

GENERAL DESCRIPTION

The AD15700 is a precision component to interface analog input and output channels to a digital processor. It is ideal for arealimited applications that require maximum circuit density. The AD15700 contains the functionality of a 16-bit, 1 MSPS charge redistribution SAR analog-to-digital converter that operates from a 5 V power supply. The high speed 16 -bit sampling ADC incorporates a resistor input scaler that allows various input ranges, an internal conversion clock, error correction circuits, and both serial and parallel system interface ports. The AD15700 also contains a 14-bit, serial input, voltage output DAC that operates from a 5 V supply and has a settling time of $1 \mu \mathrm{~s}$. Two single- or split-supply voltage feedback amplifiers with rail-to-rail input and output characteristics featuring 80 MHz of small signal bandwidth and $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset drift provide ADC and DAC buffering capability. The center tapped $3 \mathrm{k} \Omega$ resistors are precision resistor networks with $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ratio tracking that provide low gain drift when used for scaling.
The ADC, DAC, and amp functions are electrically isolated from each other to provide maximum design flexibility. Input and output signal conditioning circuits for the converters can be easily configured with short interconnects under the device at the board level. The AD15700 is available in a 10 mm CSPBGA package.

REV. A

[^0]
FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Fast Throughput ADC.

The AD15700 incorporates a high speed, 1 MSPS, 16-bit SAR ADC.
2. Superior ADC INL.

The 16-bit ADC has a maximum integral nonlineariy of 2.5 LSB with no missing codes.
3. Two Precision Resistor Networks with $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Ratio Tracking for Gain Setting.
4. Low Power Consumption. Typically 132 mW at maximum performance levels.
5. Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

AD15700-SPECIFICATIONS

16-BIT ADC ELECTRICAL CHARACTERISTICS

Parameter	Condition	Min	Typ	Max	Unit
RESOLUTION		16			Bits
ANALOG INPUT Voltage Range Common-Mode Input Voltage Analog Input CMRR Input Impedance	$\begin{aligned} & \text { VIND - VINGND } \\ & \text { VINGND } \\ & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz} \end{aligned}$	$\begin{gathered} \pm 4 \mathrm{R} \\ -0.1 \end{gathered}$	$\begin{aligned} & 4 \mathrm{RE} \\ & 74 \\ & \text { See } \end{aligned}$	(See Table I) $+0.5$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~dB} \end{aligned}$
THROUGHPUT SPEED Complete Cycle Throughput Rate Time between Conversions Complete Cyle Thyoughper Rete Cpmplete Oycle Throughpur Rafe	In Warp Mode In Warp Mode In Warp Mode In Normal Mode In Normal Mode In Impulse Mode In In uulse Mode	0 0		$\begin{aligned} & 1 \\ & 1000 \\ & 1 \\ & 1.25 \\ & 800 \\ & 1.5 \\ & 666 \end{aligned}$	$\mu \mathrm{s}$ kSPS ms us kSPS Ms kSPS
$\begin{aligned} & \text { AC AcCUKACH } \\ & \text { negral Linarity } \\ & \text { No Missing Codes } \\ & \text { Transition Noise } \\ & \text { Bipolar Zero Error }{ }^{2} \text {, } \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \text { Bipolar Full-Scale Error }{ }^{2}, \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \text { Unipolar Zero Error }{ }^{2}, \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \text { Unipolar Full-Scale Error }{ }^{2} \text {, } \mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \text { Power Supply Sensitivity } \end{aligned}$	$\text { AVDD }=5 \mathrm{~V} \pm 5 \%$	$\underbrace{167}_{-4.38} \underbrace{2.5}_{-0.76}$	0.7 $+$	$+2.5$ $\begin{aligned} & +45 \\ & +0.38 \\ & +6.18 \\ & +0.7 \phi \end{aligned}$	LSB 1 Bits LSB LSB $\%$ of $\%$ of $\%$ \% of LSB
AC ACCURACY Signal-to-Noise Spurious-Free Dynamic Range Total Harmonic Distortion Signal-to-(Noise + Distortion) -3 dB Input Bandwidth	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=250 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=250 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=250 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=250 \mathrm{kHz},-60 \mathrm{~dB} \text { Input } \end{aligned}$	89 88.5	$\begin{aligned} & 90 \\ & 90 \\ & 100 \\ & -100 \\ & -100 \\ & 90 \\ & 30 \\ & 9.6 \end{aligned}$	-96	
SAMPLING DYNAMICS Aperture Delay Aperture Jitter Transient Response	Full-Scale Step		$\begin{aligned} & 2 \\ & 5 \end{aligned}$	250	ns ps rm ns
REFERENCE External Reference Voltage Range External Reference Current Drain	1 MSPS Throughput	2.3	$\begin{aligned} & 2.5 \\ & 200 \end{aligned}$	3.0	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \end{aligned}$
```DIGITAL INPUTS Logic Levels V IL V IIL I```		$\begin{aligned} & -0.3 \\ & +2.0 \\ & -1 \\ & -1 \end{aligned}$		$\begin{aligned} & \text { +0.8 } \\ & \text { DVDD + } 0 . \\ & +1 \\ & +1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$



Table I. Analog Input Configuration

Input Voltage Range	IND (4R)	INC(4R)	INB(2R)	INA(R)	Input Impedance ${ }^{1}$
$\pm 4 \mathrm{REF}$	$\mathrm{V}_{\text {IN }}$	INGND	INGND	REF	$1.63 \mathrm{k} \Omega$
$\pm 2 \mathrm{REF}$	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	INGND	REF	$948 \Omega$
$\pm \mathrm{REF}$	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	REF	$711 \Omega$
0 V to 4 REF	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	INGND	INGND	$948 \Omega$
0 V to 2 REF	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	INGND	$711 \Omega$
0 V to REF	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$	Note 2

## NOTES

${ }^{1}$ Typical analog input impedance.
${ }^{2}$ For this range, the input is high impedance.

## 16-BIT ADC TIMING CHARACTERISTICS $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{AVDD}=\mathrm{DVDD}=5 \mathrm{~V}$, $0 \mathrm{VDD}=2.7 \mathrm{~V}$ to 5.25 V , unless otherwise noted.)



## NOTES

${ }^{1}$ In Warp Mode only, the maximum time between conversions is 1 ms ; otherwise, there is no required maximum time.
${ }^{2}$ In Serial Interface Modes, the SYNC, SCLK, and SDOUT timings are defined with a maximum load $\mathrm{C}_{\mathrm{L}}$ of 10 pF ; otherwise, the load is 60 pF maximum.
${ }^{3}$ In serial master Read during Convert Mode. See Table II.
Specifications subject to change without notice.

Table II. Serial Clock Timings in Master Read after Convert


Figure 2. Voltage Reference Levels for Timing

14-BIT DAC ELECTRICAL CHARACTERIST|CS $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}$ DAC $=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$, unless otherwise noted. $)$

Parameter	Condition	Min	Typ	Max	Unit
STATIC PERFORMANCE   Resolution   Relative Accuracy, INL   Differential Nonlinearity   Gain Error   Gain Error Temperature Coefficient   Zero Code Error   Zero Code Temperature Coefficient	$\begin{aligned} & 1 \mathrm{LSB}=\mathrm{V}_{\mathrm{REF}} / 2^{14}=153 \mu \mathrm{~V} \\ & \text { when } \mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V} \end{aligned}$   Guaranteed Monotonic	14 $-1.75$   0	$\begin{aligned} & \pm 0.15 \\ & \pm 0.15 \\ & -0.3 \\ & \pm 0.1 \\ & 0.1 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 0.8 \\ & 0 \\ & \\ & 0.5 \end{aligned}$	Bits LSB   LSB   LSB   ppm $/{ }^{\circ} \mathrm{C}$   LSB   ppm $/{ }^{\circ} \mathrm{C}$
OUTPUT CHARACTERISTICS Oytput Volage Range	To $1 / 2 \mathrm{LSB}$ of $\mathrm{FS}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ 1 LSB Change around the MCarry   All $1+L$ oaded to DAC,   $\mathrm{V}_{\mathrm{R}}$ EF $=25 \mathrm{y}$   Tolernce Typi ally   $\Delta V_{D D} \pm 10 \%$	$0$	1   10   0.05   6.25	$\mathrm{V}_{\mathrm{REF}}-1 \mathrm{LSB}$ $\pm 1.0$	V $\mu \mathrm{s}$ $\mathrm{nV}-\mathrm{s}$ $\mathrm{nV}-\mathrm{s}$ $\mathrm{k} \Omega$ LSB
DAC REFERENCE INPUT   Reference Input Range   Reference Input Resistance*   LOGIC INPUTS   Input Current VINL, Input Low Voltage VINH, Input High Voltage Input Capacitance Hysteresis Voltage	?	2.4	$\square$   0.4		V   $\mathrm{N} \Omega$   N   A   V   V   pF   V
REFERENCE   Reference - 3 dB Bandwidth Reference Feedthrough   Signal-to-Noise Ratio Reference Input Capacitance	All 1s Loaded   All 0s Loaded, $\mathrm{V}_{\mathrm{REF}}=1 \mathrm{~V}$ p-p at 100 kHz   Code $0000_{\mathrm{H}}$   Code $3 \mathrm{FFF}_{\mathrm{H}}$		$\begin{aligned} & 1.3 \\ & 1 \\ & 92 \\ & 75 \\ & 120 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{mV} \text { p-p } \\ & \mathrm{dB} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
POWER REQUIREMENTS   $V_{D D}$   $\mathrm{I}_{\mathrm{DD}}$   Power Dissipation		4.5	$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.50 \\ & 1.1 \\ & 6.05 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \end{aligned}$

[^1]Specifications subject to change without notice.



