

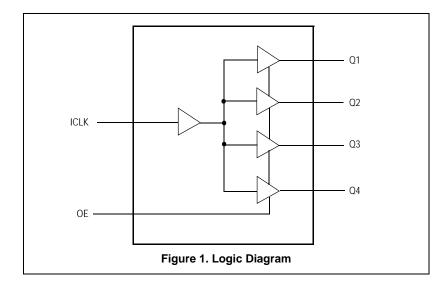
Low Voltage 1:4 CMOS Clock Buffer

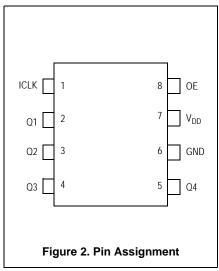
MPC94551

The MPC94551 is a CMOS 1:4 fanout buffer. The MPC94551 is ideal for applications requiring lower voltage.

Features

- 1:4 CMOS fanout buffer
- 300 ps output to output skew
- I/O frequency up to 160 MHz operation
- Non-inverting output clock
- 3.3 V supply voltage
- · Output Enable mode tri-states outputs
- -40°C to 85°C industrial temperature range
- Standard 8-lead SOIC package




D SUFFIX 8-LEAD SOIC PACKAGE CASE 751-06

EF SUFFIX 8-LEAD SOIC PACKAGE Pb-FREE PACKAGE CASE 751-06

ORDERING INFORMATION				
Device Package				
MPC94551D	SO-8			
MPC94551DR2	SO-8			
MPC94551EF	SO-8 (Pb-FREE)			
MPC94551EFR2	SO-8 (Pb-FREE)			

Table 1. Pin Description

Pin Number	Pin Name	Pin Type	Pin Description
1	ICLK	Input	Clock input, internal pull-up resistor
2	Q1	Output	Clock output ⁽¹⁾
3	Q2	Output	Clock output ⁽¹⁾
4	Q3	Output	Clock output ⁽¹⁾
5	Q4	Output	Clock output ⁽¹⁾
6	GND	Power	Connect to ground ⁽²⁾
7	V _{DD}	Power	Connect to 3.3 V ⁽²⁾
8	OE	Input	Output enable, tri-states outputs when low, internal pull-up resistor

^{1.} A 33 Ω series terminating resistor may be used on each clock output if the trace is longer than 1 inch.

Table 2. Absolute Maximum Ratings⁽¹⁾

Parameter	Rating	Unit
Power Supply Voltage, V _{DD}	3.9	V
All Inputs and Outputs	-0.5 to V _{DD} +0.5	V
Ambient Operating Temperature	-40 to +85	°C
Storage Temperature	-65 to +150	°C
Junction Temperature	175	°C
Soldering Temperature	260	°C

^{1.} Stresses above the ratings listed below can cause permanent damage to the device. These ratings are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Table 3. DC Characteristics ($V_{DD} = 3.3 \text{ V} \pm 5\%$; Ambient Temperature = -40°C to 85°C)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Voltage	V _{DD}		3.15		3.45	V
Input High Voltage ⁽¹⁾ , ICLK	V _{IH}		V _{DD} /2 + 0.7		3.8	V
Input Low Voltage ⁽¹⁾ , ICLK	V_{IL}				V _{DD} /2 – 0.7	V
Input High Voltage, OE	V _{IH}		2		V_{DD}	V
Input Low Voltage, OE	V_{IL}				0.8	V
Ouput Low Voltage	V _{OL}	I _{OL} = 12 mA			0.4	V
Output High Voltage	V _{OH}	I _{OH} = -12 mA	2.4			V
Operating Supply Current	I _{DD}	No load, 135 MHz		30		mA
Nominal Output Impedance	Z _O			27		Ω
Internal Pull-up Resistor	R _{PU}	ICLK		31		kΩ
Input Capacitance	C _{IN}	OE pin		5		pF
	C _{IN}	ICLK		1		pF
Short Circuit Current	I _{OS}			±50		mA

^{1.} Nominal switching threshold is $V_{DD}/2$.

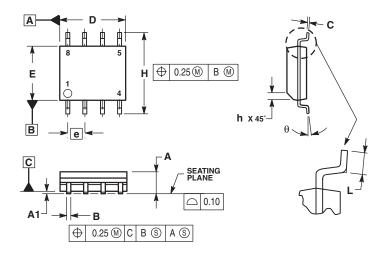

^{2.} A decoupling capacitor of 0.01 μF should be connected between V_{DD} on pin 7 and GND on pin 6, as close to the device as possible.

Table 4. AC Characteristics (V_{DD} = 3.3 V ± 5%; Ambient Temperature = -40°C to 85°C)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Frequency			0		160	MHz
Output Frequency ⁽¹⁾		15 pF load			160	MHz
Output Clock Rise Time	t _{OR}	0.8 V to 2.0 V			1.5	ns
Output Clock Fall Time	t _{OF}	2.0 V to 0.8 V			1.5	ns
Propagation Delay ⁽²⁾		135 MHz	1.5	4	5	ns
Output to Output Skew ⁽³⁾		Rising edges at V _{DD} /2			300	ps

- 1. Measured with an external series resistor of 33Ω positioned close to each output pin
- 2. Measured with rail to rail input clock
- 3. Measured between any 2 outputs with equal loading

PACKAGE DIMENSIONS

D/EF SUFFIX SOIC PACKAGE CASE 751-06 ISSUE T

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. DIMENSIONS ARE IN MILLIMETER.
 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	1.35	1.75		
A1	0.10	0.25		
В	0.35	0.49		
С	0.19	0.25		
D	4.80	5.00		
Е	3.80	4.00		
е	1.27 BSC			
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.25		
А	U,	7°		

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200

Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA