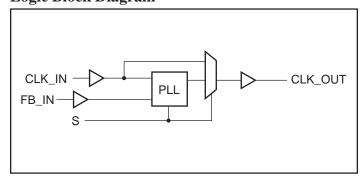


Phase-Locked Loop Clock Driver

Product Features

- High-Performance Phase-Locked-Loop Clock Distribution for Networking, ATM, 100/134 MHz Registered DIMM Synchronous DRAM modules for server/workstation/PC applications
- Zero Input-to-Output delay
- Low jitter: Cycle-to-Cycle jitter ± 100ps max.
- On-chip series damping resistor at clock output drivers for low noise and EMI reduction
- Operates at 3.3 V V_{CC}
- Packaged in Plastic 8-pin SOIC Package (W)
 Pb-free and Green Available
- Wide range of Clock Frequencies


Product Description

The PI6C2401 features a low-skew, low-jitter, phase-locked loop (PLL) clock driver. By connecting the feedback CLK_OUT output to the feedback FB_IN input, the propagation delay from the CLK_IN input to any clock output will be nearly zero.

Application

If the system designer needs more than 16 outputs with the features just described, using two or more zero-delay buffers such as PI6C2509Q, and PI6C2510Q, is likely to be impractical. The device-to-device skew introduced can significantly reduce the performance. Pericom recommends the use of a zero-delay buffer and an eighteen output non-zero-delay buffer. As shown in Figure 1, this combination produces a zero-delay buffer with all the signal characteristics of the original zero-delay buffer, but with as many outputs as the non-zero-delay buffer part. For example, when combined with an eighteen output non-zero delay buffer, a system designer can create a seventeen-output zero-delay buffer.

Logic Block Diagram

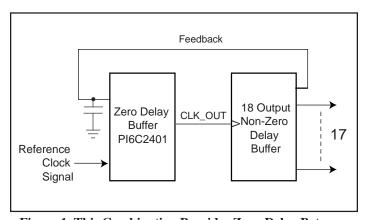
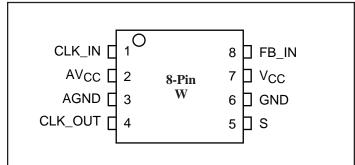



Figure 1. This Combination Provides Zero-Delay Between the Reference Clocks Signal and 17 Outputs

Product Pin Configuration

Control Input

S	Output Source	PLL Shutdown
1	PLL	N
0	CLK_IN	Y

08-0298 1 PS8419D 11/13/08

Pin Functions

Pin Name	Pin Number	Туре	Description
CLK_IN	1	I	Reference Clock input. CLK_IN allows spread spectrum clock input.
AV _{CC}	2	Power	Analog power supply.
AGND	3	Ground	Analog ground.
CLK_OUT	4	О	Clock outputs. The output provides low-skew copies of CLK_IN and has an embedded series-damping resistor.
S	5	I	Control Input S. S is used to bypass the PLL for test purposes. When S is strapped to ground, PLL is bypassed and CLK_IN is buffered directly to the device outputs.
GND	6	Ground	Ground.
V _{CC}	7	Power	Power supply.
FB_IN	8	I	Feedback input. FB _{IN} provides the feedback signal to the internal PLL.

DC Specifications (Absolute maximum ratings over operating free-air temperature range)

Symbol	Parameter	Min.	Max.	Units
$V_{\rm I}$	Input voltage range		Vas + 0.5	
V _O	Output voltage range	-0.5	$V_{CC} + 0.5$	V
VI_DC	DC input voltage		+5.0	
IO_DC	DC output current		100	mA
Power	Maximum power dissipation at T _A = 55°C in still air		1.0	W
T _{STG}	Storage temperature	-65	150	°C

Note: Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Parameter	Test Conditions	V_{CC}	Min.	Тур.	Max.	Units
I _{CC}	$V_I = V_{CC}$ or GND; $I_O = 0^{(1)}$	3.6V			10	μΑ
C_{I}	$V_{I} = V_{CC}$ or GND	3.3V		4		n.E
Co	V _O = V _{CC} or GND	3.3 V		6		pF

Note:

1. Continuous output current

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Supply voltage	3.0	3.6	
V _{IH}	High level input voltage	2.0		V
V _{IL}	Low level input voltage		0.8	v
V _I	Input voltage	0	V_{CC}	
T _A	Operating free-air temperature	0	70	°C

Electrical Characteristics

(Over recommended operating free-air temperature range Pull Up/Down Currents, $V_{CC} = 3.0V$)

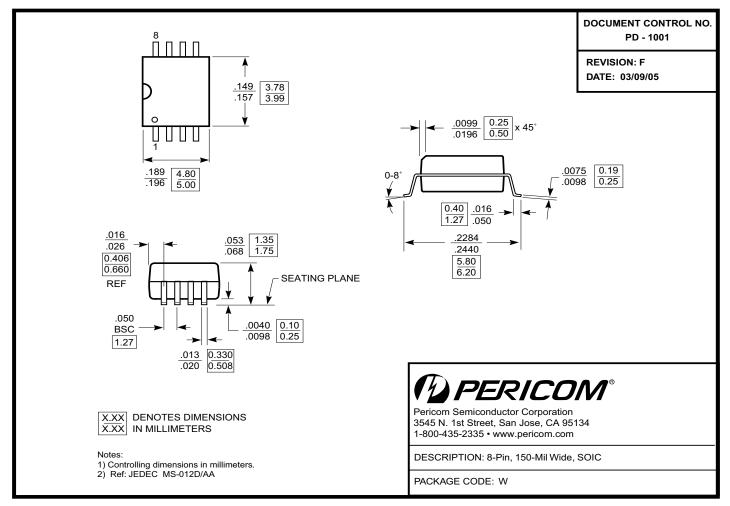
Symbol	Parameter	Condition	Min.	Max.	Units
Іон	D. II	$V_{\rm OUT} = 2.4V$		-12	
	Pull-up current	$V_{\rm OUT} = 2.0V$		-18	A
I_{OL}	D.11 dans	$V_{\rm OUT} = 0.8V$	18		- mA
	Pull-down current	$V_{\rm OUT} = 0.55V$	12		

AC Specifications Timing Requirements

(Over recommended ranges of supply voltage and operating free-air temperature)

Symbol	Parameter	Min.	Max.	Units
F _{CLOCK}	Clock frequency	25	134	MHz
D _{CYI}	Input clock duty cycle	40	60	%
	Stabilization Time after power up		1	ms

Switching Characteristics


(Over recommended ranges of supply voltage and operating free-air temperature, C_L=30pF)

			V_{CC} = 3.3V ± 0.3V, 0-70 °C			
Parameter	From	То	Min.	Тур.	Max.	Units
tphase error without jitter	CLK_IN ↑ at 100 MHz and 66 MHz	FB_IN↑			+175	
Jitter, cycle-to-cycle	At 100 MHz and 66 MHz	CLK_OUT	-150		+150	ps
Duty cycle			35		65	%
tr, rise-time, 0.4V to 2.0V		CLK_OUT		1.0		no
tf, fall-time, 2.0V to 0.4V				1.1		ns

Note: These switching parameters are guaranteed by design.

Package Mechanical Information Plastic 8-pin SOIC Package

Ordering Information

Ordering Code	Package Code	Package Type	Operating Range
PI6C2401WE	W	Pb-free and Green 8-pin 150-mil SOIC	Commercial

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. X = Tape/Reel
- 3. E = Pb-free & Green

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com