Figure 3. Timing Diagram


Parameter	Condition	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE   -3 dB Small Signal Bandwidth Slew Rate Settling Time to $0.1 \%$	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V}_{\mathrm{O}}<0.4 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=-1, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \text { Step } \\ & \mathrm{G}=-1, \mathrm{~V}_{\mathrm{O}}=2 \text { V Step, } \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 54 \\ & 27 \end{aligned}$	$\begin{aligned} & 80 \\ & 32 \\ & 125 \end{aligned}$		MHz   V/ $/ \mathrm{s}$   ns
DISTORTION/NOISE PERFORMANCE   Total Harmonic Distortion   Input Voltage Noise Input Current Noise   Differential Gain   Differentrar Phase	$\begin{aligned} & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & -62 \\ & -86 \\ & 15 \\ & 2.4 \\ & 5 \\ & 0.17 \\ & 0.11 \end{aligned}$		dBc   dBc   $\mathrm{nV} / \sqrt{\mathrm{Hz}}$   $\mathrm{pA} / \sqrt{\mathrm{Hz}}$   $\mathrm{pA} / \sqrt{\mathrm{Hz}}$   \%   Degrees
		$\begin{aligned} & 76 \\ & 74 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 6 \\ & 5 \\ & 0.45 \\ & \hline 80 \\ & \hline 82 \end{aligned}$	$\begin{aligned} & \pm 6 \\ & \pm 10 \\ & \\ & 1.2 \\ & 2.0 \\ & 350 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{nA} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
INPUT CHARACTERISTICS   Common-Mode Input Resistance   Differential Input Resistance   Input Capacitance   Input Voltage Range   Input Common-Mode Voltage Range Common-Mode Rejection Ratio   Differential/Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 56 \\ & 66 \end{aligned}$	$\begin{aligned} & 7 \\ & 40 \\ & 280 \\ & \hline 1.6 \\ & -0.5 \\ & -0.2 \\ & 70 \\ & 80 \end{aligned}$		
OUTPUT CHARACTERISTICS   Output Voltage Swing Low Output Voltage Swing High Output Voltage Swing Low Output Voltage Swing High Output Current Short Circuit Current Capacitive Load Drive	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$   Sourcing   Sinking $\mathrm{G}=+2$	$\begin{aligned} & 0.05 \\ & 4.95 \\ & 0.2 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 4.98 \\ & 0.1 \\ & 4.9 \\ & 15 \\ & 28 \\ & -46 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY   Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{S}^{-}}=0 \mathrm{~V} \text { to }-1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{S}^{+}}=5 \mathrm{~V} \text { to } 6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 75 \end{aligned}$	$\begin{aligned} & 800 \\ & 86 \end{aligned}$	$\begin{aligned} & 12 \\ & 1400 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \\ & \mathrm{~dB} \end{aligned}$
OPERATING TEMPERATURE RANGE		-40		+85	${ }^{\circ} \mathrm{C}$

Specifications subject to change without notice.


Parameter	Condition	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE   -3 dB Small Signal Bandwidth   Slew Rate   Settling Time to $0.1 \%$	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V}_{\mathrm{O}}<0.4 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=-1, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \text { Step } \\ & \mathrm{G}=-1, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} \text { Step, } \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 54 \\ & 30 \end{aligned}$	$\begin{aligned} & 80 \\ & 35 \\ & 125 \end{aligned}$		MHz   V/ $\mu \mathrm{s}$ ns
DISTORTION/NOISE PERFORMANCE   Total Harmonic Distortion   Input Voltage Noise   Input Current Noise   Differential Gain   Differnntial Phase	$\begin{aligned} & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}-\mathrm{p}, \mathrm{G}=+2 \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & -62 \\ & -86 \\ & 15 \\ & 2.4 \\ & 5 \\ & 0.15 \\ & 0.15 \end{aligned}$		dBc   dBc $\qquad$   $\mathrm{nV} / \sqrt{\mathrm{Hz}}$   $\mathrm{pA} / \sqrt{\mathrm{Hz}}$   $\mathrm{pA} / \sqrt{\mathrm{Hz}}$   \%   Degrees
			$\begin{aligned} & \pm 1 \\ & \pm 6 \\ & 5 \\ & 0.45 \\ & \\ & 50 \\ & 80 \end{aligned}$	$\begin{aligned} & \pm 6 \\ & \pm 10 \\ & \\ & 1.2 \\ & 2.0 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{nA} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
INPUT CHARACTERISTICS   Common-Mode Input Resistance Differential Input Resistance Input Capacitance Input Voltage Range Input Common-Mode Voltage Range Common-Mode Rejection Ratio Differential/Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=-5 \mathrm{~V} \text { to }+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=-5 \mathrm{~V} \text { to }+3.5 \mathrm{~V} \end{aligned}$	$60$   66	$\begin{aligned} & 40 \\ & 280 \\ & 1.6 \\ & -5.5 \mathrm{t} \\ & -5.2 \mathrm{t} \\ & 80 \\ & 90 \end{aligned}$	5   2   3.4	$\mathrm{M} \Omega$   $\mathrm{k} \Omega$   pF   V   V   dB   dB   V
OUTPUT CHARACTERISTICS   Output Voltage Swing Low Output Voltage Swing High Output Voltage Swing Low Output Voltage Swing High Output Current Short Circuit Current Capacitive Load Drive	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$   Sourcing   Sinking $G=+2$	$\begin{aligned} & -4.94 \\ & +4.94 \\ & -4.7 \\ & +4.7 \end{aligned}$	$\begin{aligned} & -4.98 \\ & +4.98 \\ & -4.85 \\ & +4.75 \\ & 15 \\ & +35 \\ & -50 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY   Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{S}^{-}}=-5 \mathrm{~V} \text { to }-6 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V} \text { to }+6 \mathrm{~V} \end{aligned}$	$\pm 1.35$   76	$\begin{aligned} & 900 \\ & 86 \end{aligned}$	$\begin{aligned} & \pm 6 \\ & 1600 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \\ & \mathrm{~dB} \end{aligned}$
OPERATING TEMPERATURE RANGE		-40		+85	${ }^{\circ} \mathrm{C}$

[^2]RESISTOR DIVIDER ELECTRICAL CHARACTERISTICS (® $\mathrm{T}_{\mathrm{A}}=25^{\circ}$, unless otherwise noted.)

Parameter	Condition	Min	Typ	Max	Unit
Resistance		2.97	3.00	3.03	$\mathrm{k} \Omega$
Temperature Coefficient of Resistance			50		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Resistance Ratio of Two Halves		0.99	1.0	1.01	
Resistance Ratio Tracking      Power Dissipation $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$  2 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$					

*At higher temperatures, linearly derates to 0 mW at $175^{\circ} \mathrm{C}$.
Specifications subject to change without notice.


## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD15700 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


ADC PIN FUNCTION DESCRIPTIONS (See Pinout, page 42)

Pin No.	Mnemonic	Type	Description
H9, J8,   J9, M12	AGND_ADC		
M6			
L7			

## ADC PIN FUNCTION DESCRIPTIONS (continued)



## DAC PIN FUNCTION DESCRIPTIONS



COMMON PIN FUNCTION DESCRIPTIONS

Pin No.	Mnemonic	Type	Description
A1, A4, A5, A10, A12, B2-B8, C1,	COMMON	P	Common Floating Net Connecting 69 Pins. Not electrically   connected within the module. Tie at least one of these pins   C2, C5, C7, C8, C10-C12, D1-D8,
D10, D11, E4-E6, E8, E9, F1, F2,   F4-F10, G2, G4, G6-G8, H1, H2,			
H4, H6, H7, J2-J4, J6, K1-K3, Ground.			
K6-K8, L2, L3, L6, M1, M2			

## NOTES

AI = Analog Input
AI/O = Bidirectional Analog
AO = Analog Output
DI = Digital Input
DI/O = Bidirectional Digital
DO = Digital Output
$\mathrm{P}=$ Power

## ADC DEFINITION OF SPECIFICATIONS

## Integral Nonlinearity Error (INL)

Linearity error refers to the deviation of each individual code from a line drawn from "negative full scale" through "positive full scale." The point used as negative full scale occurs $1 / 2 \mathrm{LSB}$ before the first code transition. Positive full scale is defined as a level $11 / 2$ LSB beyond the last code transition. The deviation is measured from the middle of each code to the true straight line.

## Differential Nonlinearity Error (DNL)

In an ideal ADC, code transitions are 1 LSB apart. Differential nonlinearity is the maximum deviation from this ideal value.
It is often specified in terms of resolution for which no missing codes are guaranteed.

## Full-Scale Error

 $1 / 2$ LSB above analog ground. The unipolar zero error is the deviation of the actual transition from that point.
Spurious Free Dynamic Range (SFDR)
The difference, in decibels (dB), between the rms amplitude of the input signal and the peak spurious signal.

## Effective Number of Bits (ENOB)

A measurement of the resolution with a sine wave input. It is related to $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ by the following formula:

$$
E N O B=\left(\left(S /[N+D]_{d B}-1.76\right) / 6.02\right)
$$

and is expressed in bits.

## Total Harmonic Distortion (THD)

The rms sum of the first five harmonic components to the rms value of a full-scale input signal; expressed in decibels.
Signal-to-Noise Ratio (SNR)
The ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding harmonics and dc. The value for SNR is expressed in decibels.
Signal-to-(Noise + Distortion)
Ratio ( $\mathbf{S} /[\mathbf{N}+\mathbf{D}]$ )
The ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ is expressed in decibels.

## Aperture Delay

A measure of the acquisition performance, measured from the falling edge of the CNVST input to when the input signal is held for a conversion.

## Transient Response

The time required for the ADC to achieve its rated accuracy after a full-scale step function is applied to its input.

## DAC DEFINITION OF SPECIFICATIONS

## Relative Accuracy

For the DAC, relative accuracy or integral nonlinearity (INL) is a measure of the maximum deviation in LSBs from a straight line passing through the endpoints of the DAC transfer function. A typical INL versus code plot can be seen in TPC 16.

## Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of $\pm 1$ LSB maximum ensures monotonicity. TPC 19 illustrates a typical DNL versus code plot.

## Gain Error

Gain error is the difference between the actual and ideal analog output range, expressed as a percent of the full-scale range. It is the deviation in slope of the DAC transfer characteristic from ideal.

## Gain Error Temperature Coefficient

This is a measure of the change in gain error with changes in temperature. It is expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Zero Cpote Error
Zero code error is a measure of the output error when zero code is loaqed oo the DAC eegister.
2ero Code Temperacur Coefficidnt
This is measure of the thange in zer code error vithechange in templerature. It if expressed in $\mathrm{mV} /{ }^{\circ} \mathrm{C}$. Digital-to-analog titich imputse is the inpupse injecked into the analog output when the inputcode in the $\varnothing \mathrm{AC}$ rediste changes state. It is normally specified as the are the glitch in $\mathrm{nV}-\mathrm{s}$ and is measured when the digital input code is changed by ILSB at the major carry transition. A plot of the glitch impulse is showh in Figure 28.

## Digital Feedthrough

Digital feedthrough is a measure of the impulse injected into the analog output of the DAC from the digital inputs of the DAC, but is measured when the DAC output is not updated. $\overline{\text { CS_DAC }}$ is held high, while the CLK and DIN signals are toggled. It is specified in $\mathrm{nV}-\mathrm{s}$ and is measured with a full-scale code change on the data bus, i.e., from all 0 s to all 1 s and vice versa. A typical plot of digital feedthrough is shown in Figure 27.

## Power Supply Rejection Ratio

This specification indicates how the output of the DAC is affected by changes in the power supply voltage. Power supply rejection ratio is quoted in terms of percent change in output per percent change in $\mathrm{V}_{\mathrm{DD}}$ for full-scale output of the $\mathrm{DAC} . \mathrm{V}_{\mathrm{DD}}$ is varied by $\pm 10 \%$.

## Reference Feedthrough

This is a measure of the feedthrough from the $\mathrm{V}_{\text {REF }}$ input to the DAC output when the DAC is loaded with all 0 s . A 100 kHz , 1 V p-p is applied to $\mathrm{V}_{\text {REF. }}$. Reference feedthrough is expressed in mV p-p.

## 16-BIT D/A CONVERTER



TPC 2. Differential Nonlinearity vs. Code


TPC 3. Typical Positive INL Distribution (314 Units)


TPC 4. Typical Negative INL Distribution (314 Units)


TPC 5. Histogram of 16,384 Conversions of a DC Input at the Code Transition


TPC 6. Histogram of 16,384 Conversions of a DC Input at the Code Center





TPC 10. SNR, THD vs. Temperature


TPC 11. THD, Harmonics, and SFDR vs. Frequency


TPC 9. SNR vs. Input Frequency


TPC 12. THD, Harmonics vs. Input Level


TPC 14. Operating Currents vs. Sample Rate

## AD15700

## 14-BIT D/A CONVERTER



TPC 17. Integral Nonlinearity vs. Temperature


TPC 18. Linearity Error vs. Supply Voltage

TPC 20. Differential Nonlinearity vs. Temperature


TPC 21. Linearity Error vs. Reference Voltage


TPC 23. Supply Current vs. Temperature


TPC 25. Zero-Code Error vs. Temperature


TPC 26. Supply Current vs. Reference Voltage or Supply Voltage


TPC 24. Supply Current vs. Digital Input Voltage


TPC 27. Reference Current vs. Code


TPC 28. Typifar Distribution @ $V_{S}=5 \mathrm{~V}$


TPC 29. Input Offset Voltage vs. Temperature


TPC 30. Input Bias Current vs. Temperature


TPC 31. Input Bias Current vs. Common-Mode Voltage


TPC 32. Vos vs. Common-Mode Voltage


TPC 33. Supply Current vs. Temperature

## AMPLIFIER



TPC 35. +Output Saturation Voltage vs. $R_{\text {LOAD }} @ 25^{\circ} \mathrm{C}$


TPC. $36+$ Output Saturation Voltage vs. $R_{\text {LOAD }} @-40^{\circ} \mathrm{C}$


TPC 37. -Output Saturation Voltage vs. $R_{\text {LOAD }} @ 85^{\circ} \mathrm{C}$


TPC 38. -Output Saturation Voltage vs. $R_{\text {LOAD }} @ 25^{\circ} \mathrm{C}$


TPC. 39 -Output Saturation Voltage vs. $R_{\text {LOAD }} @-40^{\circ} \mathrm{C}$


TPC 40. Op en-teQp Gain $\left(A_{O L}\right)$ vs. $R_{L O A D}$


TPC 43. Differential Input Voltage 1 V Characteristics


TPC 44. Differential Gain and Phase @ $V_{S}= \pm 5$ V; $R_{L}=1 \mathrm{k} \Omega$


TPC 42. Open-Loop Gain $\left(A_{O L}\right)$ vs. $V_{\text {OUT }}$


TPC 45. Input Voltage Noise vs. Frequency


TPC 47. Closed-Loop Gain vs. Temperature


TPC 48. Closed-Loop Gain vs. Supply Voltage


TPC 51. Total Harmonic Distortion vs. Frequency; $G=+2$


TPC 53. R ${ }_{\text {OUT }}$ vs. Frequency


TPC 54. CMRR vs. Frequency


TPC 57. Output Voltage Phase Reversal Behavior


50ns/DIV
TPC 59. 1 V Step Response


TPC 60. Output Swing


TPC 61. 100 mV Step Response

## CIRCUIT OPERATION

The AD15700 contains precision components for interfacing analog I/O to a processor. Configuration for particular applications can be made with short external interconnects under the device.

## TYPICAL CONNECTION DIAGRAM

Figure 4 shows how, using a minimum of external devices, the components within the AD15700 can be interconnected to form a complete analog interface to a processor. The circuit implements signal conditioning that includes buffering, filtering, and voltage scaling.


Figure 4. Typical Connection Diagram

## Analog Input Section

Made up of a buffer amplifier, an RC filter, and an ADC, the analog input circuit allows measurement of voltages ranging from 0.2 V to 2 REF V . When placed in the 0 V to REF input range, the circuit has the configuration shown in Figure 5a.


Figure 5a. Analog Input Circuit
The filter is made up of one of the AD15700's internal centertapped resistors, an external capacitor $C 2$, plus the ADC's internal resistance bund capacitance. The transfer function of this filter is the bandwidth of the filter is 2. 6 MHz . To utilize the ADC's maximum 9.6 MHz bandwidth, the components external to the ADC are eliminated. In this case the $A D C$ is configured for it 0 to 2 REF input range and the resultingalent input circuit is shown in Figure 5b.


Figure 5b. Analog Input Circuit

## Analog Output Section

The output circuitry consists of a DAC, RC filter, and an amplifier. The circuit uses the DAC's output resistance of $6.25 \mathrm{k} \Omega \pm 20 \%$ to form a single-pole RC filter with an external capacitor C 1 . One of the AD15700's internal center-tapped resistors and one of its op amps form an amplifier with a gain of two. The gain is used to bring the DAC's maximum range of REF volts up to 2 REF V.


Figure 6. Analog Output Circuit

## Voltage Reference Input

The AD15700 uses an external 2.5 V or 3.0 V voltage reference. Because of the dynamic input impedance of the A/D and the code dependent impedance of the $\mathrm{D} / \mathrm{A}$, the reference inputs must be driven by a low impedance source. Decoupling consisting of a parallel combination of $47 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors is recommended. Suitable references include the ADR421 for 2.5 V output and the AD780 for selectable 2.5 V or 3.0 V output. Both of these feature low noise and low temperature drift.

## Processor Interface

The circuit in Figure ja uses serial interfacing to minimize the number of signals that connect to the digital circuits. External logic such as a state machine is used to generate clocks and other timing signals for the interface. Ideally, the clocks supplied to the converters are discontinuous and operate at the maximum frequency supported by the converter and the processor. Discontinuous clocks that are quiet during critical times minimize degradation caused by voltage transients on the digital interface. It is best to keep the clocks quiet during ADC conversion and when the DAC output is sampled by the external system. Often, the processor cannot tolerate a discontinuous clock and therefore a separate continuous clock (or clocks) that is synchronous with the converter clocks must be generated. Separate clocks for the DAC and ADC are used to maximize the data transfer rate to each converter. The ADC operates at a maximum rate of 40 MHz while the DAC can operate up to 25 MHz .

## ADC CIRCUIT INFORMATION

The ADC is a fast, low power, single-supply precise 16-bit analog-to-digital converter (ADC). It features different modes to optimize peformances according to the applications.
In warp mode, it scapate of converting 1,000,000 samples per Second (1 MSPS/.
The ADC provides user with an chip tract hold, successive approximation ADG that do ps not exhibit any pip line or latency, $\left[\begin{array}{l}\text { anking itiglea } \\ \text { mon multiple multiple fed cheney app lications. }\end{array}\right.$ It is specified to operaterith both pipqlar and unipolar put ranges by changing the con lection of ts input resiftivescaler. The ADC can be operated from a single 5 V supply and be interfaced to either 5 V or 3 V digital logic.

## ADC CONVERTER OPERATION

The ADC is a successive approximation analog-to-digital converter based on a charge redistribution DAC. Figure 7 shows the simplified schematic of the ADC. The input analog signal is first scaled down and level-shifted by the internal input resistive scaler, which allows both unipolar ranges ( 0 V to $2.5 \mathrm{~V}, 0 \mathrm{~V}$ to 5 V , and 0 to 10 V ) and bipolar ranges ( $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$ ). The output voltage range of the resistive scaler is always 0 V to 2.5 V . The capacitive DAC consists of an array of 16 binary weighted capacitors and an additional LSB capacitor. The comparator's negative input is connected to a "dummy" capacitor of the same value as the capacitive DAC array.
During the acquisition phase, the common terminal of the array tied to the comparator's positive input is connected to AGND via SWA. All independent switches are connected to the output of the resistive scaler. Thus, the capacitor array is used as a sampling capacitor and acquires the analog signal. Similarly, the dummy capacitor acquires the analog signal on INGND input.
When the acquisition phase is complete, and the $\overline{\text { CNVST }}$ input goes or is low, a conversion phase is initiated. When the conversion phase begins, SWA and SWB are opened first. The capacitor array and the dummy capacitor are then disconnected from the inputs and connected to the REFGND input. Therefore, the differential voltage between the output of the resistive scaler and INGND captured at the end of the acquisition phase is applied to the comparator inputs, causing the comparator to become unbalanced.
 tep (VREF/2, VREF/4...VREE $555^{36}$ ). The yontol logic tocgles these syitches, farting whth the MSK first, in order to bring theomparafor back inty a balancedcondtion. \&fter the completion of this press, the contortpgic geyerajes the ADC output code and brings BUSY output lon $\quad \begin{aligned} & \text { cofings: staight binary and twos complement. The ideal transfer } \\ & \text { ch raquateriftic for the A }\end{aligned}$ Modes of Operation
The ADC features three modes of operation: warp, no al, and impulse. Each of these modes is more suitable for specific applications.
The warp mode allows the fastest conversion rate up to 1 MSPS. However, in this mode and this mode only, the full specified accuracy is guaranteed only when the time between conversion does not exceed 1 ms . If the time between two consecutive conversions is longer than 1 ms , for instance, after power-up, the first conversion result should be ignored. This mode makes the ADC ideal for applications where both high accuracy and fast sample rate are required.
The normal mode is the fastest mode ( 800 kSPS ) without any limitation about the time between conversions. This mode makes the ADC ideal for asynchronous applications such as data acquisition systems, where both high accuracy and fast sample rate are required.
The impulse mode, the lowest power dissipation mode, allows power saving between conversions. The maximum throughput
in this mode is 666 kSPS . When operating at 100 SPS, for example, it typically consumes only $15 \mu \mathrm{~W}$. This feature makes the ADC ideal for battery-powered applications.


Figure 8. ADC Ideal Transfer Function

Table III. Output Codes and Ideal Input Voltages

Description	Analog Input						Digital Output Code (Hexadecimal)	
							Straight   Binary	Twos Complement
Full-Scale Range	+10 V	+5 V	+2.5 V	0 V to 10 V	0 V to 5 V	0 V to 2.5 V		
Least Significant Bit	$305.2 \mu \mathrm{~V}$	$152.6 \mu \mathrm{~V}$	$76.3 \mu \mathrm{~V}$	$152.6 \mu \mathrm{~V}$	76.3 ¢V	$38.15 \mu \mathrm{~V}$		
FSR -1 LSB	9.999695 V	4.999847 V	2.499924 V	9.999847 V	4.999924 V	2.499962 V	$\mathrm{FFFF}^{1}$	$7 \mathrm{FFF}^{1}$
Midscale +1 LSB	$305.2 \mu \mathrm{~V}$	$152.6 \mu \mathrm{~V}$	$76.3 \mu \mathrm{~V}$	5.000153 V	2.570076 V	1.257038 V	8001	0001
Midscale	0 V	0 V	0 V	5 V	2.5 V	1.25 V	8000	0000
Midscale - 1 LSB	-305.2 $\mu \mathrm{V}$	-152.6 $\mu \mathrm{V}$	-76.3 $\mu \mathrm{V}$	4.999847 V	2.499924 V	1.249962 V	7FFF	FFFF
-FSR +1 LSB	-9.999695 V	-4.999847 V	$-2.499924 \mathrm{~V}$	$152.6 \mu \mathrm{~V}$	$76.3 \mu \mathrm{~V}$	$38.15 \mu \mathrm{~V}$	0001	8001
-FSR	-10 V	-5 V	-2.5 V	0 V	0 V	0 V	$0000^{2}$	$8000^{2}$

[^3]
## Analog Inputs

The ADC is specified to operate with six full-scale analog input ranges. Connections required for each of the four analog inputs, IND, INC, INB, INA, and the resulting full-scale ranges are shown in Table I. The typical input impedance for each analog input range is also shown.
Figure 9 shows a simplified analog input section of the ADC.
 resistive scaler that scales down and strifts the analeg inkut ranse to a common input range of 0 V to 2.5 V at the inpor of the switched capacitive ADC.

By connecting the four inputs INA, INB, INC, and IND to the input signal itself, the ground, or a 2.5 V reference, other analog input ranges can be obtained.
The diodes shown in Figure 9 provide ESD protection for the four analog inputs. The inputs INB, INC, and IND, have a high voltage protection $(-11 \mathrm{~V}$ to $+30 \mathrm{~V})$ to allow wide input voltage range. Care must be taken to ensure that the analog input signal never exceeds the absolute ratings on these inputs including INA ( 0 V to 5 V ). This will cause these diodes to become for-ward-biased and start conducting current. These diodes can handle a forward-biased current of 120 mA maximum. For instance, when using the 0 V to 2.5 V input range, these conditions could eventually occur on the input INA when the input buffer's (U1) supplies are different from AVDD. In such case, an input buffer with a short circuit current limitation can be used to protect the part.
This analog input structure allows the sampling of the differential signal between the output of the resistive scaler and INGND. Unlike other converters, the INGND input is sampled at the same time as the inputs. By using this differential input, small signals common to both inputs are rejected as shown in Figure 10, which represents the typical CMRR over frequency. For instance, by using INGND to sense a remote signal ground, differences of ground potentials between the sensor and the local ADC ground are eliminated. During the acquisition phase for ac signals, the ADC behaves like a one-pole RC filter consisting of the equivalent resistance of the resistive scaler $\mathrm{R} / 2$ in series with R 1 and $\mathrm{C}_{\mathrm{s}}$. The resistor R1 is typically $100 \Omega$ and is a lumped component made up of some serial resistor and the on resistance of the switches.

The capacitor $\mathrm{C}_{\mathrm{S}}$ is typically 60 pF and is mainly the ADC sampling capacitor. This one-pole filter with a typical -3 dB cutoff frequency of 9.6 MHz reduces undesirable aliasing effects and limits the noise coming from the inputs.


Figure 10. Analog Input CMRR vs. Frequency
Except when usins the 0 V to 2.5 V analog input voltage range, the ADC has to be driven very low impedance source to dvoif gain errors. That canbe a ne by wing the driver amplifier. When using the 0 V to 2.5 V analog inpupvoltt g r range, the inpimpedanke of the $A D C$ is very/high so the $A D C$ can be driven direftly by a low impedance fource with ut a ain error. That allows putaing an external on $\&$-pole RC fijter betwen the output of the amplifier outh ut and the ADC apalos impurs to even further improve the noise filtering done by the ADC analog input circuit. However, the source impedanch has to be low because it affects the ac performances, especially the tota handonic distortion (THD). The maximum source impedance depends on the amount of total THD that can be tolerated. The THD degradation is a function of the source impedance and the maximum input frequency, as shown in Figure 11.


Figure 11. THD vs. Analog Input Frequency and Input Resistance (O V to 2.5 V Only)

## Driver Amplifier Choice

Although the ADC is easy to drive, the driver amplifier needs to meet at least the following requirements:

- The driver amplifier and the ADC analog input circuit must be able, together, to settle for a full-scale step of the capacitor array at a 16 -bit level ( $0.0015 \%$ ).
