
Abstract

General Description The MAX1142/MAX1143 are 200ksps, 14-bit ADCs. These serially interfaced ADCs connect directly to SPITM, QSPI ${ }^{\text {TM }}$, and MICROWIRE ${ }^{\text {TM }}$ devices without external logic. They combine an input scaling network, internal track/hold, a clock, +4.096 V reference, and three general-purpose digital output pins (for external multiplexer or PGA control) in a 20-pin SSOP package. The excellent dynamic performance (SINAD $\geq 81 \mathrm{~dB}$), high-speed (200ksps), and low power (7.5 mA) of these ADCs, make them ideal for applications such as industrial process control, instrumentation, and medical applications. The MAX1142 accepts input signals of 0 to +12 V (unipolar) or $\pm 12 \mathrm{~V}$ (bipolar), while the MAX1143 accepts input signals of 0 to +4.096 V (unipolar) or $\pm 4.096 \mathrm{~V}$ (bipolar). Operating from a single +4.75 V to +5.25 V analog supply and $\mathrm{a}+4.75 \mathrm{~V}$ to +5.25 V digital supply, power-down modes reduce current consumption to 1 mA at 10ksps and further reduce supply current to less than $20 \mu \mathrm{~A}$ at slower data rates. A serial strobe output (SSTRB) allows direct connection to the TMS320-family of digital signal processors. The MAX1142/MAX1143 user can select either the internal clock, or an external serial-interface clock for the ADC to perform analog-to-digital conversions. The MAX1142/MAX1143 feature internal calibration circuitry to correct linearity and offset errors. On-demand calibration allows the user to optimize performance. Three user-programmable logic outputs are provided for the control of an 8-channel MUX or a PGA.

Applications

Industrial Process Control Industrial I/O Modules

Data-Acquisition Systems
Medical Instruments
Portable and Battery-Powered Equipment

Functional Diagram appears at end of data sheet. Typical Application Circuit appears at end of data sheet.

SPI and QSPI are trademarks of Motorola, Inc
MICROWIRE is a trademark of National Semiconductor Corp.

Features

- 200ksps (Bipolar) and 150ksps (Unipolar) Sampling ADC
- 14-Bits, No Missing Codes
- 1LSB INL Guaranteed
- 81dB (min) SINAD
- +5V Single-Supply Operation
- Low Power Operation, 7.5mA (Unipolar Mode)
- $2.5 \mu \mathrm{~A}$ Shutdown Mode
- Software-Configurable Unipolar \& Bipolar Input Ranges

0 to +12 V and $\pm 12 \mathrm{~V}$ (MAX1142)
0 to +4.096 V and $\pm 4.096 \mathrm{~V}$ (MAX1143)
Internal or External Reference

- Internal or External Clock
- SPI/QSPI/MICROWIRE-Compatible Wire Serial Interface
- Three User-Programmable Logic Outputs
- Small 20-Pin SSOP Package

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	INL (LSB)
MAX1142ACAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP	± 1
MAX1142BCAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP	± 2

Ordering Information continued at end of data sheet.
Pin Configuration

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

ABSOLUTE MAXIMUM RATINGS

AGND to DGND...-0.3V to +0.3V
AIN to AGND... $\pm 16.5 \mathrm{~V}$
REFADJ, CREF, REF to AGND..................-0.3V to (AVDD +0.3 V)
Digital Inputs to DGND...-0.3V to +6V
Digital Outputs to DGND-0.3V to (DV ${ }_{D D}+0.3 \mathrm{~V}$)
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
20-SSOP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
\qquad .640 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{A} \mathrm{V}_{\mathrm{DD}}=\mathrm{DV} \mathrm{VDD}=+5 \mathrm{~V} \pm 5 \%$, fSCLK $=4.8 \mathrm{MHz}$, external clock (50% duty cycle), 24 clocks/conversion (200ksps), bipolar input, external $V_{\text {REF }}=+4.096 \mathrm{~V}, \mathrm{~V}_{\text {REFAD }}=A V_{\text {DD }}, C_{\text {REF }}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\text {CREF }}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC ACCURACY (Note 1)							
Resolution				14			Bits
Relative Accuracy (Note 2)	INL	Unipolar Mode	MAX114_A			± 1	LSB
			MAX114_B			± 2	
Differential Nonlinearity	DNL	Unipolar Mode				± 1	LSB
Transition Noise				0.34			LSB RMS
Offset Error		Unipolar				± 4	mV
		Bipolar				± 6	
Gain Error (Note 3)		Unipolar				± 0.2	\%FSR
		Bipolar				± 0.3	
Offset Drift (Bipolar and Unipolar)		Excluding reference drift		± 1			ppm/ ${ }^{\circ} \mathrm{C}$
Gain Drift (Bipolar and Unipolar)		Excluding reference drift		± 1			ppm/ ${ }^{\circ} \mathrm{C}$
DYNAMIC SPECIFICATIONS (5 kHz sine-wave input, 200ksps, 4.8 MHz clock, bipolar input mode). (MAX1142, 24Vp-p. MAX1143, 8.192Vp-p)							
SINAD		$\mathrm{fin}=5 \mathrm{kHz}$		81			dB
		$\mathrm{fIN}=100 \mathrm{kHz}$		82			
SNR		$\mathrm{f} \mathrm{IN}=5 \mathrm{kHz}$		82			dB
		$\mathrm{f} / \mathrm{N}=100 \mathrm{kHz}$		82			
THD		$\mathrm{f} \mathrm{IN}=5 \mathrm{kHz}$				-88	dB
		$\mathrm{f} / \mathrm{N}=100 \mathrm{kHz}$		91			
SFDR		$\mathrm{fiN}=5 \mathrm{kHz}$		90			dB
		$\mathrm{fiN}=100 \mathrm{kHz}$		95			
ANALOG INPUT							
Input Range		MAX1142	Unipolar	0		12	V
			Bipolar	-12		12	
		MAX1143	Unipolar	0		4.096	
			Bipolar	-4.096		4.096	

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

ELECTRICAL CHARACTERISTICS (continued)

(AV $\mathrm{DDD}^{=} \mathrm{DV}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%$, fSCLK $=4.8 \mathrm{MHz}$, external clock (50% duty cycle), 24 clocks/conversion (200ksps), bipolar input, external $V_{\text {REF }}=+4.096 \mathrm{~V}, \mathrm{~V}_{\text {REFADJ }}=\mathrm{AV}_{\text {DD }}, \mathrm{C}_{\text {REF }}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\text {CREF }}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Impedance		MAX1142	Unipolar	7.5	10.0		$\mathrm{k} \Omega$
			Bipolar	5.9	7.9		
		MAX1143	Unipolar	100	1000		
			Bipolar	3.4	4.5		
Input Capacitance					32		pF
CONVERSION RATE							
Internal Clock Frequency					4		MHz
Aperture Delay	$t_{\text {AD }}$				10		ns
Aperture Jitter	taj				50		ps
MODE 1 (24 External Clock Cycles per Conversion)							
External Clock Frequency	fsclk	Unipolar		0.1		3	MHz
		Bipolar		0.1		4.8	
Sample Rate	$\mathrm{f}_{\mathrm{S}}=\mathrm{fSCLK} / 24$	Unipolar		4.17		125	ksps
		Bipolar		4.17		200	
Conversion Time (Note 4)	$\begin{gathered} \text { tCONV+ACQ = } \\ 24 / \text { fsCLK } \end{gathered}$	Unipolar		8		240	$\mu \mathrm{s}$
		Bipolar		5		240	
MODE 2 (Internal Clock Mode)							
External Clock Frequency (Data Transfer Only)						8	MHz
Conversion Time		SSTRB Low	Vidth		4	6	$\mu \mathrm{s}$
Acquisition Time		Unipolar		1.82			$\mu \mathrm{s}$
		Bipolar		1.14			

MODE 3 (32 External Clock Cycles per Conversion)

External Clock Frequency	fSCLK	Unipolar or Bipolar	0.1		4.8	MHz
Sample Rate	fS $=$ fSCLK/32	Unipolar or Bipolar	3.125		150	ksps
Conversion Time (Note 4)	$\begin{gathered} \text { tCONV+ACQ = } \\ 32 / \text { fSCLK } \end{gathered}$	Unipolar or Bipolar	6.67		320	$\mu \mathrm{s}$
INTERNAL REFERENCE						
Output Voltage	VREF		4.056	4.096	4.136	V
REF Short Circuit Current				24		mA
Output Tempco				± 20		ppm/ ${ }^{\circ} \mathrm{C}$
Capacitive Bypass at REF			0.47		10	$\mu \mathrm{F}$
Maximum Capacitive Bypass at REFADJ				10		$\mu \mathrm{F}$
REFADJ Output Voltage				4.096		V
REFADJ Input Range		For small adjustments from 4.096V		± 100		mV

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

ELECTRICAL CHARACTERISTICS (continued)

($A V_{D D}=D V_{D D}=+5 \mathrm{~V} \pm 5 \%$, fSCLK $=4.8 \mathrm{MHz}$, external clock (50% duty cycle), 24 clocks/conversion (200ksps), bipolar input, external $V_{\text {REF }}=+4.096 \mathrm{~V}, \mathrm{~V}_{\text {REFAD }}=A V_{\text {DD }}, C_{\text {REF }}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\text {CREF }}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
REFADJ Buffer Disable Threshold		To power-down the internal reference	$\begin{gathered} \text { AVDD- } \\ 0.5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \mathrm{AV}_{\mathrm{DD}}- \\ & 0.1 \mathrm{~V} \end{aligned}$	V
Buffer Voltage Gain				1		V/V
EXTERNAL REFERENCE (Reference buffer disabled. Reference applied to REF)						
Input Range (Notes 5 and 6)			3.0	4.096	4.2	V
Input Current		$\mathrm{V}_{\text {REF }}=4.096 \mathrm{~V}$, fSCLK $=4.8 \mathrm{MHz}$		250		$\mu \mathrm{A}$
		$V_{\text {REF }}=4.096 \mathrm{~V}$, fSCLK $=0$		230		
		In power-down, fSCLK $=0$		0.1		
DIGITAL INPUTS						
Input High Voltage	V_{IH}		2.4			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$				0.8	V
Input Leakage	IIN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{DV}_{\text {DD }}$			± 1	$\mu \mathrm{A}$
Input Hysteresis	$\mathrm{V}_{\text {HYST }}$			0.2		V
Input Capacitance	CIN			10		pF
DIGITAL OUTPUTS						
Output High Voltage	VOH	ISOURCE $=0.5 \mathrm{~mA}$	$\begin{aligned} & \text { DVDD - } \\ & 0.5 \end{aligned}$			V
Output Low Voltage	VoL	ISINK $=5 \mathrm{~mA}$			0.4	V
		ISINK $=16 \mathrm{~mA}$			0.8	
Three-State Leakage Current	IL	$\overline{C S}=$ DV ${ }_{\text {DD }}$			± 10	$\mu \mathrm{A}$
Three-State Output Capacitance		$\overline{C S}=V_{D D}$		10		pF
POWER SUPPLIES						
Analog Supply (Note 7)	AV ${ }_{\text {DD }}$		4.75	5	5.25	V
Digital Supply (Note 7)	DVDD		4.75	5	5.25	V
Analog Supply Current	IANALOG	Unipolar Mode		5	8	mA
		Bipolar Mode		8.5	11	
		$\overline{\text { SHDN }}=0$, or software power-down mode		0.3	10	$\mu \mathrm{A}$
Digital Supply Current	IDIGITAL	Unipolar or Bipolar Mode		2.5	3.5	mA
		$\overline{\text { SHDN }}=0$, or software power-down mode		2.2	10	$\mu \mathrm{A}$
Power Supply Rejection Ratio (Note 8)	PSRR	$\mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V ,		72		dB

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

TIMING CHARACTERISTICS (Figures 5 and 6)

($A V_{D D}=D V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNIT
Acquisition Time	tACQ		1.14		$\mu \mathrm{s}$
DIN to SCLK Setup	tDS		50		ns
DIN to SCLK Hold	tD			0	ns
SCLK to DOUT Valid	tDO			70	ns
$\overline{\mathrm{CS}}$ Fall to DOUT Enable	tDV	CLOAD $=50 \mathrm{pF}$		80	ns
$\overline{\mathrm{CS}}$ Rise to DOUT Disable	tTR	CLOAD $=50 \mathrm{pF}$		80	ns
$\overline{\mathrm{CS}}$ to SCLK Rise Setup	tcss		100		ns
$\overline{\mathrm{CS}}$ to SCLK Rise Hold	tcSH		0		ns
SCLK High Pulse Width	tch		80		ns
SCLK Low Pulse Width	tCL		80		ns
SCLK Fall to SSTRB	tsstrb	CLOAD $=50 \mathrm{pF}$		80	ns
$\overline{\overline{C S}}$ Fall to SSTRB Enable	tSDV	CLOAD $=50 \mathrm{pF}$, External clock mode		80	ns
$\overline{\mathrm{CS}}$ Rise to SSTRB Disable	tstr	CLOAD $=50 \mathrm{pF}$, External clock mode		80	ns
SSTRB Rise to SCLK Rise	tsck	Internal clock mode	0		ns
$\overline{\text { RST Pulse Width }}$	trs		208		ns

Note 1: Tested at $A V_{D D}=D V_{D D}=+5 \mathrm{~V}$, bipolar input mode.
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the gain error and offset error have been nulled.
Note 3: Offset nulled.
Note 4: Conversion time is defined as the number of clock cycles multiplied by the clock period, clock has 50% duty cycle. Includes the acquisition time.
Note 5: ADC performance is limited by the converter's noise floor, typically $300 \mu \mathrm{Vp}-\mathrm{p}$.
Note 6 When an external reference has a different voltage than the specified typical value, the full scale of the ADC will scale proportionally.
Note 7: Electrical characteristics are guaranteed from $A V_{D D(M I N)}=D V_{D D(M I N)}$ to $A V_{D D(M A X)}=D V_{D D(M A X)}$. For operations beyond this range, see the Typical Operating Characteristics. For guaranteed specifications beyond the limits, contact the factory.
Note 8: Defined as the change in positive full-scale caused by a $\pm 5 \%$ variation in the nominal supply voltage.

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

 lar input, external REF $=+4.096 \mathrm{~V}, 0.22 \mu \mathrm{~F}$ bypassing on REFADJ, $2.2 \mu \mathrm{~F}$ on REF, $1 \mu \mathrm{~F}$ on CREF, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

OFFSET VOLTAGE
vs. TEMPERATURE

DIFFERENTIAL NONLINEARITY
vs. DIGITAL OUTPUT CODE

GAIN ERROR vs.
TEMPERATURE

TOTAL SUPPLY CURRENT vs. TEMPERATURE

TOTAL SUPPLY CURRENT vs. CONVERSION RATE (USING SHUTDOWN)

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

Typical Operating Characteristics (continued)
(MAX1142/MAX1143, AV ${ }_{D D}=D V_{D D}=+5 \mathrm{~V}, f 5 C L K=4.8 \mathrm{MHz}$, external clock (50% duty cycle), 24-clocks/conversion (200ksps), bipolar input, external REF $=+4.096 \mathrm{~V}, 0.22 \mu \mathrm{~F}$ bypassing on REFADJ, $2.2 \mu \mathrm{~F}$ on REF, $1 \mu \mathrm{~F}$ on CREF, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

FFT PLOT

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

PIN	NAME	FUNCTION
1	REF	Reference Buffer Output/ADC Reference Input. Reference voltage for analog-to-digital conversion. In internal reference mode, the reference buffer provides a +4.096 V nominal output, externally adjustable at REFADJ. In external reference mode, disable the internal buffer by pulling REFADJ to AVDD. Bypass to AGND with a $2.2 \mu \mathrm{~F}$ capacitor when using the internal reference.
2	REFADJ	Bandgap Reference Output/Bandgap Reference Buffer Input. Bypass to AGND with $0.22 \mu \mathrm{~F}$. When using an external reference, connect REFADJ to AVDD to disable the internal bandgap reference.
3	AGND	Analog Ground. This is the primary analog ground (Star Ground).
4	AVDD	Analog Supply $5 \mathrm{~V} \pm 5 \%$. Bypass $A V_{\text {DD }}$ to AGND (pin 3) with a $0.1 \mu \mathrm{~F}$ capacitor.
5	DGND	Digital Ground
6	$\overline{\text { SHDN }}$	Shutdown Control Input. Drive $\overline{\text { SHDN }}$ low to put the ADC in shutdown mode.
7	P2	User-Programmable Output 2
8	P1	User-Programmable Output 1
9	PO	User-Programmable Output 0
10	SSTRB	Serial Strobe Output. In internal clock mode, SSTRB goes low when the ADC begins a conversion and goes high when the conversion is finished. In external clock mode, SSTRB pulses high for one clock period before the MSB decision. It is high impedance when $\overline{\mathrm{CS}}$ is high in external clock mode.
11	DOUT	Serial Data Output. MSB first, straight binary format for unipolar input, two's complement for bipolar input. Each bit is clocked out of DOUT at the falling edge of SCLK.
12	$\overline{\mathrm{RST}}$	Reset Input. Drive $\overline{\mathrm{RST}}$ low to put the device in the power-on default mode. See the Power-On Reset section.
13	SCLK	Serial Data Clock Input. Serial data on DIN is loaded on the rising edge of SCLK, and serial data is updated on DOUT on the falling edge of SCLK. In external clock mode, SCLK sets the conversion speed.
14	DGND	Digital Ground. Connect to pin 5.
15	DV ${ }_{\text {DD }}$	Digital Supply $5 \mathrm{~V} \pm 5 \%$. Bypass DV ${ }_{\text {DD }}$ to DGND (pin 14) with a $0.1 \mu \mathrm{~F}$ capacitor.
16	DIN	Serial Data Input. Serial data on DIN is latched on the rising edge of SCLK.
17	$\overline{\mathrm{CS}}$	Chip Select Input. Drive $\overline{\mathrm{CS}}$ low to enable the serial interface. When $\overline{\mathrm{CS}}$ is high, DOUT is high-impedance. In external clock mode SSTRB is high-impedance when $\overline{\mathrm{CS}}$ is high.
18	CREF	Reference Buffer Bypass. Bypass CREF to AGND (pin 3) with $1 \mu \mathrm{~F}$.
19	AGND	Analog Ground. Connect pin 19 to pin 3.
20	AIN	Analog Input

