
General Description

The DS1080CL is a low-jitter, crystal-based clock generator with an integrated phase-locked loop (PLL) to generate spread-spectrum clock outputs from 8MHz to 64MHz. The device is pin programmable to select the clock multiplier rate as well as the dither magnitude. The DS1080CL has a spread-spectrum disable mode and a power-down mode to conserve power.

App	lications
- PP	

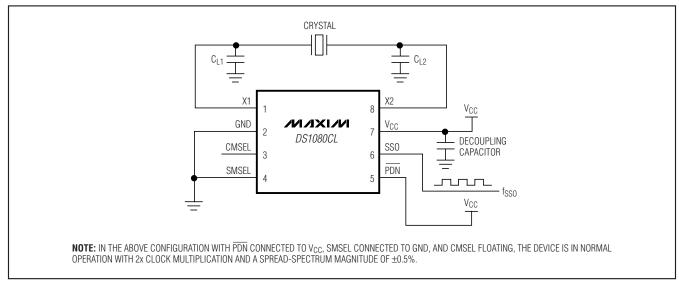
Automotive	Copiers
Cable Modems	Infotainment
Cell Phones	PCs
Computer Peripherals	Printers

Pin Configuration

Features

DS1080CI

- Generates Spread-Spectrum Clocks from 8MHz to 64MHz
- Selectable Clock Multiplier Rates of 1x, 2x, and 4x
- Center Spread-Spectrum Dithering
- Selectable Spread-Spectrum Modulation Magnitudes of ±0.5%, ±1.0%, and ±1.5%
- Spread-Spectrum Disable Mode
- Low Cycle-to-Cycle Jitter
- Power-Down Mode with High-Impedance Output
- Low Cost
- Low-Power Consumption
- ♦ 3.0V to 3.6V Single-Supply Operation
- ♦ -40°C to +125°C Temperature Operation
- ♦ Small 8-Pin µSOP Package


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS1080CLU+	-40°C to +125°C	8 µSOP
DS1080CLU+T	-40°C to +125°C	8 µSOP

+Denotes a lead-free package.

T = Tape and reel.

Typical Operating Circuit

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

DS1080CL

ABSOLUTE MAXIMUM RATINGS

Voltage Range on V_{CC} Relative to GND-0.5V to +3.63V Voltage Range on Any Pin Relative

 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

 $(T_A = -40^{\circ}C \text{ to } + 125^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage	Vcc	(Note 1)	3.0		3.6	V
Input Logic 1	VIH		0.8 x V _{CC}		V _{CC} + 0.3	V
Input Logic 0	VIL		GND - 0.3		0.2 x V _{CC}	V
Input Logic Float	lıF	0V < V _{IN} < V _{CC} (Note 2)			±1	μA
Input Leakage	١ _{١L}	0V < V _{IN} < V _{CC} (Note 3)			±80	μA
SSO Load	Csso				15	рF
Crystal or Clock Input Frequency	fin		8		16	MHz
Crystal ESR	X _{ESR}				90	Ω
Clock Input Duty Cycle	FINDC		40		60	%
Crystal Parallel Load Capacitance	CL	(Note 4)			18	pF

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +3.6V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	ICC1	C _{SSO} = 15pF, SSO = 8MHz		7	12	mA
Power-Down Current	Iccq	$\overline{PDN} = GND$, all input pins floating			200	μA
Output Leakage (SSO)	loz	PDN = GND	-1		+1	μA
Low-Level Output Voltage (SSO)	V _{OL}	I _{OL} = 4mA			0.4	V
High-Level Output Voltage (SSO)	V _{OH}	I _{OH} = -4mA	2.4			V
Input Capacitance (X1/X2)	CIN	(Note 5)		5		pF

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0 \text{ to } +3.6 \text{V}, T_{A} = -40^{\circ}\text{C to } +125^{\circ}\text{C.})$

PARAMETER	SYMBOL	CONDI	MIN	ТҮР	MAX	UNITS	
SSO Duty Cycle	SSODC	Measured at V _{CC} /2		45		55	%
Rise Time	t _R	(Note 6)			1.6		ns
Fall Time	tF	(Note 6)			1.6		ns
Peak Cycle-to-Cycle Jitter	tj	f _{SSO} = 8MHz, T _A = -40°C to +85°C, 10,000 cycles (Note 5)			75		ps
Dower Lin Time	taoa	DDN pip (Note 7)	8MHz			20	
Power-Up Time	t _{POR}	PDN pin (Note 7)	16MHz			10	- ms
Power-Down Time	t <u>PDN</u>	PDN pin (Notes 8, 9)				100	ns
Dither Rate	f DITHER				f _{IN} /512		

Note 1: All voltages referenced to ground.

Note 2: Maximum source/sink current applied to input to be considered a float.

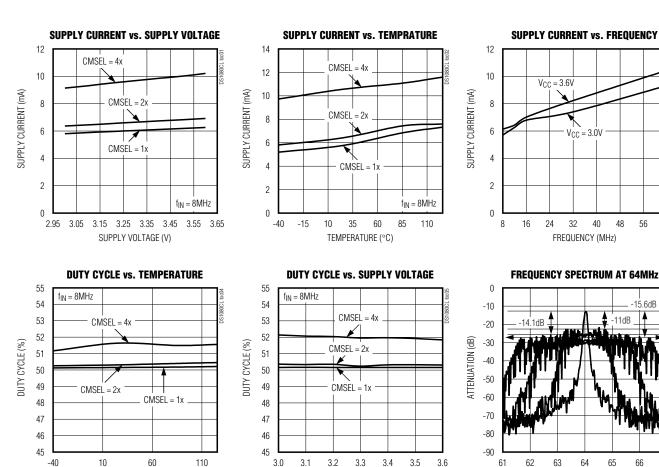
Note 3: Applicable to pins CMSEL, SMSEL, and PDN.

Note 4: See information about C_{L1} and C_{L2} in the Applications Information section.

Note 5: Not production tested.

Note 6: For 15pF load.

Note 7: Time between PDN deasserted to output active.


Note 8: Time between $\overline{\text{PDN}}$ asserted to output high impedance.

Note 9: Guaranteed by design.

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

TEMPERATURE (°C)

Typical Operating Characteristics

3.2

3.3

SUPPLY VOLTAGE (V)

3.4

3.5

61

62

63

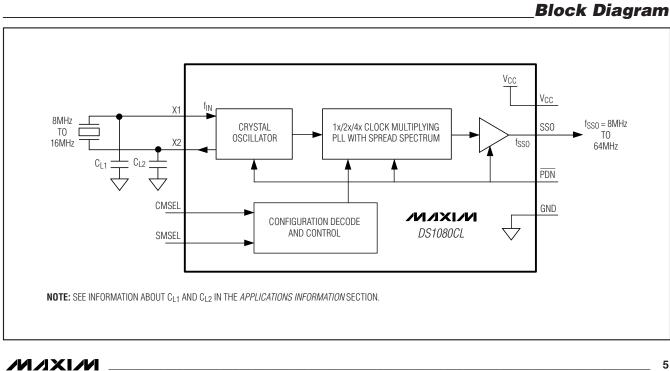
64

FREQUENCY (MHz)

65

66 67

3.0



64

4

Pin Description

PIN	NAME	FUNCTION
1	X1	Crystal Drive/Clock Input. A crystal with the proper loading capacitors is connected across X1 and X2. Instead of a crystal, a clock can be applied at the X1 input.
2	GND	Signal Ground
3	CMSEL	Clock Multiplier Select. Trilevel digital input. 0 = 1x Float = $2x$ 1 = 4x
4	SMSEL	Spread-Spectrum Magnitude Select. Trilevel digital input. $0 = \pm 0.5\%$ Float = $\pm 1.0\%$ $1 = \pm 1.5\%$
5	PDN	Power-Down/Spread-Spectrum Disable. Trilevel digital input. 0 = Power-Down/SSO High Impedance Float = Power-Up/Spread Spectrum Disabled 1 = Power-Up/Spread Spectrum Enabled
6	SSO	Spread-Spectrum Clock Multiplier Output. Outputs a 1x, 2x, or 4x spread-spectrum version of the crystal or clock applied at the X1/X2 pins.
7	Vcc	Supply Voltage
8	X2	Crystal Drive Output. A crystal with the proper loading capacitors is connected across X1 and X2. If a clock is connected to X1, then X2 should be left open circuit.

DS1080CL

Detailed Description

The DS1080CL is a crystal multiplier with center spread-spectrum capability. An 8MHz to 16MHz crystal is connected to the X1 and X2 pins. Alternately, an 8MHz to 16MHz clock can be applied to X1 in place of the crystal. In such applications, X2 would be left open circuit. Using the CMSEL input, the user selects whether the attached crystal or input clock is multiplied by 1, 2, or 4. The DS1080CL can generate spread-spectrum clocks from 8MHz to 64MHz.

The PLL can dither the output clock about its center frequency at a user-selectable magnitude. Using the SMSEL input, the user selects the dither magnitude. The PDN input can be used to place the device into a low-power standby mode where the SSO output is high impedance. If the PDN pin is floated, the SSO output is active but the spread-spectrum dithering is disabled. The spread-spectrum dither rate is fixed at fIN/512 to keep the dither rate above the audio frequency range. On power-up, the output clock (SSO) remains high impedance until the PLL reaches a stable frequency (fSSO) and dither (fDITHER). A power cycle is needed for the PLL whenever there is a change in input frequency, CMSEL, or SMSEL.

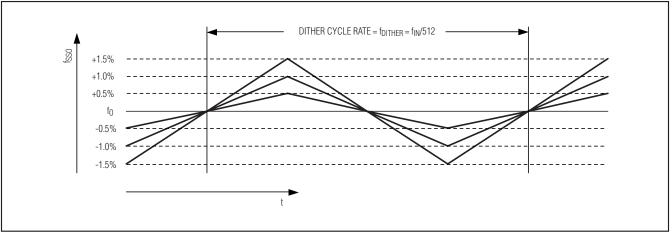


Figure 1. Spread-Spectrum Frequency Modulation

DS1080CL

Spread-Spectrum Crystal Multiplier

Applications Information

Crystal Selection

The DS1080CL requires a parallel resonating crystal operating in the fundamental mode, with an ESR of less than 90Ω . The crystal should be placed very close to the device to minimize excessive loading due to parasitic capacitances.

Oscillator Input

When driving the DS1080CL using an external oscillator clock, consider the input (X1) to be high impedance.

Crystal Capacitor Selection

The load capacitors C_{L1} and C_{L2} are selected based on the crystal specifications (from the data sheet of the crystal used). The crystal parallel load capacitance is calculated as follows:

$$C_{L} = \frac{C_{L1} \times C_{L2}}{C_{L1} + C_{L2}} + C_{IN}$$
(1)

For the DS1080CL use $C_{L1} = C_{L2} = C_{LX}$. In this case, the equation then reduces to:

$$C_{L} = \frac{C_{LX}}{2} + C_{IN}$$
 (2)

where $C_{L1} = C_{L2} = C_{LX}$.

Equation 2 is used to calculate the values of C_{L1} and C_{L2} based on values of C_L and C_{IN} noted in the electrical specifications.

Power-Supply Decoupling

To achieve best results, it is highly recommended that a decoupling capacitor is used on the IC power-supply pins. Typical values of decoupling capacitors are 0.001μ F and 0.1μ F. Use a high-quality, ceramic, surface-mount capacitor, and mount it as close as possible to the V_{CC} and GND pins of the IC to minimize lead inductance.

Layout Considerations

As noted earlier, the crystal should be placed very close to the device to minimize excessive loading due to parasitic capacitances. Care should also be taken to minimize loading on pins that could be floated as a programming option (SMSEL and CMSEL). Coupling on inputs due to clocks should be minimized.

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
8 µSOP	_	<u>21-0036</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

is a registered trademark of Maxim Integrated Products, Inc.

7