- The noise generated by the driver amplifier needs to be kept as low as possible in order to preserve the SNR and transition noise performance of the ADC. The noise coming from the driver is first scaled down by the resistive scaler according to the analog input voltage range used, and is then filtered by the ADC analog input circuit one-pole, low-pass filter made by $(\mathrm{R} / 2+\mathrm{R} 1)$ and CS. The SNR degradation due to
 ( 9.6 MHz ) or the cutoff frequency of the input filter if any is used ( 0 V to 2.5 V range).
$N$ is the noise factor of the amplifier ( 1 if in buffer configuration).
$e_{N}$ is the equivalent input noise voltage of the op amp in $\mathrm{nV} / \sqrt{\mathrm{Hz}}$.
$F S R$ is the full-scale span (i.e., 5 V for $\pm 2.5 \mathrm{~V}$ range).
For instance, when using the 0 V to 5 V range, a driver like the AD15700's internal op amp, with an equivalent input noise of $15 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and configured as a buffer, followed by a 3.2 MHz RC filter, the SNR degrades by about 1.3 dB .
- The driver needs to have a THD performance suitable to that of the ADC. Figure 11 gives the THD versus frequency that the driver should preferably exceed.


## Voltage Reference Input

The ADC uses an external 2.5 V voltage reference. The voltage reference input REF of the ADC has a dynamic input impedance. Therefore, it should be driven by a low impedance source with an efficient decoupling between REF and REFGND inputs. This decoupling depends on the choice of the voltage reference, but usually consists of a low ESR tantalum capacitor connected to the REF and REFGND inputs with minimum parasitic inductance. $47 \mu \mathrm{~F}$ is an appropriate value for the tantalum capacitor when used with one of the recommended reference voltages:

- The low noise, low temperature drift ADR421 or AD780 voltage references
- The low power ADR291 voltage reference
- The low cost AD1582 voltage reference

Care should also be taken with the reference temperature coefficient of the voltage reference, which directly affects the full-scale accuracy if this parameter matters. For instance, $a \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco of the reference changes the full scale by $\pm 1 \mathrm{LSB} /{ }^{\circ} \mathrm{C}$.

## Scaler Reference Input (Bipolar Input Ranges)

When using the ADC with bipolar input ranges, a buffer amplifier is required to isolate the REFIN pin from the signal dependent current in the AIN pin. A high speed op amp can be used with a single 5 V power supply without degrading the performance of the ADC. The buffer must have good settling characteristics and provide low total noise within the input bandwidth of the ADC.


Figure 12. PSRR vs. Frequency

## POWER DISSIPATION

In impulse mode, the ADC automatically reduces its power consumption at the end of each conversion phase. During the acquisition phase, the operating currents are very low, which allows a significant power savings when the conversion rate is reduced, as shown in Figure 13. This feature makes the ADC ideal for very low power battery applications.
This does not take into account the power, if any, dissipated by the input resistive scaler, which depends on the input voltage range used and the analog input voltage even in power-down mode. There is no power dissipated when the 0 V to 2.5 V is used or when both the analog input voltage is 0 V and a unipolar range, 0 V to 5 V or 0 V to 10 V , is used.
It should be noted that the digital interface remains active even during the acquisition phase. To reduce the operating digital supply currents even further, the digital inputs need to be driven close to the power rails (i.e., DVDD and DGND) and OVDD should not exceed DVDD by more than 0.3 V .
 initiates conve siok. Once initiated, ixcanno be restaryed or aborted, even bye the power-down input PD, unti the conversion is complete. The CNVST signaxeperdtes indep\&ndently o $\overline{\mathrm{CS}} \mathrm{ADC}$ and $\overline{\mathrm{RD}}$ signals.


Figure 14. Basic Conversion Timing
In impulse mode, conversions can be automatically initiated. If CNVST is held low when BUSY is low, the ADC controls the acquisition phase and then automatically initiates a new conversion. By keeping CNVST low, the ADC keeps the conversion process running by itself. It should be noted that the analog input has to be settled when BUSY goes low. Also, at power-up, CNVST should be brought low once to initiate the conversion process. In this mode, the ADC could sometimes run slightly faster than the guaranteed limits in the impulse mode of 666 kSPS. This feature does not exist in warp or normal modes.
Although $\overline{\text { CNVST }}$ is a digital signal, it should be designed with special care with fast, clean edges, and levels with minimum overshoot and undershoot or ringing. It is a good thing to shield the CNVST trace with ground and also to add a low value serial resistor (i.e., $50 \Omega$ ) termination close to the output of the component that drives this line.

For applications where the SNR is critical, $\overline{\text { CNVST }}$ signal should have a very low jitter. One way to achieve that is to use a dedicated oscillator for CNVST generation, or at least to clock it with a high frequency low jitter clock.


Figure 15. RESET Timing

## DLGITAL INTEREACE

The ADC has a versatile diginterface; it can be interfaced with he host system py ufing cither a seriater parallel interface. The serial interface if muttiplexed on the pprallel date pus. The ADC dightal interface alsonaccommpdates both 3 V orf y logic by simply connecting the OVDD supply pin of the ADC to the host system interface dgital supply Finally, by asing the OB/2Cinput pin, both straight binaryer two complement coding cap be usea. The two signals, $\overline{\mathrm{CS}} \mathrm{ADC}$ and $\overline{\mathrm{R}}$, dontrol the interface. When at least one of these signals is high, the interfuce outputs are in high impedance. Usually, $\overline{\text { CS_ADC }}$ allows the selectionfeach ADC in multicircuit applications and is held low in a single ADC design. $\overline{\mathrm{RD}}$ is generally used to enable the conversion result on the data bus.


Figure 16. Master Parallel Data Timing for Reading (Continuous Read)

## AD15700

## PARALLEL INTERFACE

The ADC is configured to use the parallel interface when the SER $\sqrt{\text { PAR }}$ is held low. The data can be read either after each conversion, which is during the next acquisition phase, or during the following conversion as shown, respectively, in Figures 18 and 19. When the data is read during the conversion, however, it is recommended that it be read only during the first half of the conversion phase. That avoids any potential feedthrough between voltage transients on the digital interface and the most critical analog conversion circuitry.


Figure 17. Slave Parallel Data Timing for Reading (Read after Convert)


Figure 18. Slave Parallel Data Timing for Reading (Read during Convert)
The BYTESWAP pin allows a glueless interface to an 8-bit bus. As shown in Figure 19, the LSB byte is output on D[7:0] and the MSB is output on $\mathrm{D}[15: 8$ ] when BYTESWAP is low. When BYTESWAP is high, the LSB and MSB are swapped and the LSB is output on $\mathrm{D}[15: 8$ ] and the MSB is output on $\mathrm{D}[7: 0]$. By connecting BYTESWAP to an address line, the 16 data bits can be read in two bytes on either $\mathrm{D}[15: 8]$ or $\mathrm{D}[7: 0]$.


Figure 19. 8-Bit Parallel Interface

## SERIAL INTERFACE

The ADC is configured to use the serial interface when the SER $\overline{\text { PAR }}$ is held high. The ADC outputs 16 bits of data, MSB first, on the SDOUT pin. This data is synchronized with the 16 clock pulses provided on the SCLK pin. The output data is yalid on both the rising and falling edge of the data clock.

## MASTERSERIAL INTERFACE

In ern al lock
The $2 D C$ is configure to torate ond the serial data docl. SCLK when th EXT/INT pin is held low. Itato generates a SYND signal to in dicate to the host when/the serialda da is vatid The seriat otock SCLK ond the SYNC signal can be infertectif desired. Depending on kDC/SDIN input. the data car be cead after each conversion during convers on. Figures 20 and 21 show the detailed timing diagrants of these troo modes.
Usually, because the ADC is used with a fast throughput, the mode master read during conversion is the most recommended serial mode when it can be used.
In read during conversion mode, the serial clock and data toggle at appropriate instants, which minimizes potential feedthrough between digital activity and the critical conversion decisions.
In read after conversion mode, it should be noted that unlike in other modes, the signal BUSY returns low after the 16 data bits are pulsed out and not at the end of the conversion phase, which results in a longer BUSY width.

## SLAVE SERIAL INTERFACE

## External Clock

The ADC is configured to accept an externally supplied serial data clock on the $\overline{\mathrm{SCLK}}$ pin when the EXT//INT pin is held high. In this mode, several methods can be used to read the data. The external serial clock is gated by $\overline{\mathrm{CS}}$ _ADC and the data are output when both $\overline{\mathrm{CS}} \mathrm{ADC}$ and $\overline{\mathrm{RD}}$ are low. Thus, depending on $\overline{\mathrm{CS}} \mathrm{ADC}$, the data can be read after each conversion or during the following conversion. The external clock can be either a continuous or discontinuous clock. A discontinuous clock can be either normally high or normally low when inactive. Figure 22 and Figure 24 show the detailed timing diagrams of these methods.


Figure 21. Master Serial Data Timing for Reading (Read Previous Conversion during Convert)


Figure 22. Slave Serial Data Timing for Reading (Read after Convert)

While the ADC is performing a bit decision, it is important that voltage transients not occur on digital input/output pins or degradation of the conversion result could occur. This is particularly important during the second half of the conversion phase because the ADC provides error correction circuitry that can correct for an improper bit decision made during the first half of the conversion phase. For this reason, it is recommended that when an external clock is being provided, it is a discontinuous clock that is toggling only when BUSY is low or, more importantly, that it does not transition during the latter half of BUSY high.