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

Detailed Description

The MAX1142/MAX1143 analog-to-digital converters (ADCs) use a successive-approximation technique and input track/hold (T/H) circuitry to convert an analog signal to a 14-bit digital output. The MAX1142/MAX1143 easily interfaces to microprocessors ($\mu \mathrm{Ps}$). The data bits can be read either during the conversion in external clock mode or after the conversion in internal clock mode.
In addition to a 14-bit ADC, the MAX1142/MAX1143 include an input scaler, an internal digital microcontroller, calibration circuitry, an internal clock generator, and an internal bandgap reference. The input scaler for the MAX1142 enables conversion of input signals ranging from 0 to +12 V (unipolar input) or $\pm 12 \mathrm{~V}$ (bipolar input). The MAX1143 accepts 0 to +4.096 V (unipolar input) or $\pm 4.096 \mathrm{~V}$ (bipolar input). Input range selection is software controlled.

Calibration

To minimize linearity, offset, and gain errors, the MAX1142/MAX1143 have on-demand software calibration. Initiate calibration by writing a Control-Byte with bit M1 = 0, and bit M0 = 1 (See Table 1). Select internal or external clock for calibration by setting the INT/EXT bit in the Control-Byte. Calibrate the MAX1142/MAX1143 with the clock used for performing conversions.
Offsets resulting from synchronous noise (such as the conversion clock) are canceled by the MAX1142/ MAX1143's calibration circuitry. However, because the magnitude of the offset produced by a synchronous signal depends on the signal's shape, recalibration may be appropriate if the shape or relative timing of the clock or other digital signals change, as might occur if more than one clock signal or frequency is used.

Input Scaler

The MAX1142/MAX1143 have an input scaler which allows conversion of true bipolar input voltages while operating from a single +5 V supply. The input scaler attenuates and shifts the input, as necessary, to map the external input range to the input range of the internal DAC. The MAX1142 analog input range is 0 to +12 V (unipolar) or $\pm 12 \mathrm{~V}$ (bipolar). The MAX1143 analog input range is 0 to +4.096 V (unipolar) or $\pm 4.096 \mathrm{~V}$ (bipolar). Unipolar and bipolar mode selection is configured with bit 6 of the serial Control-Byte.
Figure 1 shows the equivalent input circuit of the MAX1142/MAX1143. The resistor network on the analog input provides $\pm 16.5 \mathrm{~V}$ fault protection. This circuit limits the current going into or out of the pin, to less than $2 m A$. The overvoltage protection is active, even if the device is in a power-down mode, or if $A V D D=0$.

Figure 1. Equivalent Input Circuit

Digital Interface

The digital interface pins consist of $\overline{\text { SHDN, }} \overline{\mathrm{RST}}$, SSTRB, DOUT, SCLK, DIN and $\overline{\mathrm{CS}}$. Bringing $\overline{\text { SHDN }}$ low, places the MAX1142/MAX1143 in its $2.5 \mu \mathrm{~A}$ shutdown mode. A logic low on RST halts the MAX1142/MAX1143 operation and returns the part to its power-on reset state.
In external clock mode, SSTRB is low and pulses high for one clock cycle at the start of conversion. In internal clock mode SSTRB goes low at the start of the conversion, and goes high to indicate the conversion is finished.
The DIN input accepts Control-Byte data which is clocked in on each rising edge of SCLK. After $\overline{\mathrm{CS}}$ goes low or after a conversion or calibration completes, the first logic " 1 " clocked-into DIN is interpreted as the START bit, the MSB of the 8-bit Control-Byte.
The SCLK input is the serial data transfer clock which clocks data in and out of the MAX1142/MAX1143. SCLK also drives the A/D conversion steps in external clock mode (see Internal and External Clock Modes section).
DOUT is the serial output of the conversion result. DOUT is updated on the falling edge of SCLK. DOUT is high-impedance when $\overline{\mathrm{CS}}$ is high.
$\overline{\mathrm{CS}}$ must be low for the MAX1142/MAX1143 to accept a Control-Byte. The serial interface is disabled when $\overline{\mathrm{CS}}$ is high.

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

The MAX1142/MAX1143 have three user-programmable outputs: P0, P1 and P2. The power-on default state for the programmable outputs is zero. These are pushpull CMOS outputs suitable for driving a multiplexer, a PGA, or other signal preconditioning circuitry. The userprogrammable outputs are controlled by bits 0,1 and 2 of the Control-Byte (Table 2).
The user-programmable outputs are set to zero during power-on reset (POR) or when RST goes low. During hardware or software shutdown P0, P1, and P2 are unchanged and remain low-impedance.

Starting a Conversion

Start a conversion by clocking a Control-Byte into the device's internal shift register. With $\overline{\mathrm{CS}}$ low, each rising edge on SCLK clocks a bit from DIN into the MAX1142/MAX1143's internal shift register. After $\overline{\mathrm{CS}}$ goes low or after a conversion or calibration completes, the first arriving logic " 1 " is defined as the start bit of the Control-Byte. Until this first start bit arrives, any number of logic "0" bits can be clocked into DIN with no effect. If at any time during acquisition or conversion, $\overline{\mathrm{CS}}$ is brought high and then low again, the part is placed into a state where it can recognize a new start
bit. If a new start bit occurs before the current conversion is complete, the conversion is aborted and a new acquisition is initiated. Table 1 shows the Control-Byte format.

