780MHz, Crystal-to-3.3V Differential LVPECL Frequency Synthesizer ### GENERAL DESCRIPTION The ICS84320-01 is a general purpose, dual output Crystal-to-3.3V Differential LVPECL High Frequency Synthesizer. The ICS84320-01 has a selectable TEST_CLK or crystal inputs. The VCO operates at a frequency range of 620MHz to 780MHz. The VCO frequencyis programmed in steps equal to the value of the input reference or crystal frequency. The VCO and output frequencycan be programmed using the serial or parallel interfaces tothe configuration logic. The low phase noise characteristicsof the ICS84320-01 make it an ideal clock source for 10 Gigabit Ethernet, SONET, and Serial Attached SCSI applications. ### **F**EATURES - Dual differential 3.3V LVPECL outputs - Selectable crystal oscillator interface or LVCMOS/LVTTL TEST_CLK - Output frequency range: 77.5MHz to 780MHz - · Crystal input frequency range: 14MHz to 40MHz - VCO range: 620MHz to 780MHz - Parallel or serial interface for programming counter and output dividers - Duty cycle: 49% 51% (N > 1) - RMS period jitter: 2ps (typical) - RMS phase jitter at 155.52MHz, using a 38.88MHz crystal (12kHz to 20MHz): 2.5ps (typical) | Offset | Noise Power | |--------|--------------| | 100Hz | 90.5 dBc/Hz | | 1kHz | 114.2 dBc/Hz | | 10kHz | 123.6 dBc/Hz | | 100kHz | 128.1 dBc/Hz | - 3.3V supply voltage - 0°C to 70°C ambient operating temperature - Available in both standard (RoHS 5) and lead-free RoHS (6) packages #### **FUNCTIONAL DESCRIPTION** NOTE: The functional description that follows describes operation using a 25MHz crystal. Valid PLL loop divider values for different crystal or input frequencies are defined in the Input Frequency Characteristics, Table 5, NOTE 1. The ICS84320-01 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth. A fundamental crystal is used as the input to the onchip oscillator. The output of the oscillator is fed into the phase detector. A 25MHz crystal provides a 25MHz phase detector reference frequency. The VCO of the PLL operates over a range of 620MHz to 780MHz. The output of the M divider is also applied to the phase detector. The phase detector and the M divider force the VCO output frequency to be M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low), the PLL will not achieve lock. The output of the VCO is scaled by a divider prior to being sent to each of the LVPECL output buffers. The divider provides a 50% output duty cycle. The programmable features of the ICS84320-01 support two input modes to program the M divider and N output divider. The two input operational modes are parallel and serial. *Figure 1* shows the timing diagram for each mode. In parallel mode, the nP_LOAD input is initially LOW. The data on inputs M0 through M8 and N0 and N1 is passed directly to the M divider and N output divider. On the LOW-to-HIGH transition of the nP_LOAD input, the data is latched and the M divider remains loaded until the next LOW transition on nP_LOAD or until a serial event occurs. As a result, the M and N bits can be hardwired to set the M divider and N output divider to a specific default state that will auto- matically occur during power-up. The TEST output is LOW when operating in the parallel input mode. The relation-ship between the VCO frequency, the crystal frequency and the M divider is defined as follows: #### fVCO = fxtal x M The M value and the required values of M0 through M8 are shown in Table 3B to program the VCO Frequency Function Table. Valid M values for which the PLL will achieve lock for a 25MHz reference are defined as $25 \le M \le 31$. The frequency out is defined as follows: $$FOUT = \frac{fVCO}{N} = fxtal \times \frac{M}{N}$$ Serial operation occurs when nP_LOAD is HIGH and S_LOAD is LOW. The shift register is loaded by sampling the S_DATA bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the M divider and N output divider when