range Condition Output. Active high when analog input exceeds input range of ADC by 1 LSB ($<\mathrm{F}_{\mathrm{S}}-1 \mathrm{LSB}$ or $>+\mathrm{F}_{\mathrm{S}}+1 \mathrm{LSB}$).
16	D9 (MSB)	Most Significant Bit of ADC Output; TTL/CMOS Compatible.
17-20	D8-D5	Digital Output Bits of ADC; TTL/CMOS Compatible.
23	V_{D}	Digital +5 V Power Supply.
24-27	D4-D1	Digital Output Bits of ADC; TTL/CMOS Compatible.
28	D0 (LSB)	Least Significant Bit of ADC Output; TTL/CMOS Compatible.

DEFINITIONS OF SPECIFICATIONS

Analog Bandwidth

The analog input frequency at which the spectral power of the fundamental frequency (as determined by FFT analysis) is reduced by 3 dB .

Aperture Delay

The delay between the rising edge of the encode command and the instant at which the analog input is sampled.

Aperture Uncertainty (Jitter)
The sample-to-sample variation in aperture delay.

Differential Gain

The percentage of amplitude change of a small high frequency sine wave (3.58 MHz) superimposed on a low frequency signal (15.734 kHz$)$
D/fferentiai Nonvineayity
the deviation of any ode from ideal 1 LSB step.

Fhe ohase change of a small high frequency sine thave 3.58 MHz) sunerimposed on a ow Frequency signd (15734 kH).
Harmonic Distortion
The rms value of the fumental afvided by the rns value of the harmonic.

Integral Nonlinearity

The deviation of the transfer function from a reference line measured in fractions of 1 LSB using a "best straight line" determined by a least square curve fit.
Minimum Conversion Rate
The encode rate at which the SNR of the lowest analog signal frequency tested drops by no more than 3 dB below the guaranteed limit.

Maximum Conversion Rate

The encode rate at which parametric testing is performed.

Output Propagation Delay

The delay between the 50% point of the falling edge of the encode command and the $1 \mathrm{~V} / 4 \mathrm{~V}$ points of output data.

Overvoltage Recovery Time

The amount of time required for the converter to recover to 10 -bit accuracy after an analog input signal 150% of full scale is reduced to the full-scale range of the converter.
Power Supply Rejection Ratio (PSRR)
The ratio of a change in input offset voltage to a change in power supply voltage.

Signal-to-Noise Ratio (SNR)

The ratio of the rms signal amplitude to the rms value of noise, which is defined as the sum of all other spectral components, including harmonics but excluding dc, with an analog input signal 1 dB below full scale.
Signal-to-Noise Ratio (Without Harmonics)
The ratio of the rms signal amplitude to the rms value of noise, which \sqrt{s} atfined as the sum of all other spectral components, exqlughng the first eigh anarmonics and dc, with an analog input siqnal $1 \mathrm{~d} \beta$ below full scale.
 when a sunction is appried to the andlog/input.
Two-Tone Intern odutation Distortion (IMD) Rejection The ratio of the power of either of the two nnput signals to the power of the strongest third order IMD sional.

Figure 2. Equivalent Circuits

TPC 11. FFT Response

TPC 12. FFT Response process begins on the rising edge of this pulse, which should have a $50 \%(\pm 10 \%)$ duty cycle. The minimum encode rate of the AD9040A is 10 MSPS because of the use of three internal track-and-hold devices.
The held analog value of the first track-and-hold is applied to a 5-bit flash converter and a pair of internal track-and-hold devices (shown in the Functional Block Diagram as a single unit). The track-and-hold devices pipeline the analog signal to the amplifier array through a residue ladder and switching circuit while the 5-bit flash converter resolves the most significant bits (MSB) of the held analog voltage.
When the 5-bit flash converter has completed its cycle, its output activates 1 of 32 ladder switches; these in turn cause the correct residue signal to be applied to the error amplifier array.
The output of the error amplifier is applied to a 6-bit flash converter whose output supplies the five least significant bits (LSB) of the digital output along with one bit of error correction for the 5-bit main range converter.
Decode logic aligns the data from the two converters and presents the result as a 10-bit parallel digital word. The output stage of the AD9040A is CMOS. Output data are strobed on the trailing edge of the encode command.
The full-scale range of the AD9040A is determined by the reference voltage applied to the $\mathrm{V}_{\text {REF }}$ (Pin 6) input. This voltage sets the internal flash and residue ladder voltage drops; these establish the value of the LSB. Because of headroom restraints, the full-scale range cannot be increased by applying a higher than specified reference voltage. Conversely, a lower reference voltage will reduce the full-scale range of the converter but will also decrease its performance. An internal band gap reference voltage of 2.5 V is provided to assure optimum performance over the operating temperature range.

The dyyy cycle of the encode clock for the AD9040A is critical for ob fain/ng the rateqperformance of the ADC. Internal pulsecvidths within th \not track-and hold are established by the enco ae command pulseufoth, ens ire rat performance, the quty cydle should be held 50%. Duty chcle variat 0 ons of less than $\pm 0 \%$ will cause no degradation in erf rmante Operation at elpcode dates less than 10 MSPS is n ϕ tecommended. The interaal track-and-hold sathrates, causing erroneous conversions. This track-and beld satur tion precludes coocking the AD9040A in burst mode. The 5 deduty cydle nhust be maintained even for sample rates down to 10 MSt
The AD9040A provides latched data outputs, with $21 / 2$ pipeline delays. Data outputs are available one propagation delay $\left(t_{\text {PD }}\right)$ after the falling edge of the encode command (see Figure 1). The length of the output data lines and the loads placed on them should be minimized to reduce transients within the AD9040A; these transients can detract from the converter's dynamic performance.