Internal and External Clock Modes
The MAX1142/MAX1143 may use either the external serial clock or the internal clock to perform the succes-sive-approximation conversion. In both clock modes, the external clock shifts data in and out of the MAX1142/MAX1143. Bit 5 (INT/EXT) of the Control-Byte programs the clock mode.

External Clock

In external clock mode, the external clock not only shifts data in and out, but it also drives the A/D conversion steps. In short acquisition mode, SSTRB pulses high for one clock period after the seventh falling edge of SCLK, following the start bit. The MSB of the conversion is available at DOUT on the eighth falling edge of SCLK (Figure 2).
In long acquisition mode, when using the external clock, SSTRB pulses high for one clock period after the fifteenth falling edge of SCLK, following the start bit. The MSB of the conversion is available at DOUT on the sixteenth falling edge of SCLK (Figure 3).

Table 1. Control-Byte Format

$\begin{aligned} & \text { BIT7 } \\ & \text { (MSB) } \end{aligned}$	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	$\begin{aligned} & \text { BITO } \\ & \text { (LSB) } \end{aligned}$
START	UNI/BIP	INT/EXT	M1	M0	P2	P1	P0
BIT	NAME	DESCRIPTION					
7 (MSB)	START	The first logic "1" bit, after $\overline{\mathrm{CS}}$ goes low, defines the beginning of the Control-Byte					
6	UNI/BIP	$1=$ unipolar, $0=$ bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode, analog input signals from 0 to +12 V (MAX1142) or 0 to $V_{\text {REF }}$ (MAX1143) can be converted. In bipolar mode analog input signals from -12 V to +12 V (MAX1142) or $-\mathrm{V}_{\text {REF }}$ to $+\mathrm{V}_{\text {REF }}$ (MAX1143) can be converted.					
5	INT/EXT	Selects the internal or external conversion clock. 1 = Internal, $0=$ External.					
4	M1	M1	M0	MODE			
3	M0	0	0	24 External clocks per conversion (short acquisition mode)			
		0	1	Start Calibration. Starts internal calibration			
		1	0	Software power-down mode			
		These three bits are stored in a port register and output to pins P2-P0 for use in addressing a MUX or PGA. These three bits are updated in the port register simultaneously when a new Control-Byte is written.		32 External clocks per conversion (long acquisition mode)			
$\begin{gathered} 2 \\ 1 \\ 0(L S B) \end{gathered}$	$\begin{aligned} & \text { P2 } \\ & \text { P1 } \\ & \text { P0 } \end{aligned}$	These three bits are stored in a port register and output to pins P2-P0 for use in addressing a MUX or PGA. These three bits are updated in the port register simultaneously when a new Control-Byte is written.					

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

Table 2. User-Programmable Outputs

OUTPUT PIN	PROGRAMMED THROUGH CONTROL- BYTE	POWER-ON OR RST DEFAULT	
P2	Bit 2	0	User programmable outputs follow the state of the Control-Byte's three LSBs, and are updated simultaneously when a new Control-Byte is written. Outputs are push-pull. In hardware and software shutdown, these outputs are unchanged and remain low-impedance.
P1	Bit 1	0	0

In external clock mode, SSTRB is high-impedance when $\overline{\mathrm{CS}}$ is high. In external clock mode, $\overline{\mathrm{CS}}$ is normally held low during the entire conversion. If $\overline{\mathrm{CS}}$ goes high during the conversion, SCLK is ignored until $\overline{\mathrm{CS}}$ goes low. This allows external clock mode to be used with 8bit bytes.

Internal Clock

In internal clock mode, the MAX1142/MAX1143 generates its own conversion clock. This frees the microprocessor from the burden of running the SAR conversion clock, and allows the conversion results to be read back at the processor's convenience, at any clock rate up to 8 MHz .
SSTRB goes low at the start of the conversion and goes high when the conversion is complete. SSTRB will be low for a maximum of $6 \mu \mathrm{~s}$, during which time SCLK should remain low for best noise performance. An internal register stores data when the conversion is in progress. SCLK clocks the data out of the internal storage register at any time after the conversion is complete.

The MSB of the conversion is available at DOUT when SSTRB goes high. The subsequent 15 falling edges on SCLK shift the remaining bits out of the internal storage register (Figure 4). $\overline{\mathrm{CS}}$ does not need to be held low once a conversion is started.
When internal clock mode is selected, SSTRB does not go into a high-impedance state when $\overline{\mathrm{CS}}$ goes high. Figure 5 shows the SSTRB timing in internal clock mode. In internal clock mode, data can be shifted into the MAX1142/MAX1143 at clock rates up to 4.8 MHz , provided that the minimum acquisition time, $t_{A C Q}$, is kept above $1.14 \mu \mathrm{~s}$ in bipolar mode and $1.82 \mu \mathrm{~s}$ in unipolar-mode. Data can be clocked out at 8 MHz .

Output Data

The output data format is straight binary for unipolar conversions and two's complement in bipolar mode. In both modes the MSB is shifted out of the MAX1142/ MAX1143 first.

Figure 2. Short Acquisition Mode (24-Clock Cycles) External Clock, Bipolar Mode

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

Figure 3. Long Acquisition Mode (32-Clock Cycles) External Clock, Bipolar Mode

Figure 4. Internal Clock Mode Timing, Short Acquisition, Bipolar Mode

Figure 5. Internal Clock Mode SSTRB Detailed Timing
\qquad

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

Abstract

Data Framing The falling edge of $\overline{\mathrm{CS}}$ does NOT start a conversion on the MAX1142/MAX1143. The first logic high clocked into DIN is interpreted as a start bit and defines the first bit of the Control-Byte. A conversion starts on the falling edge of SCLK, after the seventh bit of the Control-Byte (the P1 bit) is clocked into DIN. The start bit is defined as:

The first high bit clocked into DIN with $\overline{\mathrm{CS}}$ low, anytime the converter is idle, e.g. after $A V_{D D}$ is applied, or as the first high bit clocked into DIN after $\overline{\mathrm{CS}}$ is pulsed high, then low.