S_LOAD transitions from LOW-to-HIGH. The M divide and N output divide values are latched on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is passed directly to the M divider and N output divider on each rising edge of S_CLOCK. The serial mode can be used to program the M and N bits and test bits T1 and T0. The internal registers T0 and T1 determine the state of the TEST output as follows: | <u>T1</u> | <u>T0</u> | TEST Output | |-----------|-----------|------------------------------| | 0 | 0 | LOW | | 0 | 1 | S_Data, Shift Register Input | | 1 | 0 | Output of M divider | | 1 | 1 | CMOS Fout | FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS *NOTE: The NULL timing slot must be observed. TABLE 1. PIN DESCRIPTIONS | Number | Name | Ty | /ре | Description | |-----------------------------------|--------------------------------------|--------|----------|---| | 1 | M5 | Input | Pullup | | | 2, 3, 4,
28, 29,
30, 31, 32 | M6, M7, M8,
M0, M1,
M2, M3, M4 | Input | Pulldown | M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD input. LVCMOS / LVTTL interface levels. | | 5, 6 | N0, N1 | Input | Pulldown | Determines output divider value as defined in Table 3C,
Function Table. LVCMOS / LVTTL interface levels. | | 7 | nc | Unused | | No connect. | | 8, 16 | V_{EE} | Power | | Negative supply pins. | | 9 | TEST | Output | | Test output which is ACTIVE in the serial mode of operation. Output driven LOW in parallel mode. LVCMOS/LVTTL interface levels. | | 10 | V _{cc} | Power | | Core supply pin. | | 11, 12 | FOUT1, nFOUT1 | Output | | Differential output for the synthesizer. LVPECL interface levels. | | 13 | V _{cco} | Power | | Output supply pin. | | 14, 15 | FOUT0, nFOUT0 | Output | | Differential output for the synthesizer. LVPECL interface levels. | | 17 | MR | Input | Pulldown | Active High Master Reset. When logic HIGH, forces the internal dividers are reset causing the true outputs FOUTx to go low and the inverted outputs nFOUTx to go high. When logic LOW, the internal dividers and the outputs are enabled. Assertion of MR does not affect loaded M, N, and T values. LVCMOS / LVTTL interface levels. | | 18 | S_CLOCK | Input | Pulldown | Clocks in serial data present at S_DATA input into the shift register on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels. | | 19 | S_DATA | Input | Pulldown | Shift register serial input. Data sampled on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels. | | 20 | S_LOAD | Input | Pulldown | Controls transition of data from shift register into the dividers. LVCMOS / LVTTL interface levels. | | 21 | V _{CCA} | Power | | Analog supply pin. | | 22 | XTAL_SEL | Input | Pullup | Selects between crystal or test inputs as the PLL reference source. Selects XTAL inputs when HIGH. Selects TEST_CLK when LOW. LVCMOS / LVTTL interface levels. | | 23 | TEST_CLK | Input | Pulldown | Test clock input. LVCMOS / LVTTL interface levels. | | 24, 25 | XTAL2, XTAL1 | Input | | Crystal oscillator interface. XTAL1 is the input. XTAL2 is the output. | | 26 | nP_LOAD | Input | Pulldown | Parallel load input. Determines when data present at M8:M0 is loaded into M divider, and when data present at N1:N0 sets the N output divider value. LVCMOS / LVTTL interface levels. | | 27 | VCO_SEL | Input | Pullup | Determines whether synthesizer is in PLL or bypass mode. LVCMOS / LVTTL interface levels. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE | | | | In | puts | | | Conditions | |----|---------|------|------|----------|---------|--------|---| | MR | nP_LOAD | М | N | S_LOAD | S_CLOCK | S_DATA | Conditions | | Н | Х | Χ | Х | Х | Х | Х | Reset. Forces outputs LOW. | | L | L | Data | Data | х | Х | Х | Data on M and N inputs passed directly to the M divider and N output divider. TEST output forced LOW. | | L | 1 | Data | Data | L | Х | Х | Data is latched into input registers and remains loaded until next LOW transition or until a serial event occurs. | | L | Н | Х | Х | L | 1 | Data | Serial input mode. Shift register is loaded with data on S_DATA on each rising edge of S_CLOCK. | | L | Н | Х | Х | 1 | L | Data | Contents of the shift register are passed to the M divider and N output divider. | | L | Н | Х | Х | \ | L | Data | M divider and N output divider values are latched. | | L | Н | Х | Х | L | Х | Х | Parallel or serial input do not affect shift registers. | | L | Н | Х | Х | Н | 1 | Data | S_DATA passed directly to M divider as it is clocked. | NOTE: L = LOW H = HIGH X = Don't care ↑ = Rising edge transition ↓= Falling edge transition TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE | VCO Frequency | M Divide | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | |---------------|----------|-----|-----|----|----|----|----|----|----|----| | (MHz) | W Divide | M8 | М7 | M6 | M5 | M4 | М3 | M2 | M1 | МО | | 625 | 25 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | | • | • | • | • | • | • | • | • | • | • | • | | 700 | 28 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | | • | • | • | • | • | • | • | • | • | • | • | | 775 | 31 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency of 25MHz. TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE | Inp | outs | N Divider Value | Output Freq | uency (MHz) | |-----|------|-----------------|-------------|-------------| | N1 | N0 | N Divider value | Minimum | Maximum | | 0 | 0 | 1 | 620 | 780 | | 0 | 1 | 2 | 310 | 390 | | 1 | 0 | 4 | 155 | 195 | | 1 | 1 | 8 | 77.5 | 97.5 | ### 780MHz, Crystal-to-3.3V Differential LVPECL Frequency Synthesizer ### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{CC} 4.6V -0.5V to $V_{\rm CC}$ + 0.5 V Inputs, V Outputs, V_o (LVCMOS) -0.5V to $V_{CCO} + 0.5V$ Outputs, I (LVPECL) 32 Lead VFQFN Continuous Current 50mA Surge Current 100mA Package Thermal Impedance, θ_{JA} 32 Lead LQFP 47.9°C/W (0 lfpm) 34.8°C/W (0 lfpm) -65°C to 150°C Storage Temperature, T_{STG} NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. Power Supply DC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|------------------------|---------|---------|-------| | V _{cc} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{CCA} | Analog Supply Voltage | | V _{cc} - 0.22 | 3.3 | 3.465 | V | | V _{cco} | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | I _{EE} | Power Supply Current | | | | 155 | mA | | I _{CCA} | Analog Supply Current | | | | 22 | mA | Table 4B. LVCMOS / LVTTL DC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|------------------------|---|--|---------|---------|-----------------------|-------| | V _{IH} | Input
High Voltage | VCO_SEL, XTAL_SEL, MR,
S_LOAD, nP_LOAD, N0:N1,
S_DATA, S_CLOCK, M0:M8 | | 2 | | V _{cc} + 0.3 | V | | | | TEST_CLK | | 2 | | V _{cc} + 0.3 | V | | V _{IL} | Input
Low Voltage | VCO_SEL, XTAL_SEL, MR,
S_LOAD, nP_LOAD, N0:N1,
S_DATA, S_CLOCK, M0:M8 | | -0.3 | | 0.8 | V | | | | TEST_CLK | | -0.3 | | 1.3 | V | | I _{IH} | Input
High Current | M0-M4, M6-M8, N0, N1, MR,
S_CLOCK, TEST_CLK,
S_DATA, S_LOAD, nP_LOAD | V _{CC} = V _{IN} = 3.465V | | | 150 | μΑ | | | r ngri ourioni | M5, XTAL_SEL, VCO_SEL | $V_{CC} = V_{IN} = 3.465V$ | | | 5 | μΑ | | I _{IL} | Input | M0-M4, M6-M8, N0, N1, MR,
S_CLOCK, TEST_CLK,
S_DATA, S_LOAD, nP_LOAD | $V_{CC} = 3.465V,$ $V_{IN} = 0V$ | -5 | | | μΑ | | -112 | Low Current | M5, XTAL_SEL, VCO_SEL | $V_{CC} = 3.465V,$ $V_{IN} = 0V$ | -150 | | | μΑ | | V _{OH} | Output
High Voltage | TEST; NOTE 1 | | 2.6 | | | V | | V _{OL} | Output