Voltage Reference

A stable voltage reference is required to establish the 2 V p-p range of the AD9040A. There are two options for creating this reference. The easiest and least expensive way to implement it is to use the $(2.5 \mathrm{~V})$ band gap voltage reference which is internal to the ADC. Figure 3 illustrates the connections for using the internal reference. The internal reference has $500 \mu \mathrm{~A}$ of extra drive current that can be used for other circuits.

Figure 3. Using Internal Reference

Some applications may require greater accuracy, improved temperature performance, or adjustment of the gain (input range) of the AD9040A, which cannot be obtained by using the internal reference. For these applications, an external 2.5 V reference can be used, as shown in Figure 4. The $V_{\text {Ref }}$ input requires $5 \mu \mathrm{~A}$ of drive current.
 among the ADCs, as shown in

Figure 5. Slaving Multiple AD9040As to a Single Internal Reference
In the Specifications table, the gain temperature coefficient parameter under dc accuracy applies to the ADC when the internal reference is being used. If an external reference is used, its temperature coefficient must be taken into account to determine overall temperature performance.

The input range can be varied by adjusting the reference voltage applied to the AD9040A. By decreasing the reference voltage, the gain can be reduced approximately 10% with no degradation in performance. Increasing the reference voltage increases the gain, but for proper operation, the reference voltage should not exceed 2.6 V .

Time-Gain Control ADC

Ultrasound and sonar systems require an increase in gain versus time. This allows the system to correct for attenuation of return pulses. Figure 6 shows the AD600/AD602 amplifier and the AD9040A ADC configured as a time-gain control analog-todigital converter. The control voltage ramps from -625 mV to +625 mV , permitting 40 dB of gain-control range. The voltage used for gain control can be either a linear ramp or the output of a voltage-output DAC, such as the AD7242.

Figure 7 illustrates the method for evaluating $A D C$ transient performance. Two synthesizers are locked in synchronization but tuned to frequencies that are slightly offset from a 2 to 1 submultiple.
One synthesizer clocks a flat pulse network at a frequency of 19.9609375 MHz to provide the analog input signal; the other synthesizer output is shaped to provide a CMOS 40 MHz sampling clock. At the output of the AD9040A, output data reflects an interleaved alias of the input pulse. The repetitive sampling allows the measurement of ADC transient response as shown in the TPCs in this data sheet.

Figure 7. Transient Response Test

AD9040A

Layout Information

Preserving the accuracy and dynamic performance of the AD9040A requires that designers pay special attention to the layout of the printed circuit board.
Analog paths should be kept as short as possible and be properly terminated to avoid reflections. The analog input and reference voltage connections should be kept away from digital signal paths; this reduces the amount of digital switching noise that is capacitively coupled into the analog section. Digital signal paths should also be kept short and run lengths should be matched to avoid propagation delay mismatch. The AD9040A digital outputs should be buffered or latched close to the device ($<2 \mathrm{~cm}$). This prevents load transients, which may feed back into the device.
In high speed circuits, layout of the ground is critical. A single, loy impedance ground plane on the component side of the boarc is recommended. Pow supplies should be capacitively coupled to the ground plap with jigh quality chip capacitors to reduce noise in the circuit. Multilayer bpards alloy designers to ay dut signal trades without interruptipg the ground plane and phevide tow impedahce ground phanes. In systems wijh dedicated and degital grounds, 111 grourds of ke AD9040 A should be connected to the analos groupd plane.
The power supplies of the AD9040A hout isolat fd fom the supplies used for external devices; this reduees the ambunt of noise coupled into the ADC. The digital 5 V connection of the device $\left(\mathrm{V}_{\mathrm{D}}, \operatorname{Pin} 23\right)$ powers the digital outputs and should be connected to the same supply as $+\mathrm{V}_{\mathrm{S}}$ (Pins 3 and 10). Connecting V_{D} to a system digital supply may couple noise into the device. Sockets limit dynamic performance and are not recommended for use with the AD9040A.

EVALUATION BOARD

The evaluation board for the AD9040A (AD9040A/PCB) provides an easy and flexible method for evaluating the ADC's
performance without (or prior to) developing a user-specific printed circuit board. The two-sided board includes a reconstruction DAC and digital output interface and uses the layout and applications suggestions outlined above. It is available from Analog Devices at nominal cost.
Generous space is provided near the analog input and digital outputs to support any additional signal processing components the user may wish to add. This prototyping area includes throughholes with 100 -mil centers to support a variety of component additions.

Input/Output/Supply Information

Power supply, analog input, clock connections, and reconstructed output (RC OUTPUT) are identified by labels on the evaluation board. Operation of the evaluation board should conform to the following characteristics.

Table I. Evaluation Board Characteristics

Analog Input

Analog input signals can be fed directly into the device under test input $\left(\mathrm{A}_{\mathrm{IN}}\right)$. The $\mathrm{A}_{\text {IN }}$ input is terminated at the device with a 51Ω resistor.

DAC Reconstruction
The AD9040A evaluation board provides an onboard AD9721 reconstruction DAC for observing the digitized analog input signal. The AD9721 is terminated into 51Ω to provide a 1 V p-p signal at the output (RC OUTPUT).

Table II. Digital Coding

Figure 10. PCB Schematic

OUTLINE DIMENSIONS

28-Lead Plastic Dual In-Line Package [PDIP]
 ($\mathrm{N}-28$)

Dimensions shown in millimeters and (inches)

Revision History

Location Page5/03-Data Sheet changed from REV. C to REV. D.
Edits to SPECIFICATIONS 2
Edits to ORDERING GUIDE 4
Updated OUTLINE DIMENSIONS 14
2/02—Data Sheet changed from REV. B to REV. C.
Edits to Specifications 2