\section*{OR}

If a falling edge on $\overline{\mathrm{CS}}$ forces a start bit before the conversion or calibration is complete, then the current operation will be terminated and a new one started.

Applications Information

Power-On Reset

When power is first applied to the MAX1142/MAX1143 or if RST is pulsed low, the internal calibration registers are set to their default values. The user-programmable registers (P0, P1 and P2) are low, and the device is configured for bipolar mode with internal clocking.

Calibration
To compensate the MAX1142/MAX1143 for temperature drift and other variations, they should be periodically calibrated. After any change in ambient temperature more than $10^{\circ} \mathrm{C}$, the device should be recalibrated. A 100 mV change in supply voltage or any change in the reference voltage should be followed by a calibration. Calibration corrects for errors in gain, offset, integral nonlinearity and differential nonlinearity.

The MAX1142/MAX1143 should be calibrated after power-up or the assertion of reset. Make sure the power supplies and the reference voltage have fully settled prior to initiating the calibration sequence.
Initiate calibration by setting M1 $=0$ and $\mathrm{MO}=1$ in the Control-Byte. In internal clock mode, SSTRB goes low at the beginning of calibration and goes high to signal the end of calibration, approximately 80,000 clock cycles later. In external clock mode, SSTRB goes high at the beginning of calibration and goes low to signal the end of calibration. Calibration should be performed in the same clock mode as will be used for conversions (Figure 6).

Reference The MAX1142/MAX1143 can be used with an internal or external reference. An external reference can be connected directly at the REF pin or at the REFADJ pin. CREF is an internal reference node and must be bypassed with a $1 \mu \mathrm{~F}$ capacitor when using either the internal or an external reference.

Internal Reference

When using the MAX1142/MAX1143's internal reference, place a $0.22 \mu \mathrm{~F}$ ceramic capacitor from REFADJ to AGND and place a $2.2 \mu \mathrm{~F}$ capacitor from REF to AGND. Fine adjustments can be made to the internal reference voltage by sinking or sourcing current at REFADJ. The input impedance of REFADJ is nominally $9 k \Omega$. The internal reference voltage is adjustable to $\pm 1.5 \%$ with the circuit of Figure 7 .

Figure 6. External Clock Mode SSTRB Detailed Timing

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

An External reference
An external reference can be placed at either the input (REFADJ) or the output (REF) of the MAX1142/ MAX1143's internal buffer amplifier.
When connecting an external reference to REFADJ, the input impedance is typically $9 k \Omega$. Using the buffered REFADJ input makes buffering of the external reference unnecessary. The internal buffer output must be bypassed at REF with a $2.2 \mu \mathrm{~F}$ capacitor.
When connecting an external reference at REF, REFADJ must be connected to $A V_{D D}$. The input impedance at REF is $16 \mathrm{k} \Omega$ for DC currents. During conversion, an external reference at REF must deliver $250 \mu \mathrm{~A}$ DC load current and have an output impedance of 10Ω or less. If the reference has a higher output impedance or is noisy, bypass it at the REF pin with a $4.7 \mu \mathrm{~F}$ capacitor.

Analog Input

The MAX1142/MAX1143 use a capacitive DAC that provides an inherent track/hold function. Drive AIN with a source impedance less than 10Ω. Any signal conditioning circuitry must settle with 16-bit accuracy in less than 500ns. Limit the input bandwidth to less than half the sampling frequency to eliminate aliasing. The MAX1142/MAX1143 has a complex input impedance which varies from unipolar to bipolar mode (Figure 1).

Input Range

The analog input range in unipolar mode is 0 to +12 V for the MAX1142, and 0 to +4.096 V for the MAX1143. In bipolar mode, the analog input can be -12 V to +12 V for the MAX1142, and -4.096 V to +4.096 V for the

Figure 7. MAX1142 Reference-Adjust Circuit

MAX1143. Unipolar and bipolar mode is programmed with the UNI/BIP bit of the Control-Byte. When using a reference other than the MAX1142/MAX1143's internal +4.096 V reference, the full-scale input range will vary accordingly. The full-scale input range depends on the voltage at REF and the sampling mode selected (Tables 3 and 4).

Input Acquisition and Settling
Clocking-in a Control-Byte starts input acquisition. In bipolar mode, the main capacitor array starts acquiring the input as soon as a start bit is recognized. If unipolar mode is selected by the second DIN bit, the part will immediately switch to unipolar sampling mode and acquire a sample.
Acquisition can be extended by eight clock cycles by setting $\mathrm{M} 1=1, \mathrm{MO}=1$ (long acquisition mode). The sampling instant in short acquisition completes on the falling edge of the sixth clock cycle after the start bit (Figure 2).