External Discontinuous Clock Data Read after Conversion Though the maximum throughput cannot be achieved using this mode, it is the most recommended of the serial slave modes. Figure 22 shows the detailed timing diagrams of this method. After a conversion is complete, indicated by BUSY returning low, the resytor this \&onverpion can be read while both $\overline{\mathrm{CS}} \mathrm{ADC}$ and PD \&re low. The data is shifted ow, MSB first, with 16 clock pulses and is valid on potl the rising and fallingedge of the clock. Ampng the ad Jantages of this method is hat the connersion perfornhance is no degrad d bpcause there are no voltage transientson the digital inter ace quripg the connersion process. Andthe adyantage is to be able te readthedata at any speod up io $40 \mathrm{M} / \mathrm{zz}$, which accommodates botb slow digital kost intgrfage end/the fastest serial reading.
Finally, in this mode only, the ADC provides a daisy-chdin feture using the RDC/SDIN input pin for cascading multiple conterters together. This feature is useful for reducing component count and wiring connections when desired as, for instance, in isolated multiconverter applications.
An example of the concatenation of two devices is shown in Figure 23. Simultaneous sampling is possible by using a common $\overline{\text { CNVST }}$ signal. It should be noted that the RDC/SDIN input is latched on the opposite edge of SCLK of the one used to shift out the data on SDOUT. Therefore, the MSB of the "upstream" converter just follows the LSB of the "downstream" converter on the next SCLK cycle.


Figure 23. Two AD15700s in a Daisy-Chain Configuration

## External Clock Data Read during Conversion

Figure 24 shows the detailed timing diagrams of this method. During a conversion, while both $\overline{\mathrm{CS}} \mathrm{ADC}$ and $\overline{\mathrm{RD}}$ are low, the result of the previous conversion can be read. The data is shifted qut, MSB first, with 16 clock pulses and is valid on both the rising and falling edge of the clock. The 16 bits have to be read before the cupren conversion jomplete. If that is not done, RDERROR is pulked high and can be used to interrupt the host interface to prevent incomplete dfta peading. The ee is no daisv-chain feature In this nhode and RDC/SDIN input shoutiql alyays Be either To reduc perf orn and degradation due to digital a\&tivity, a fast discontinuous clock of at least 85 MHz whon impulse mode is used, and 32 MHz when normed or 40 MHz when warp mode is used, is recommended to ensure that all bits are rea during the first half of the conversion phase. It is also possible to begint to read the data after conversion and continue to read the last bits even after a new conversion has been initiated. That allows the use of a slower clock speed like 18 MHz in impulse mode, 21 MHz in normal mode, and 26 MHz in warp mode.


Figure 24. Slave Serial Data Timing for Reading (Read Previous Conversion during Convert)

## MICROPROCESSOR INTERFACING

The ADC is ideally suited for traditional dc measurement applications supporting a microprocessor, and ac signal processing applications interfacing to a digital signal processor. The ADC is designed to interface either with a parallel 8 -bit or 16 -bit wide interface or with a general-purpose serial port or I/O ports on a microcontroller. A variety of external buffers can be used with the ADC to prevent digital noise from coupling into the ADC. The following sections illustrate the use of the ADC with an SPI equipped microcontroller, the ADSP-21065L and ADSP-218x signal processors.

## SPI Interface (MC68HC11)

Figure 25 shows an interface diagram between the ADC and an SPI equipped microcontroller like the MC68HC11. To accommodate the slowe speed of the microcontroller, the ADC acts as a slave device and data mpread after conversion. This mode also allows the dalsy-chain featurd The convert command could be initiated in response to an internal timer interupt. The reading of output data, one byte atane, if necegary could be initiated in raspense to the end fof convo sion signsl (BUSY poing fow) using en intertapt life o the midroy ontroder. The serral peripherat interface (SPI) on the 68HCN is contigure fo matter mode $(\mathrm{MSTR})=1$, Clock Relarity Bit (COL) $=0$, Clock/Phase Bit $(\mathrm{CPHA})=1$, and SPI Interrupt 女nable (SPIE) $=1$ by writing to the SPI Control Register (SPCR). The IRQ is donfsured or edge-sensitive-only operation (IRQE $=1$ in OPTION register).


Figure 25. Interfacing the AD15700 to SPI Interface

## ADSP-21065L in Master Serial Interface

As shown in Figure 26, AD15700s can be interfaced to the ADSP-21065L using the serial interface in master mode without any glue logic required. This mode combines the advantages of reducing the wire connections and the ability to read the data during or after conversion at maximum speed transfer (DIVSCLK[0:1] both low).
The ADC is configured for the internal clock mode (EXT/ $\overline{\mathrm{INT}}$ low) and acts, therefore, as the master device. The convert command can be generated by either an external low jitter oscillator or, as shown, by a FLAG output of the ADSP-21065L or by a frame output TFS of one serial port of the ADSP-21065L, which can be used like a timer. The serial port on the ADSP-21065L is configured for external clock (IRFS $=0$ ), rising edge active (CKRE =1), external late framed sync signals (IRFS $=0$, LAFS $=1$, RFSR = 1), and active high (LRFS = 0). The serial port of the ADSP-21065L is configured by writing to its receive control register (SRCTL) -see the ADSP-2106x SHARC User's Manual. Because the serial port within the ADSP-21065L will be seeing a discontinuous clock, an initial word reading has to be done after the ADSP-21065L has been reset to ensure that the serial port is properly synchronized to this clock during each following data read operation.


Figure 26. Interfacing to the ADSP-21065L Using the Serial Master Mode

## APPLICATION HINTS

## Layout

The AD15700's ADC has very good immunity to noise on the power supplies as can be seen in Figure 12. However, care should still be taken with regard to grounding layout.
The printed circuit board that houses the AD15700 should be designed so the analog and digital sections are separated and confined to certain areas of the board. This facilitates the use of grpund planes that can be easily separated. Digital and analog gound planes sh uld ioined in only one place, preferably Inderneath the AD1p700, or a least as close as possible to the AD 5700. If the AD 15700 is in system multiple devices req Aire analog-t $\phi$-digital ground conneqtions, the cornection should stilte made at on poringl, a star gropund point, which should be cablished as llose as possible to the AD15700. It is recommended to avoid running digital lines under the device arthese will couple noise onto the die. Th $\&$ anflog groand prameshald be allowed to run under the switching/signals yke ©NVST or clocks should be shielded with digital ground avoid ractiating noise to other sections of the board, and should never rear analog signal paths. Crossover of digital and analog signals should be avoided. Traces on different but close layers of the board should run at right angles to each other. This will reduce the effect of feedthrough through the board.
The power supply lines to the AD15700 should use as large a trace as possible to provide low impedance paths and reduce the effect of glitches on the power supply lines. Good decoupling is also important to lower the supply impedance presented to the AD15700 and reduce the magnitude of the supply spikes. Decoupling ceramic capacitors, typically 100 nF , should be placed on each power supply pin, AVDD, DVDD, and OVDD, close to and ideally right up against these pins and their corresponding ground pins. Additionally, low ESR 10 nF capacitors should be located in the vicinity of the ADC to further reduce low frequency ripple.
The DVDD supply of the AD15700 can be either a separate supply or come from the analog supply, AVDD, or from the digital interface supply, OVDD. When the system digital supply is noisy, or fast switching digital signals are present, it is recommended if no separate supply is available to connect the DVDD digital supply to the analog supply AVDD through an RC filter, and connect the system supply to the interface digital supply OVDD and the remaining digital circuitry. When DVDD is powered from the system supply, it is useful to insert a bead to further reduce high frequency spikes.

## AD15700

The AD15700's ADC has five different ground pins: INGND, REFGND, AGND, DGND, and OGND. INGND is used to sense the analog input signal. REFGND senses the reference voltage and should be a low impedance return to the reference because it carries pulsed currents. AGND is the ground to which most internal ADC analog signals are referenced. This ground must be connected with the least resistance to the analog ground plane. DGND must be tied to the analog or digital ground plane depending on the configuration. OGND is connected to the digital system ground.
The layout of the decoupling of the reference voltage is important. The decoupling capacitor should be close to the ADC and connected with short and large traces to minimize parasitic inductances.


Figure 27. Digital Feedthrough


Figure 28. Digital-to-Analog Glitch Impulse


Figure 29. Large Signal Settling Time


Figure 30. Small Signal Settling Time

## DAC Circuit Information

The DAC is a single 14-bit, serial input voltage output. It operates from a single supply ranging from 2.7 V to 5 V and consumes typically 300 mA with a supply of 5 V . Data is written to the devices in a 14 -bit word format, via a 3 - or 4 -wire serial interfage To ensure a known power-up state, the parts were design d whth a power-on reset function. In unipolar mode, the oupup is neset
Degital-to-Analog S\&ction the DAC architecture consists of two matched DAC sections. A simphfied circuit diagram is shpown in Higure $31 . T$ he four
M\&Bs of the 14 -bit data-word ate decoded to drive 15 syrutes, E1 to EIS. Each of theswitches conn $\neq$ cts one of 15 matched resistors to either AGND or VREEF. The re naining 10 pits of the data-word drive switches 50 to S9 of a 10 -bit yoltafe mode R-2R ladder network.


Figure 31. DAC Architecture
With this type of DAC configuration, the output impedance is independent of code, while the input impedance seen by the reference is heavily code dependent. The output voltage is dependent on the reference voltage as shown in the following equation.

$$
V_{O U T}=\frac{V_{R E F} \times D}{2^{N}}
$$

where $D$ is the decimal data-word loaded to the DAC register and $N$ is the resolution of the DAC. For a reference of 2.5 V , the equation simplifies to the following.

$$
V_{\text {OUT }}=\frac{2.5 \times D}{16,384}
$$

giving a $V_{\text {OUT }}$ of 1.25 V with midscale loaded, and 2.5 V with full scale loaded to the DAC.

The LSB size is $\mathrm{V}_{\mathrm{REF}} / 16,384$.

## Serial Interface

The DAC is controlled by a versatile 3-wire serial interface that operates at clock rates up to 25 MHz and is compatible with SPI, QSPI, MICROWIRE, and DSP interface standards. The timing diagram can be seen in Figure 3. Input data is framed by the chip select input, $\overline{\text { CS_DAC. After a high to low transition on }}$ $\overline{\text { CS_DAC, data is shifted synchronously and latched into the }}$ input register on the rising edge of the serial clock, SCLK. Data is loaded MSB first in 14-bit words. After 14 data bits have been loaded into the serial input register, a low to high transition on $\overline{\text { CS_DAC }}$ transfers the contents of the shift register to the DAC. Data can only be loaded to the part while $\overline{\mathrm{CS}}$-DAC is low.

## Unipolar Output Operation

The DAC is capable of driving unbuffered loads of $60 \mathrm{k} \Omega$. Unbuffered operation results in low supply current, typically 380 mA and a loy offset error. The DAC provides a unipolar putput suling ranfing from O to VREF. Figure 32 shows a (typical unipolar qutp/at volyage circuit. The code table for this


Figure 32. Unipolar Output
Table IV. Unipolar Code Table

## DAC Latch Contents

MSB	LSB	Analog Output
1111111111	1111	VREF X (16383/16384)
1000000000	0000	VREF X $(8192 / 16384)=1 / 2 \mathrm{VREF}$
0000000000	0001	VREF X (1/16384)
0000000000		0 V

Assuming a perfect reference, the worst-case output voltage may be calculated from the following equation.

$$
V_{O U T-U N I}=\frac{D}{2^{14}} \times\left(V_{R E F}+V_{G E}\right)+V_{Z S E}+I N L
$$

where:
$V_{\text {OUT-UNI }}=$ Unipolar Mode Worst-Case Output
$D=$ Decimal Code Loaded to DAC
$V_{R E F}=$ Reference Voltage Applied to Part
$V_{G E}=$ Gain Error in Volts
$V_{Z S E}=$ Zero Scale Error in Volts
$I N L=$ Integral Nonlinearity in Volts

## Output Amplifier Selection

In a single-supply application, selection of a suitable op amp may be more difficult as the output swing of the amplifier does not usually include the negative rail, in this case AGND. This can result in some degradation of the specified performance unless the application does not use codes near zero.
The selected op amp needs to have very low offset voltage (the DAC LSB is $152 \mu \mathrm{~V}$ with a 2.5 V reference) to eliminate the need for output offset trims. Input bias current should also be very low as the bias current multiplied by the DAC output impedance (approximately $6 \mathrm{k} \Omega$ ) will add to the zero code error. Rail-to-rail input and output performance is required. For fast settling, the slew rate of the op amp should not impede the settling time of the DAC. Output impedance of the DAC is constant and code independent, but in order to minimize gain errors, the input impedance of the output amplifier should be as high as possible. The amplifier should also have a 3 dB bandwidth of 1 MHz or greater. The amplifier adds another time constant to the system, thus increasing the settling time of the output. A higher 3 dB amplifier bandwidth results in a faster effective settling time of the combined DAC and amplifier.
Force Sense Buffer Amplifier Selection
These amplifiers can be singte-Supply or dual-supply, low noise amplifiers. A lov ou putimped ance athigh frequencies is preferred to be abl to hande dynamic cqurrents of up to $\pm 20 \mathrm{~mA}$.
Reference and Grfund
As the inpyt inpedance is code dependent, the kefeence pind should be driken from a ates with a voltage refere rangipg fiom 2 V to DD. Alth $\mathrm{ta}_{\mathrm{d}}$ DAC's full-scale output voltage is references below 2 V will result in reduced accuracy. Tate IV outlines the analog output voltage for particular digitates.

## Power-On Reset

The DAC has a power-on reset function to ensure the output is at a known state upon power-up. On power-up, the DAC register contains all zeros, until data is loaded from the serial register. However, the serial register is not cleared on power-up, so its contents are undefined. When loading data initially to the DAC, 14 bits or more should be loaded to prevent erroneous data appearing on the output. If more than 14 bits are loaded, only the last 14 are kept, and if fewer than 14 are loaded, bits will remain from the previous word. If the DAC needs to be interfaced with data shorter than 14 bits, the data should be padded with zeros at the LSBs.

## Power Supply and Reference Bypassing

For accurate high resolution performance, it is recommended that the reference and supply pins be bypassed with a 10 nF tantalum capacitor in parallel with a 0.1 nF ceramic capacitor.

## MICROPROCESSOR INTERFACING

Microprocessor interfacing to the DAC is via a serial bus that uses standard protocol compatible with DSP processors and microcontrollers. The communications channel requires a 3-wire interface consisting of a clock signal, a data signal, and a synchronization signal. The DAC requires a 14-bit data-word with data valid on the rising edge of SCLK. The DAC update may be done automatically when all the data is clocked in.

## ADSP-2101/ADSP-2103 to DAC Interface

Figure 33 shows a serial interface between the DAC and the ADSP-2101/ADSP-2103. The ADSP-2101/ADSP-2103 should be set to operate in the SPORT (Serial Port) Transmit Alternate Framing Mode. The ADSP-2101/ADSP-2103 is programmed through the SPORT Control Register and should be configured as follows: internal clock operation, active low framing, 16-bit word length. The first two bits are DON'T CARE as the DAC will keep the last 14 bits. Transmission is initiated by writing a word to the Tx Register after the SPORT has been enabled. Because of the edge-triggered difference, an inverter is required at the SCLKs between the DSP and the DAC.


Figute 34 sholvs a eriel interface petwe the $Q A C$ an the $68 \mathrm{HC} 11 / 68 \mathrm{~L} 11 \mathrm{~m}$ crocontroller. SC \& the $68 \mathrm{HE} 11 / 68 \mathrm{~L} / 1$ drives the SCLK of the DAG, thile the MOSI putput drives the serial data lines SDIN. CS signal is drive from one of the por lines. The $68 \mathrm{HC} 11 / 68 \mathrm{~L} 11$ is configured for master mode; MSTR $=1$. $\mathrm{CPOL}=0$, and $\mathrm{CPHA}=0$. Data appearing on the MQSI output is valid on the rising edge of SCK.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 34. 68HC11/68L11 to DAC Interface

## MICROWIRE to DAC Interface

Figure 35 shows an interface between the DAC and any MICROWIRE compatible device. Serial data is shifted out on the falling edge of the serial clock and into the DAC on the rising edge of the serial clock. No glue logic is required as the DAC clocks data into the input shift register on the rising edge.


Figure 35. MICROWIRE to DAC Interface

## 80C51/80L51 to DAC Interface

A serial interface between the DAC and the 80C51/80L51 microcontroller is shown in Figure 36. TxD of the microcontroller drives the SCLK of the DAC, while RxD drives the serial data line of the DAC. P3.3 is a bit programmable pin on the serial port that is used to drive $\overline{\mathrm{CS}}$ _DAC.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 36. 80C51/80L51 to DAC Interface
The 80C51/80L51 provides the LSB first, while the DAC expects the MSB of the 14 -bit word first. Care should be taken to ensure the transmit routine takes this into account. Usually it can be done through software by shifting out and accumulating the bits in the correct order before inputting to the DAC. Also, 80C51 outputs 2-byte word/16-bit data. Thus the first two bits, after rearrangement, should be DON'T CARE as they will be dropped from the DAC's 14-bit word.
When data is to be transmitted to the DAC, P3.3 is taken low. Data on RxD is valid on the falling edge of TxD , so the clock must be inverted as the DAC clocks data into the input shift register on the rising edge of the serial clock. The 80C51/80L51 transmits its data in 8-bit bytes with only eight falling clock Edges ofcurring in the transmit cycle. As the DAC requires a 14 -bit word, P3. 3 (or any one of the other programmable bits) is the CS DAC input igmat to the DAC, so P3.3 should be brpuqht 10 w at the befinning of the 1 q -bit write cycle $2 \times 8$-bit yords and held low until the 16 -bit $2 \times 8$ cycle is completed. After that, P3.3 is bought higk again and the matro toads to the DAC. Again, the fifst bils, after wearranging, shopld be DONTCARE

## APPLICATIONS

## Optocoupler Interface



The digital inputs of the DAC are Schmitt-triggered, so they can accept slow transitions on the digital input lines. This makes these parts ideal for industrial applications where it may be necessary for the DAC to be isolated from the controller via optocouplers. Figure 37 illustrates such an interface.


