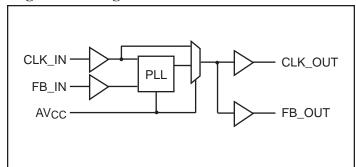


Phase-Locked Loop Clock Driver

Product Features

- High-Performance Phase-Locked-Loop Clock Distribution for Networking,
- Synchronous DRAM modules for server/workstation/ PC applications
- Allows Clock Input to have Spread Spectrum modulation for EMI reduction
- Zero Input-to-Output delay
- Low jitter: Cycle-to-Cycle jitter ±100ps max.
- On-chip series damping resistor at clock output drivers for low noise and EMI reduction
- Operates at 3.3V V_{CC}
- Wide range of Clock Frequencies up to 80 MHz
- Package (Pb-Free & Green): Plastic 8-pin SOIC Package (W)

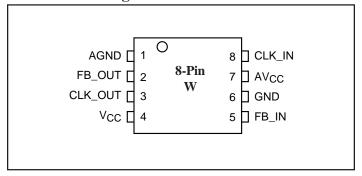

Product Description

The PI6C2502 features a low-skew, low-jitter, phase-locked loop (PLL) clock driver. By connecting the feedback FB_OUT output to the feedback FB_IN input, the propagation delay from the CLK_IN input to any clock output will be nearly zero.

Application

If a system designer needs more than 16 outputs with the features just described, using two or more zero-delay buffers such as PI6C2509Q, and PI6C2510Q, is likely to be impractical. The device-to-device skew introduced can significantly reduce the performance. Pericom recommends the use of a zero-delay buffer and an eighteen output non-zero-delay buffer. As shown in Figure 1, this combination produces a zero-delay buffer with all the signal characteristics of the original zero-delay buffer, but with as many outputs as the non-zero-delay buffer part. For example, when combined with an eighteen output non-zero delay buffer, a system designer can create a seventeen-output zero-delay buffer.

Logic Block Diagram



Feedback 18 Output Zero Delay CLK OUT Non-Zero Buffer 17 Delay PI6C2502 Buffer Reference Clock Signal

Figure 1. This Combination Provides Zero-Delay Between the Reference Clocks Signal and 17 Outputs

Product Pin Configuration

1

11/06/08

Pin Functions

Pin Name	Pin Number	Туре	Description
CLK_IN	8	I	Reference Clock input. CLK_IN allows spread spectrum clock input.
FB_IN	5	I	Feedback input. FB_IN provides the feedback signal to the internal PLL.
FB_OUT	2	О	Feedback output FB_OUT is dedicated for external feedback. FB_OUT has an embedded series-damping resistor of the same value as the clock outputs CLK_OUT.
CLK_OUT	3	0	Clock outputs. These outputs provide low-skew copies of CLK_IN. Each output has an embedded series-damping resistor.
AV _{CC}	7	Power	Analog power supply. AV_{CC} can be also used to bypass the PLL for test purposes. When AV_{CC} is strapped to ground, PLL is bypassed and CLK_IN is buffered directly to the device outputs.
AGND	1	Ground	Analog ground. AGND provides the ground reference for the analog circuitry.
V _{CC}	4	Power	Power supply.
GND	6	Ground	Ground.

DC Specifications (Absolute maximum ratings over operating free-air temperature range)

Symbol	Parameter	Min.	Max.	Units	
$V_{\rm I}$	Input voltage range	0.5	V +0.5	V	
V _O	Output voltage range	-0.5	V _{CC} +0.5	v	
I _{O_DC}	DC output current		100	mA	
Power	Maximum power dissipation at $T_A = 55^{\circ}C$ in still air		1.0	W	
T_{STG}	Storage temperature	-65	150	°C	

Note: Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Parameter	Test Conditions	$\mathbf{v}_{\mathbf{cc}}$	Min.	Тур.	Max.	Units
I_{CC}	$V_{\rm I} = V_{\rm CC}$ or GND; $I_{\rm O} = 0^{(1)}$	3.6V			10	μΑ
C_{I}	V _I = V _{CC} or GND	3.3V		4		»E
Co	V _O =V _{CC} or GND	3.3 V		6		pF