Low Voltage | TEST; NOTE 1 | | | | 0.5 | V | NOTE 1: Outputs terminated with 50Ω to $V_{cco}/2$. # 780MHz, Crystal-to-3.3V Differential LVPECL Frequency Synthesizer ### Table 4C. LVPECL DC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|-----------------|------------------------|---------|------------------------|-------| | V _{OH} | Output High Voltage; NOTE 1 | | V _{cco} - 1.4 | | V _{cco} - 0.9 | V | | V _{OL} | Output Low Voltage; NOTE 1 | | V _{cco} - 2.0 | | V _{cco} - 1.7 | V | | V _{SWING} | Peak-to-Peak Output Voltage Swing | | 0.6 | | 1.0 | V | NOTE 1: Outputs terminated with 50 Ω to $\rm\,V_{cco}$ - 2V. See "Parameter Measurement Information" section, "3.3V Output Load Test Circuit". ### Table 5. Input Frequency Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-----------------|----------------------|-----------------|---------|---------|---------|-------| | | | TEST_CLK; NOTE 1 | | 14 | | 40 | MHz | | f _{IN} | Input Frequency | XTAL1, XTAL2; NOTE 1 | | 14 | | 40 | MHz | | | | S_CLOCK | | | | 50 | MHz | NOTE 1: For the input crystal and TEST_CLK frequency range, the M value must be set for the VCO to operate within the 620MHz to 780MHz range. Using the minimum input frequency of 14MHz, valid values of M are $45 \le M \le 55$. Using the maximum frequency of 40MHz, valid values of M are $16 \le M \le 19$. #### TABLE 6. CRYSTAL CHARACTERISTICS | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------------------------|-----------------|---------|-----------|---------|-------| | Mode of Oscillation | | Fı | ındamenta | al | | | Frequency | | 14 | | 40 | MHz | | Equivalent Series Resistance (ESR) | | | | 50 | Ω | | Shunt Capacitance | | | | 7 | pF | | Drive Level | | | | 1 | mW | Table 7. AC Characteristics, $V_{\text{CC}} = V_{\text{CCA}} = V_{\text{CCO}} = 3.3 \text{V} \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------------------|--|-------------------|-----------------------------|------------------------------|---------|----------------------|-------| | F _{OUT} | Output Frequency | | | 77.5 | | 780 | MHz | | tjit(per) | Period Jitter, RMS; NOTE 1 | | fOUT > 100MHz | | 2.0 | 2.6 | ps | | <i>t</i> jit | Buffer Additive Phase Jitter, RMS;
refer to Additive Phase Jitter Section | | 155.52MHz,
12kHz - 20MHz | | 2.5 | | ps | | tsk(o) | Output Skew; NOTE 2, 3 | | | | | 15 | ps | | t _R /t _F | Output Rise/Fall Time | | 20% to 80% | 150 | | 600 | ps | | | Setup Time | M, N to nP_LOAD | | 5 | | | ns | | t _s | | S_DATA to S_CLOCK | | 5 | | | ns | | | | S_CLOCK to S_LOAD | | 5 | | | ns | | | Hold Time | M, N to nP_LOAD | | 5 | | | ns | | t _H | | S_DATA to S_CLOCK | | 5 | | | ns | | | | S_CLOCK to S_LOAD | | 5 | | | ns | | | Output Duty Cycle | | N > 1 | 49 | | 51 | % | | odc | | | fOUT ≤ 625 | 45 | | 55 | % | | t _{PW} | Output Pulse Width | | f > 625 | t _{PERIOD} /2 - 150 | | $t_{PERIOD}/2 + 150$ | ps | | t _{LOCK} | PLL Lock Time | | | | | 1 | ms | See Parameter Measurement Information section. NOTE 1: Jitter performance using XTAL inputs. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65. ### Typical Phase Noise at 155.52MHz ### Typical Phase Noise at 622.08MHz ### PARAMETER MEASUREMENT INFORMATION ### 3.3V OUTPUT LOAD AC TEST CIRCUIT ### **OUTPUT SKEW** ### PERIOD JITTER ### OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD ### **OUTPUT RISE/FALL TIME** # 780MHz, Crystal-to-3.3V Differential LVPECL Frequency Synthesizer ### **APPLICATION INFORMATION** ### Power Supply Filtering Techniques As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS84320-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\rm CC}, V_{\rm CCA},$ and $V_{\rm CCO}$ should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 2 illustrates how a 24Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each $V_{\rm CCA}$ pin. The 24Ω resistor can also be replaced by a ferrite bead. FIGURE 2. POWER SUPPLY FILTERING #### RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS ### INPUTS: ### **C**RYSTAL INPUTS For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1 \mbox{k}\Omega$ resistor can be tied from XTAL_IN to ground. #### TEST_CLK INPUT For applications not requiring the use of the test clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the TEST_CLK