Table 3. Unipolar Full Scale and Zero Scale

PART	REFERENCE	ZERO SCALE	FULL SCALE
MAX1142	Internal	0	+12 V
	External	0	$+12\left(V_{\text {REF }} / 4.096\right)$
MAX1143	Internal	0	+4.096 V
	External	0	$+V_{\text {REF }}$

Table 4. Bipolar Full Scale, Zero Scale, and Negative Scale

PART	REFERENCE	NEGATIVE FULL SCALE	ZERO SCALE	FULL SCALE
	Internal	-12 V		+12 V
	External	$-12\left(V_{\text {REF }} / 4.096\right)$	0	$+12\left(V_{\text {REF }} / 4.096\right)$
MAX1143	Internal	-4.096 V	0	+4.096 V
	External	$-V_{\text {REF }}$	0	$+V_{\text {REF }}$

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

Acquisition is 5.5 clock cycles in short acquisition mode and 13.5 clock cycles in long acquisition mode. Short acquisition mode is 24 clock cycles per conversion. Using the external clock to run the conversion process limits unipolar conversion speed to 125 ksps instead of 200ksps in bipolar mode. The input resistance in unipolar mode is larger than that of bipolar mode (Figure1). The RC time constant in unipolar mode is larger than that of bipolar mode, reducing the maximum conversion rate in 24 external clock mode. Long acquisition mode with external clock allows both unipolar and bipolar sampling of $150 \mathrm{ksps}(4.8 \mathrm{MHz} / 32$ clock cycles) by adding eight extra clock cycles to the conversion.
Most applications require an input buffer amplifier. If the input signal is multiplexed, the input channel should be switched immediately after acquision, rather than near the end of or after a conversion. This allows more time for the input buffer amplifier to respond to a large step change in input signal. The input amplifier must have a high enough slew-rate to complete the required output voltage change before the beginning of the acquisition time. At the beginning of acquisition, the capacitive DAC is connected to the amplifier output, causing some output disturbance. Ensure that the sampled voltage has settled to within the required limits before the end of the acquisition time. If the frequency of interest is low, AIN can be bypassed with a large enough capacitor to charge the capacitive DAC with very little change in voltage. However, for AC use, AIN must be driven by a wideband buffer (at least 10 MHz), which must be stable with the DAC's capacitive load (in parallel with any AIN bypass capacitor used) and also settle quickly (Figures 8 or 9).

Figure 9. $\pm 5 \mathrm{~V}$ Buffer for $A C / D C$ Use has $\pm 3.5 \mathrm{~V}$ Swing
Digital Noise
Digital noise can couple to AIN and REF. The conversion clock (SCLK) and other digital signals that are active during input acquisition, contribute noise to the conversion result. If the noise signal is synchronous to the sampling interval, an effective input offset is produced. Asynchronous signals produce random noise on the input, whose high-frequency components may be aliased into the frequency band of interest. Minimize noise by presenting a low impedance (at the frequencies contained in the noise signal) at the inputs. This requires bypassing AIN to AGND, or buffering the input with an amplifier that has a small-signal bandwidth of several MHz , or preferably both. AIN has a bandwidth of about 4 MHz .

Figure 8. AIN Buffer for AC/DC Use

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

Offsets resulting from synchronous noise (such as the conversion clock) are canceled by the MAX1142/ MAX1143's calibration scheme. The magnitude of the offset produced by a synchronous signal depends on the signal's shape. Recalibration may be appropriate if the shape or relative timing of the clock or other digital signals change, as might occur if more than one clock signal or frequency is used.

Distortion

Avoid degrading dynamic performance by choosing an amplifier with distortion much less than the MAX1142/ MAX1143's THD (-88 dB) at frequencies of interest. If the chosen amplifier has insufficient common-mode rejection, which results in degraded THD performance, use the inverting configuration to eliminate errors from common-mode voltage. Low temperature-coefficient resistors reduce linearity errors caused by resistance changes due to self-heating. To reduce linearity errors due to finite amplifier gain, use an amplifier circuit with sufficient loop gain at the frequencies of interest.

DC Accuracy

If DC accuracy is important, choose a buffer with an offset much less than the MAX1142/MAX1143's maximum offset ($\pm 6 \mathrm{mV}$), or whose offset can be trimmed while maintaining good stability over the required temperature range.

Operating Modes and Serial Interfaces

The MAX1142/MAX1143 are fully compatible with MICROWIRE and SPI/QSPI devices. MICROWIRE and SPI/QSPI both transmit a byte and receive a byte at the same time. The simple software interface requires only three 8 -bit transfers to perform a conversion, one 8 -bit transfer to configure the ADC, and two more 8-bit transfers to clock out the 14-bit conversion result.

Mode 1 Short Acquisition Mode (24 SCLK)
Configure short acquisition by setting M1 $=0$ and $\mathrm{MO}=$ 0 . In short acquisition mode, the acquisition time is 5.5 clock cycles. The total period is 24 -clock cycles per conversion.

Mode 2 Long Acquisition Mode (32 SCLK)
Configure long acquisition by setting M1 $=1$ and $\mathrm{MO}=$ 1. In long acquisition mode, the acquisition time is 13.5 clock cycles. The total period is 32 clock cycles per conversion.

Calibration Mode

A calibration is initiated through the serial interface by setting $\mathrm{M} 1=0, \mathrm{M} 0=1$. Calibration can be done in either internal or external clock mode, though it is desirable that the part be calibrated in the same mode in
which it will be used to do conversions. The part will remain in calibration mode for approximately 80,000 clock cycles, unless the calibration is aborted. Calibration is halted if RST or SHDN goes low, or if a valid start condition occurs.

Software Shut-Down
A software power-down is initiated by setting M1 = 1 , $\mathrm{MO}=0$. After the conversion completes, the part shuts down. It reawakens upon receiving a new start bit. Conversions initiated with M1 $=1$ and M0 $=0$ (shutdown) use the acquisition mode selected for the previous conversion.

Shutdown Mode

The MAX1142/MAX1143 may be shut down by pulling $\overline{\text { SHDN }}$ low or by asserting software shutdown. In addition to lowering power dissipation to $13 \mu \mathrm{~W}$, considerable power can be saved by shutting down the converter for short periods between conversions. Duration will be affected by REF startup time with internal reference. There is no need to perform a calibration after the converter has been shut down, unless the time in shutdown is long enough that the supply voltage or ambient temperature may have changed.

Supplies, Layout, Grounding
 and Bypassing

For best system performance, use separate analog and digital ground planes. The two ground planes should be tied together at the MAX1142/MAX1143. Use pins 3 and 14 as the primary AGND and DGND, respectively. If the analog and digital supplies come from the same source, isolate the digital supply from the analog with a low value resistor (10Ω).
The MAX1142/MAX1143 are not sensitive to the order of $A V_{D D}$ and $V_{D D}$ sequencing. Either supply can be present in the absence of the other. Do not apply an external reference voltage until after both $A V_{D D}$ and DVDD are present.
Be sure that digital return currents do not pass through the analog ground. All return current paths must be low-impedance. A 5mA current flowing through a PC board ground trace impedance of only 0.05Ω, creates an error voltage of about $250 \mu \mathrm{~V}$, or about 2LSBs error with a $\pm 4 \mathrm{~V}$ full-scale system. The board layout should ensure that the digital and analog signal lines are kept separate. Do not run analog and digital lines parallel to one another. If you must cross one with the other, do so at right angles.
The ADC is sensitive to high-frequency noise on the AVDD power supply. Bypass this supply to the analog ground plane with $0.1 \mu \mathrm{~F}$. If the main supply is not ade-

14－Bit ADC，200ksps，＋5V Single－Supply with Reference

quately bypassed，add an additional $1 \mu \mathrm{~F}$ or $10 \mu \mathrm{~F}$ low－ ESR capacitor in parallel with the primary bypass capacitor．

Transfer Function
Figures 10 and 11 show the MAX1142／MAX1143＇s transfer functions．In unipolar mode，the output data is in binary format and in bipolar mode，it is two＇s comple－ ment format．

Figure 10．MAX1143 Unipolar Transfer Function，4．096V＝Full－ Scale

Figure 11．MAX1143 Bipolar Transfer Function，4．096V＝Full－ Scale

Definitions

Integral Nonlinearity
Integral nonlinearity（INL）is the deviation of the values on an actual transfer function from a straight line．This straight－line can be either a best straight－line fit or a line drawn between the end points of the transfer function， once offset and gain errors have been nullified．INL for the MAX1142／MAX1143 is measured using the end－ point method．

Differential Nonlinearity
Differential nonlinearity（DNL）is the difference between an actual step width and the ideal value of 1LSB．A DNL error specification of less than 1LSB guarantees no missing codes and a monotonic transfer function．

Aperture Jitter

Aperture jitter（taJ）is the sample－to－sample variation in the time between the samples．

Aperture Delay
Aperture delay（ $\mathrm{t} A \mathrm{D}$ ）is the time between the rising edge of the sampling clock and the instant when an actual sample is taken．

Signal－to－Noise Ratio
For a waveform perfectly reconstructed from digital samples，signal－to－noise ratio（SNR）is the ratio of full－ scale analog input（RMS value）to the RMS quantization error（residual error）．The ideal，theoretical，minimum analog－to－digital noise is caused by quantization error only and results directly from the ADC＇s resolution （ N －bits）：

$$
\text { SNR }=(6.02 \times N+1.76) \mathrm{dB}
$$

In reality，there are other noise sources besides quanti－ zation noise，including thermal noise，reference noise， clock jitter，etc．Therefore，SNR is calculated by taking the ratio of the RMS signal to the RMS noise，which includes all spectral components minus the fundamen－ tal，the first five harmonics and the DC offset．

Signal－to－Noise Plus Distortion Signal－to－noise plus distortion（SINAD）is the ratio of the fundamental input frequency＇s RMS amplitude to the RMS equivalent of all other ADC output signals：

$$
\text { SINAD }(\mathrm{dB})=20 \times \log (\text { SignalRMS/NoiseRMS })
$$

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

Effective Number of Bits
Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. With an input range equal to the fullscale range of the ADC, calculate the effective number of bits as follows:

$$
\text { ENOB }=(\text { SINAD }-1.76) / 6.02
$$

Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

$$
T H D=20 \times \log \left[\sqrt{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}\right)} / V_{1}\right]
$$

where V_{1} is the fundamental amplitude, and V_{2} through V_{5} are the amplitudes of the 2 nd- through 5 th-order harmonics.

Spurious-Free Dynamic Range

Spurious-free dynamic range (SFDR) is the ratio of RMS amplitude of the fundamental (maximum signal component), to the RMS value of the next largest distortion component.

Chip Information
TRANSISTOR COUNT: 21,807
PROCESS : BiCMOS

Typical Application Circuit

Ordering Information (continued)

PART	TEMP. RANGE	PIN- PACKAGE	INL (LSB)
MAX1142AEAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP	± 1
MAX1142BEAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP	± 2
MAX1143ACAP*	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP	± 1
MAX1143BCAP*	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP	± 2
MAX1143AEAP*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP	± 1
MAX1143BEAP*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP	± 2

*Future product-contact factory for availability.

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

Functional Diagram

14-Bit ADC, 200ksps, +5V Single-Supply with Reference

Package Information

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
A	0.068	0.078	1.73	1.99	
A1	0.002	0.008	0.05	0.21	
B	0.010	0.015	0.25	0.38	
C	0.004	0.008	0.09	0.20	
D	SEE VARIATIDNS				
E	0.205	0.209	5.20		5.38
e	0.0256	BSC	0.65	BSC	
H	0.301	0.311	7.65	7.90	
L	0.025	0.037	0.63	0.95	
α	0°	8°	0°	8°	

	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	N
D	0.239	0.249	6.07	6.33	14L
D	0.239	0.249	6.07	6.33	16L
D	0.278	0.289	7.07	7.33	20L
D	0.317	0.328	8.07	8.33	24L
D	0.397	0.407	10.07	10.33	28L

NDTES:

1. D\&E Dロ NロT INCLUDE MILD FLASH
2. MILD FLASH IR PRDTRUSIDNS NUT TD EXCEED . 15 mm (.006").
3. CDNTRDLLING DIMENSIDN: MILLIMETERS.
4. MEETS JEDEC MD150.

| |
| :--- | :--- | :--- | :--- |
| PRIPRIETARY INFORMATIIN |

© 2001 Maxim Integrated Products
Printed USA
תVIIXIMI is a registered trademark of Maxim Integrated Products.