Figure 37. DAC in an Optocoupler Interface

## Decoding Multiple DACs

The $\overline{\text { CS_DAC }}$ pin of the DAC can be used to select one of a number of DACs. All devices receive the same serial clock and serial data, but only one device will receive the $\overline{\text { CS_DAC }}$ signal at any one time. The DAC addressed will be determined by the decoder. There will be some digital feedthrough from the digital input lines. Using a burst clock will minimize the effects of digital feedthrough on the analog signal channels. Figure 38 shows a typical circuit.


Figure 38. Addressing Multiple DACs

## AMPLIFIER THEORY OF OPERATION

The amplifiers are single and dual versions of high speed, low power voltage feedback amplifiers featuring an innovative architecture that maximizes the dynamic range capability on the inputs and outputs. Linear input common-mode range exceeds either supply voltage by 200 mV , and the amplifiers show no phase reversal up to 500 mV beyond supply. The output swings to within 20 mV of either supply when driving a light load; 300 mV when driving up to 5 mA .
The amplifier provides an impressive 80 MHz bandwidth when used as a follower and $30 \mathrm{~V} / \mathrm{ms}$ slew rate at only 800 mA supply current. Careful design allows the amplifier to operate with a supply voltage as low as 2.7 V .

## Input Stage Operation

A simplified schematic of the input stage appears in Figure 39. For common-mode voltages up to 1.1 V within the positive supply, ( 0 V to 3.9 V on a single 5 V supply) tail current I 2 flows through the PNP differential pair, Q13 and Q17. Q5 is cut off; no bias current is routed to the parallel NPN differential pair Q2 and Q3. As the common-mode voltage is driven within 1.1 V of the positive supply Q5 turns on and routes the tail current away from the PNP pair apd to the NRN pair. During this transition region, the anpl.fier's input uurrent withchange magnitude and direction. Reuping the same tai current en ures the input stage has the same transcondtrance (which dytermines hamplifier's gailo and bandyidth in botl regions of operation.
switching yo the pair as the cy mmon-mode veltage is driven beyond 1 V withirithe positize supply all pws the plifier to provide useful operation for sigrals at either end of the sypply voltage range and eliminates the pssibility of phose reversal for input signals up to 500 mV beyond either poker supply. Qffset voltage will also change to reflect the offset of the inpualr in control. The transition region is small, on the order of 180 mV . These sudden changes in the dc parameters of the input stage can produce glitches that will adversely affect distortion.


Figure 39. Simplified Schematic of Input Stage

## Overdriving the Input Stage

Sustained input differential voltages greater than 3.4 V should be avoided as the input transistors may be damaged. Input clamp diodes are recommended if the possibility of this condition exists.
The voltages at the collectors of the input pairs are set to 200 mV from the power supply rails. This allows the amplifier to remain in linear operation for input voltages up to 500 mV beyond the supply voltages. Driving the input common-mode voltage beyond that point will forward bias the collector junction of the input transistor, resulting in phase reversal. Sustaining this condition for any length of time should be avoided as it is easy to exceed the maximum allowed input differential voltage when the amplifier is in phase reversal.
Output Stage, Open-Loop Gain, and Distortion Versus Clyarance from Power Supply
The mplifie feafures a ratiterail output stage. The output fransistors operate as compon emiter amplifiers, providing the


Figure 40. Output Stage Simplified Schematic
The output voltage limit depends on how much current the output transistors are required to source or sink. For applications with very low drive requirements (a unity gain follower driving another amplifier input, for instance), the amplifier typically swings within 20 mV of either voltage supply. As the required current load increases, the saturation output voltage will increase linearly as $\mathrm{I}_{\text {LOAD }} \times \mathrm{R}_{\mathrm{C}}$, where $\mathrm{I}_{\text {LOAD }}$ is the required load current and $\mathrm{R}_{\mathrm{C}}$ is the output transistor collector resistance. For the amplifier, the collector resistances for both output transistors are typically $25 \Omega$. As the current load exceeds the rated output current of 15 mA , the amount of base drive current required to drive the output transistor into saturation will reach its limit, and the amplifier's output swing will rapidly decrease.
The open-loop gain of the amplifier decreases approximately linearly with load resistance and also depends on the output voltage. Open-loop gain stays constant to within 250 mV of the positive power supply, 150 mV of the negative power supply and then decreases as the output transistors are driven further into saturation.
The distortion performance of the amplifiers differs from conventional amplifiers. Typically an amplifier's distortion performance degrades as the output voltage amplitude increases.

Used as a unity gain follower, the amplifier output will exhibit more distortion in the peak output voltage region around $\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}$. This unusual distortion characteristic is caused by the input stage architecture and is discussed in detail in the section covering Input Stage Operation.

## Output Overdrive Recovery

Output overdrive of an amplifier occurs when the amplifier attempts to drive the output voltage to a level outside its normal range. After the overdrive condition is removed, the amplifier must recover to normal operation in a reasonable amount of time. As shown in Figure 41, the amplifier recovers within 100 ns from negative overdrive and within 80 ns from positive overdrive.
 Capacitive loads interact andith ampifier's output impedance to create an extra delay in the feedbacklpath. This pedukes circuit stability and can cause unwanted ringing and oscillation. A given value of capacitance causes much less ringing when the amplifie. is used with a higher noise gain.

The capacitive load drive of the amplifier can be increased by adding a low valued resistor in series with the capacitive load. Introducing a series resistor tends to isolate the capacitive load from the feedback loop, thereby diminishing its influence. Figure 42 shows the effect of a series resistor on capacitive drive for varying voltage gains. As the closed-loop gain is increased, the larger phase margin allows for larger capacitive loads with less overshoot. Adding a series resistor at lower closed-loop gains accomplishes the same effect. For large capacitive loads, the frequency response of the amplifier will be dominated by the roll-off of the series resistor and capacitive load.


Figure 42. Capacitive Load Drive vs. Closed-Loop Gain

## High Performance Single-Supply Line Driver

Even though the amplifier swings close to both rails, the amplifier has optimum distortion performance when the signal has a commonmode level halfway between the supplies and when there is about 500 mV of headroom to each rail. If low distortion is required in single-supply applications for signals that swing close to ground, an emitter follower circuit can be used at the amplifier output.


Figure 44. Output Signal Swing of Low Distortion Line Driver at 500 kHz


Figure 45. THD of Low Distortion Line Driver at 500 kHz

Figure 43 shows the amplifier configured as a single-supply gain-of-two line driver. With the output driving a back terminated $50 \Omega$ line, the overall gain from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ is unity. In addition to minimizing reflections, the $50 \Omega$ back termination resistor protects the transistor from damage if the cable is short circuited. The emitter follower, which is inside the feedback loop, ensures that the output voltage from the amplifier stays about 700 mV above ground. Using this circuit, very low distortion is attainable even when the output signal swings to within 50 mV of ground. The circuit was tested at 500 kHz and 2 MHz . Figures 44 and 45 show the output signal swing and frequency spectrum at 500 kHz . At this frequency, the output signal (at $\mathrm{V}_{\text {OUT }}$ ), which has a peak-to-peak swing of $1.95 \mathrm{~V}(50 \mathrm{mV}$ to 2 V$)$, has a THD of $-68 \mathrm{~dB}(\mathrm{SFDR}=-77 \mathrm{~dB})$.
Figures 46 and 47 show the output signal swing and frequency spectrum at 2 MHz . As expected, there is some degradation in signal quality at the higher frequency. When the output signal has a peak-to-peak swing of 1.45 V (swinging from 50 mV to 1.5 V ), the THD is $-55 \mathrm{~dB}(\mathrm{SFDR}=-60 \mathrm{~dB})$. This circuit could also be used to drive the analog input of a single-supply high speed ADC whose input voltage range is referenced to ground (e.g., 0 V to 2 V or 0 V to 4 V ). In this case, a back termination resistor is not necessary (assumfing a shout physical distance from transistor to AD directly to the A DCCinput. The adable outpuy voltage swing
of the circuit wpuld, therefore, be dopblet.


Figure 46. Output Signal Swing of Low Distortion Line Driver at 2 MHz


Figure 47. THD of Low Distortion Line Driver at 2 MHz

AD15700 PINOUT
(TOP VIEW)


## OUTLINE DIMENSIONS

144-Lead Chip Scale Ball Grid Array [CSPBGA]
(BC-144)
Dimensions shown in millimeters


## AD15700 <br> Revision History

LocationPage2/03-Data Sheet changed from REV. 0 to REV. A.
Edit to FUNCTIONAL BLOCK DIAGRAM ..... 1
Edits to AMPLIFIER ELECTRICAL CHARACTERISTICS ..... 9
Edit to ADC PIN FUNCTION DESCRIPTIONS ..... 11
Edit to Figure 32 ..... 37
Changes to OUTLINE DIMENSIONS ..... 43



[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

[^1]:    *Reference input resistance is code-dependent, minimum at $2555_{\mathrm{H}}$.

[^2]:    Specifications subject to change without notice.

[^3]:    NOTES
    ${ }^{1}$ This is also the code for an overrange analog input.
    ${ }^{2}$ This is also the code for an underrange analog input.