to ground. #### LVCMOS CONTROL PINS All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. ### OUTPUTS: #### LVPECL OUTPUTS All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. ### **CRYSTAL INPUT INTERFACE** A crystal can be characterized for either series or parallel mode operation. The ICS84320-01 has a built-in crystal oscillator circuit. This interface can accept either a series or parallel crystal without additional components and generate frequencies with accuracy suitable for most applications. Additional accuracy can be achieved by adding two small capacitors C1 and C2 as shown in *Figure 3*. ### LVCMOS TO XTAL INTERFACE The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 4*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . FIGURE 4. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE # 780MHz, Crystal-to-3.3V Differential LVPECL Frequency Synthesizer ### **TERMINATION FOR LVPECL OUTPUTS** The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched imped- ance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 5A and 5B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. FIGURE 5A. LVPECL OUTPUT TERMINATION FIGURE 5B. LVPECL OUTPUT TERMINATION ### LAYOUT GUIDELINE The schematic of the ICS84320-01 layout example used in this layout guideline is shown in *Figure 6A*. The ICS84320-01 recommended PCB board layout for this example is shown in *Figure 6B*. This layout example is used as a gen- eral guideline. The layout in the actual system will depend on the selected component types, the density of the components, the density of the traces, and the stack up of the P.C. board. FIGURE 6A. SCHEMATIC OF RECOMMENDED LAYOUT # 780MHz, Crystal-to-3.3V Differential LVPECL Frequency Synthesizer The following component footprints are used in this layout example: All the resistors and capacitors are size 0603. #### POWER AND GROUNDING Place the decoupling capacitors C14 and C15, as close as possible to the power pins. If space allows, placement of the decoupling capacitor on the component side is preferred. This can reduce unwanted inductance between the decoupling capacitor and the power pin caused by the via. Maximize the power and ground pad sizes and number of vias capacitors. This can reduce the inductance between the power and ground planes and the component power and ground pins. The RC filter consisting of R7, C11, and C16 should be placed as close to the $V_{\rm CGA}$ pin as possible. ### **CLOCK TRACES AND TERMINATION** Poor signal integrity can degrade the system performance or cause system failure. In synchronous high-speed digital systems, the clock signal is less tolerant to poor signal integrity than other signals. Any ringing on the rising or falling edge or excessive ring back can cause system failure. The shape of the trace and the trace delay might be restricted by the available space on the board and the component location. While routing the traces, the clock signal traces should be routed first and should be locked prior to routing other signal traces. - The differential 50Ω output traces should have the same length. - Avoid sharp angles on the clock trace. Sharp angle turns cause the characteristic impedance to change on the transmission lines. - Keep the clock traces on the same layer. Whenever possible, avoid placing vias on the clock traces. Placement of vias on the traces can affect the trace characteristic impedance and hence degrade signal integrity. - To prevent cross talk, avoid routing other signal traces in parallel with the clock traces. If running parallel traces is unavoidable, allow a separation of at least three trace widths between the differential clock trace and the other signal trace. - Make sure no other signal traces are routed between the clock trace pair. - The matching termination resistors should be located as close to the receiver input pins as possible. #### CRYSTAL