Note: 1. Continuous Output Current

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V_{CC}	Supply voltage	3.0	3.6	
V_{IH}	High level input voltage	2.0		V
V_{IL}	Low level input voltage		0.8	V
V _I	Input voltage	0	V _{CC}	
T_{A}	Operating free-air temperature	0	70	°C

Electrical Characteristics

(Over recommended operating free-air temperature range Pull Up/Down Currents, $V_{CC} = 3.0V$)

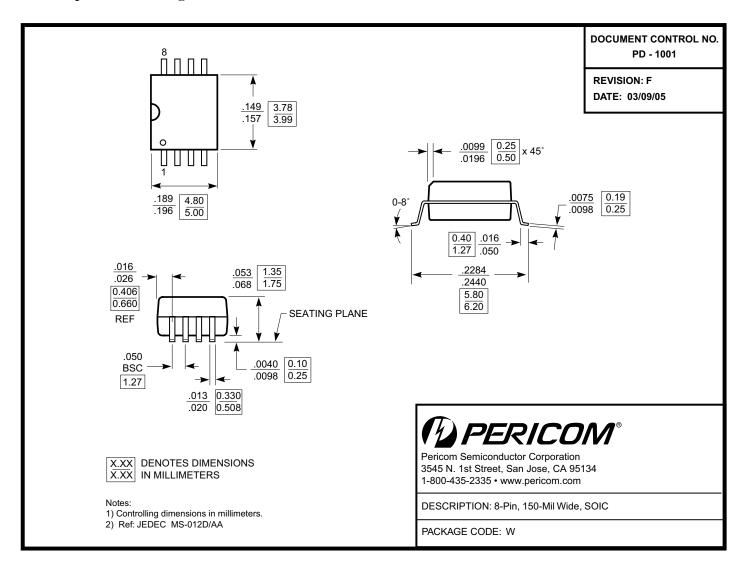
	Symbol	Parameter	Condition	Min.	Max.	Units
	ī	Pull-up current	$V_{OUT} = 2.4V$		-18	mΛ
	I_{OH}		$V_{OUT} = 2.0V$		-30	
	I _{OL}	Pull-down current	$V_{OUT} = 0.8V$	25		- mA
			$V_{OUT} = 0.55V$	17		

AC Specifications Timing Requirements

(Over recommended ranges of supply voltage and operating free-air temperature)

Symbol	Parameter	Min.	Max.	Units
FCLK	Clock frequency	25	80	MHz
DCYI Input clock duty cycle		40	60	%
Stabilization Time after power up			1	ms

Switching Characteristics


(Over recommended ranges of supply voltage and operating free-air temperature, C_L=30pF)

Parameter	Evory (Innut)	To (Output)	$V_{CC} = 3.3V \pm 0.3V, 0-70^{\circ}C$			Units
rarameter	From (Input)	10 (Ծաւթաւ)	Min.	Тур.	Max.	
tphase error without jitter	CLK_IN↑ at 100MHz and 66MHz	FB_IN↑	-150		+150	
Jitter, cycle-to-cycle	At 100 MHz and 66 MHz	CLK_OUT	-100		+100	ps
Skew at 100 MHz and 66 MHz	CLK_OUT or FB_OUT	CLK_OUT or FB_OUT			200	
Duty cycle			45		55	%
tr, rise-time, 0.4V to 2.0V		CLK_OUT or FB_OUT		1.0		
tf, fall-time, 2.0V to 0.4V				1.1		ns

Note: These switching parameters are guaranteed by design.

Package Mechanical Information Plastic 8-pin SOIC Package

Ordering Information

Ordering Code Package Name		Package Type	Operating Range	
PI6C2502WE	W8	8-pin 150-mil SOIC, Pb-Free & Green	Commercial	

Notes:

- 1. Thermal characteristics can be found on the company website at www.pericom.com/packaging/
- 2. X = Tape & Reel

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com