The crystal X1 should be located as close as possible to the pins 25 (XTAL1) and 24 (XTAL2). The trace length between the X1 and U1 should be kept to a minimum to avoid unwanted parasitic inductance and capacitance. Other signal traces should not be routed near the crystal traces. FIGURE 6B. PCB BOARD LAYOUT FOR ICS84320-01 ## 780MHz, Crystal-to-3.3V Differential LVPECL Frequency Synthesizer ### VFQFN EPAD THERMAL RELEASE PATH In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 7*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadfame Base Package, Amkor Technology. FIGURE 7. P.C.ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH -SIDE VIEW (DRAWING NOT TO SCALE) ## 780MHz, Crystal-to-3.3V Differential LVPECL Frequency Synthesizer ### **POWER CONSIDERATIONS** This section provides information on power dissipation and junction temperature for the ICS84320-01. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS84320-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = V_{CC_MAX} * I_{EE_MAX} = 3.465V * 155mA = 537.08mW - Power (outputs)_{MAX} = 30mW/Loaded Output pair If all outputs are loaded, the total power is 2 * 30mW = 60mW Total Power $_{\text{Max}}$ (3.465V, with all outputs switching) = 537.1mW + 60mW = 597.1mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is 125°C. The equation for Tj is as follows: $Tj = \theta_{IA} * Pd_total + T_A$ Tj = Junction Temperature θ_{14} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) $T_A =$ Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 8A below. Therefore, Tj for an ambient temperature of 70°C with all outputs switching is: $70^{\circ}\text{C} + 0.597\text{W} * 42.1^{\circ}\text{C/W} = 95.1^{\circ}\text{C}$. This is well below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). ### Table 8A. Thermal Resistance θ_{1a} for 32-pin LQFP, Forced Convection ## θ_{JA} by Velocity (Linear Feet per Minute) O 200 500 Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W 42.1°C/W 39.4°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. ### Table 8B. Thermal Resistance $\theta_{\text{\tiny JA}}$ for 32-pin VFQFN Forced Convection ### θ₁₄ by Velocity (Linear Feet per Minute) 0 Multi-Layer PCB, JEDEC Standard Test Boards 34.8C/W ### 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 8. To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} - 2V. • For logic high, $$V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.9V$$ $$(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$$ • For logic low, $$V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.7V$$ $$(V_{CCO_MAX} - V_{OL_MAX}) = 1.7V$$ Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. $$Pd_H = [(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_{L}] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - (V_{CCO_MAX} - V_{OH_MAX}))/R_{L}] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega) * 0.9V = 19.8mW]$$ $$Pd_L = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_{L}] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_{L}] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega) * 1.7V = 10.2mW]$$ Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW # 780MHz, Crystal-to-3.3V Differential LVPECL Frequency Synthesizer ### **RELIABILITY INFORMATION** ### Table 9A. θ_{JA} vs. Air Flow Table for 32 Lead LQFP ### θ_{1A} by Velocity (Linear Feet per Minute) 0200500Single-Layer PCB, JEDEC Standard Test Boards67.8°C/W55.9°C/W50.1°C/WMulti-Layer PCB, JEDEC Standard Test Boards47.9°C/W42.1°C/W39.4°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. ### Table 9B. θ_{JA} vs. Air Flow Table for 32 Lead VFQFN Package θ_{ια} by Velocity (Linear Feet per Minute) 0 Multi-Layer PCB, JEDEC Standard Test Boards 34.8°C/W ### TRANSISTOR COUNT The transistor count for ICS84320-01 is: 3776 ### PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP TABLE 10A. PACKAGE DIMENSIONS | JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS | | | | | | |---|------------|---------|---------|--|--| | OVMPOL | ВВА | | | | | | SYMBOL | MINIMUM | NOMINAL | MAXIMUM | | | | N | 32 | | | | | | Α | | | 1.60 | | | | A 1 | 0.05 | | 0.15 | | | | A2 | 1.35 | 1.40 | 1.45 | | | | b | 0.30 | 0.37 | 0.45 | | | | С | 0.09 | | 0.20 | | | | D | 9.00 BASIC | | | | | | D1 | 7.00 BASIC | | | | | | D2 | 5.60 Ref. | | | | | | E | 9.00 BASIC | | | | | | E1 | 7.00 BASIC | | | | | | E2 | 5.60 Ref. | | | | | | е | 0.80 BASIC | | | | | | L | 0.45 | 0.60 | 0.75 | | | | θ | 0° | | 7° | | | | ccc | 0.10 | | | | | Reference Document: JEDEC Publication 95, MS-026 ### PACKAGE OUTLINE - 32 LEAD K PACKAGE NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 10B below. TABLE 10B. PACKAGE DIMENSIONS | JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS | | | | | |---|----------------|---------|--|--| | SYMBOL | Minimum | Maximum | | | | N | 32 | | | | | Α | 0.80 | 1.0 | | | | A1 | 0 | 0.05 | | | | А3 | 0.25 Reference | | | | | b | 0.18 | 0.30 | | | | е | 0.50 BASIC | | | | | N _D | 8 | | | | | N _E | 8 | | | | | D | 5.0 | | | | | D2 | 1.25 | 3.25 | | | | E | 5.0 | | | | | E2 | 1.25 | 3.25 | | | | L | 0.30 | 0.50 | | | Reference Document: JEDEC Publication 95, MO-220 TABLE 11. ORDERING INFORMATION | Part/Order Number | rder Number Marking Package | | Shipping Packaging | Temperature | |-------------------|-----------------------------|-----------------------------------|--------------------|-------------| | 84320AY-01 | ICS84320AY-01 | 32 Lead LQFP | tray | 0°C to 70°C | | 84320AY-01T | ICS84320AY-01 | 32 Lead LQFP | 1000 tape & reel | 0°C to 70°C | | 84320AY-01LN | ICS84320A01N | 32 Lead "Lead-Free/Annealed" LQFP | tray | 0°C to 70°C | | 84320AY-01LNT | ICS84320A01N | 32 Lead "Lead-Free/Annealed" LQFP | 1000 tape & reel | 0°C to 70°C | | 84320AK-01 | ICS84320AK01 | 32 Lead VFQFN | tray | 0°C to 70°C | | 84320AK-01T | ICS84320AK01 | 32 Lead VFQFN | 2500 tape & reel | 0°C to 70°C | | 84320AK-01LF | ICS4320A01L | 32 Lead "Lead-Free" VFQFN | tray | 0°C to 70°C | | 84320AK-01LFT | ICS4320A01L | 32 Lead "Lead-Free" VFQFN | 2500 tape & reel | 0°C to 70°C | NOTE: Parts that are ordered with an "LF" or LN" suffix to the part number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments | REVISION HISTORY SHEET | | | | | | |------------------------|--------------------------------------|-----------------------------------|---|----------|--| | Rev | Rev Table Page Description of Change | | | | | | Α | | 7 | Updated Typical Phase Noise plots and format. | 7/2/04 | | | Α | T11 | 16 | Ordering Information Table - added Lead Free Part/Order Number. | 8/24/04 | | | В | T4A
T6
T11 | 1
5
6
8
9
10
18 | Features Section - added Lead-Free bullet. Power Supply DC Characteristics - updated VCCA min. from 3.135V to V _{CC} - 0.22. Crystal Characteristics Table - added Drive Level. Corrected 3.3V Output Load AC Test Circuit diagram. Added Recommendations for Unused Input and Output Pins. Added LVCMOS to XTAL Interface. Ordering Information Table - added lead-free part number. Added VFQFN package throughout the datasheet. | 4/14/06 | | | С | T4C | 6
14 - 15 | LVPECL DC Characteristics Table -corrected V_{OH} max. from $V_{CCO} - 1.0V$ to $V_{CCO} - 0.9V$. Power Considerations - corrected power dissipation to reflect V_{OH} max in Table 4C. | 4/10/07 | | | С | T11 | 14
19 | Added VFQFN EPAD Thermal Release Path section. Ordering Information Table - added lead-free marking. | 10/22/07 | | | D | T11 | 20
22 | Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page. | 7/26/10 | | # 780MHz, Crystal-to-3.3V Differential LVPECL Frequency Synthesizer ### We've Got Your Timing Solution. 6024 Silver Creek Valley Road San Jose, CA 95138 **Sales** 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 Tech Support netcom@idt.com © 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA