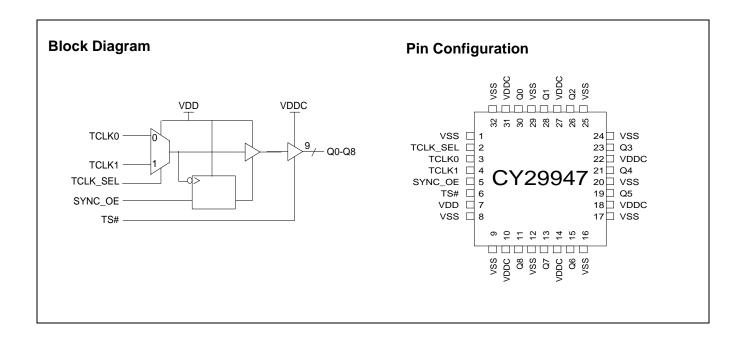


### 2.5V or 3.3V, 200-MHz, 1:9 Clock Distribution Buffer


#### **Features**

- 2.5V or 3.3V operation
- 200-MHz clock support
- LVCMOS-/LVTTL-compatible inputs
- 9 clock outputs: drive up to 18 clock lines
- Synchronous Output Enable
- · Output three-state control
- 250 ps max. output-to-output skew
- Pin compatible with MPC947, MPC9447
- Available in Industrial and Commercial temp. range
- 32-pin TQFP package

### **Description**

The CY29947 is a low-voltage 200-MHz clock distribution buffer with the capability to select one of two LVCMOS/LVTTL compatible clock inputs. The two clock sources can be used to provide for a test clock as well as the primary system clock. All other control inputs are LVCMOS/LVTTL compatible. The 9 outputs are LVCMOS or LVTTL compatible and can drive  $50\Omega$ series or parallel terminated transmission lines. For series terminated transmission lines, each output can drive one or two traces giving the device an effective fanout of 1:18. The outputs can also be three-stated via the three-state input TS#. Low output-to-output skews make the CY29947 an ideal clock distribution buffer for nested clock trees in the most demanding of synchronous systems.

The CY29947 also provides a synchronous output enable input for enabling or disabling the output clocks. Since this input is internally synchronized to the input clock, potential output glitching or runt pulse generation is eliminated.





### Pin Description<sup>[1]</sup>

| Pin                                           | Name     | PWR  | I/O   | Description                                                                                                                               |
|-----------------------------------------------|----------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                             | TCLK0    |      | I, PU | Test Clock Input                                                                                                                          |
| 4                                             | TCLK1    |      | I, PU | Test Clock Input                                                                                                                          |
| 2                                             | TCLK_SEL |      | I, PU | <b>Test Clock Select Input</b> . When LOW, TCLK0 is selected. When asserted HIGH, TCLK1 is selected.                                      |
| 11, 13, 15, 19,<br>21, 23, 26, 28,<br>30      | Q(8:0)   | VDDC | 0     | Clock Outputs                                                                                                                             |
| 5                                             | SYNC_OE  |      | I, PU | Output Enable Input. When asserted HIGH, the outputs are enabled and when set LOW the outputs are disabled in a LOW state.                |
| 6                                             | TS#      |      | I, PU | <b>Three-state Control Input</b> . When asserted LOW, the output buffers are three-stated. When set HIGH, the output buffers are enabled. |
| 10, 14, 18, 22,<br>27, 31                     | VDDC     |      |       | 3.3V or 2.5V Power Supply for Output Clock Buffers                                                                                        |
| 7                                             | VDD      |      |       | 3.3V or 2.5V Power Supply                                                                                                                 |
| 1, 8, 9, 12, 16,<br>17, 20, 24, 25,<br>29, 32 | VSS      |      |       | Common Ground                                                                                                                             |

#### Note:

### **Output Enable/Disable**

The CY29947 features a control input to enable or disable the outputs. This data is latched on the falling edge of the input clock. When SYNC\_OE is asserted LOW, the outputs are disabled in a LOW state. When SYNC\_OE is set HIGH, the outputs are enabled as shown in *Figure 1*.

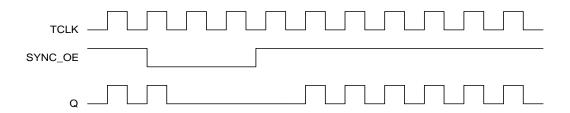



Figure 1. SYNC\_OE Timing Diagram

Document #: 38-07287 Rev. \*C

<sup>1.</sup> PD = internal pull-down, PU = internal pull-up.



### Maximum Ratings [2]

| Maximum Input Voltage Relative to $V_{SS}$ : $V_{SS} - 0.3$  | V |
|--------------------------------------------------------------|---|
| Maximum Input Voltage Relative to $V_{DD}$ : $V_{DD}$ + 0.3\ | V |
| Storage Temperature:65°C to + 150°C                          | С |
| Operating Temperature:40°C to +85°C                          | С |
| Maximum ESD protection2k\                                    | V |
| Maximum Power Supply:5.5\                                    | V |
| Maximum Input Current:±20 m/                                 | Α |

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation,  $V_{\text{in}}$  and  $V_{\text{out}}$  should be constrained to the range:

$$V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}$$

Unused inputs must always be tied to an appropriate logic voltage level (either  $\rm V_{SS}$  or  $\rm V_{DD}).$ 

### **DC Parameters:** V<sub>DD</sub> = V<sub>DDC</sub> = 3.3V ±10% or 2.5V ±5%, Over the specified temperature range

| Parameter        | Description                        | Conditions                                               | Min.            | Тур. | Max.     | Unit |
|------------------|------------------------------------|----------------------------------------------------------|-----------------|------|----------|------|
| V <sub>IL</sub>  | Input Low Voltage                  |                                                          | V <sub>SS</sub> |      | 0.8      | V    |
| V <sub>IH</sub>  | Input High Voltage                 |                                                          | 2.0             |      | $V_{DD}$ | V    |
| I <sub>IL</sub>  | Input Low Current <sup>[3]</sup>   |                                                          |                 |      | -100     | μA   |
| I <sub>IH</sub>  | Input High Current <sup>[3]</sup>  |                                                          |                 |      | 10       | μA   |
| V <sub>OL</sub>  | Output Low Voltage <sup>[4]</sup>  | I <sub>OL</sub> = 20 mA                                  |                 |      | 0.4      | V    |
| V <sub>OH</sub>  | Output High Voltage <sup>[4]</sup> | $I_{OH} = -20 \text{ mA}, V_{DD} = 3.3 \text{V}$         | 2.5             |      |          | V    |
|                  |                                    | $I_{OH} = -20 \text{ mA}, V_{DD} = 2.5 \text{V}$         | 1.8             |      |          |      |
| I <sub>DDQ</sub> | Quiescent Supply<br>Current        |                                                          |                 | 5    | 7        | mA   |
| I <sub>DD</sub>  | Dynamic Supply<br>Current          | V <sub>DD</sub> = 3.3V, Outputs @ 100 MHz,<br>CL = 30 pF |                 | 120  |          | mA   |
|                  |                                    | V <sub>DD</sub> = 3.3V, Outputs @ 160 MHz,<br>CL = 30 pF |                 | 200  |          |      |
|                  |                                    | V <sub>DD</sub> = 2.5V, Outputs @ 100 MHz,<br>CL = 30 pF |                 | 85   |          |      |
|                  |                                    | V <sub>DD</sub> = 2.5V, Outputs @ 160 MHz,<br>CL = 30 pF |                 | 140  |          |      |
| Zout             | Output Impedance                   | V <sub>DD</sub> = 3.3V                                   | 12              | 15   | 18       | Ω    |
|                  |                                    | V <sub>DD</sub> = 2.5V                                   | 14              | 18   | 22       |      |
| C <sub>in</sub>  | Input Capacitance                  |                                                          |                 | 4    |          | pF   |

#### Notes:

**Multiple Supplies:** The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. Inputs have pull-up/pull-down resistors that effect input current. Driving series or parallel terminated  $50\Omega$  (or  $50\Omega$  to  $V_{DD}/2$ ) transmission lines.

[+] Feedback



# **AC Parameters**<sup>[5]</sup>: $V_{DD} = V_{DDC} = 3.3V \pm 10\%$ or 2.5V $\pm 5\%$ , Over the specified temperature range

| Parameter  | Description                                 | Conditions                              | Min. | Тур. | Max.  | Unit |
|------------|---------------------------------------------|-----------------------------------------|------|------|-------|------|
| Fmax       | Input Frequency <sup>[6]</sup>              | V <sub>DD</sub> = 3.3V                  |      |      | 200   | MHz  |
|            |                                             | V <sub>DD</sub> = 2.5V                  |      |      | 170   |      |
| Tpd        | TCLK To Q Delay <sup>[6]</sup>              | V <sub>DD</sub> = 3.3V                  | 4.75 |      | 9.25  | ns   |
|            |                                             | V <sub>DD</sub> = 2.5V                  | 6.50 |      | 10.50 |      |
| FoutDC     | Output Duty Cycle <sup>[6, 7]</sup>         | Measured at V <sub>DD</sub> /2          | 45   |      | 55    | %    |
| tpZL, tpZH | Output Enable Time (all outputs)            |                                         | 2    |      | 10    | ns   |
| tpLZ, tpHZ | Output Disable Time (all outputs)           |                                         | 2    |      | 10    | ns   |
| Tskew      | Output-to-Output Skew <sup>[6, 8]</sup>     |                                         |      | 150  | 250   | ps   |
| Tskew(pp)  | Part-to-Part Skew <sup>[9]</sup>            |                                         |      |      | 2.0   | ns   |
| Ts         | Set-up Time <sup>[6, 10]</sup>              | SYNC_OE to TCLK                         | 0.0  |      |       | ps   |
| Th         | Hold Time <sup>[6, 10]</sup>                | TCLK to SYNC_OE                         | 1.0  |      |       | ps   |
| Tr/Tf      | Output Clocks Rise/Fall Time <sup>[8]</sup> | 0.8V to 2.0V,<br>V <sub>DD</sub> = 3.3V | 0.20 |      | 1.0   | ns   |
|            |                                             | 0.6V to 1.8V,<br>V <sub>DD</sub> = 2.5V | 0.20 |      | 1.3   |      |

#### Notes:

Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with loaded outputs.
 Outputs driving 50Ω transmission lines.
 50% input duty cycle.
 See Figure 2.
 Part-to-Part skew at a given temperature and voltage.
 Set-up and hold times are relative to the falling edge of the input clock



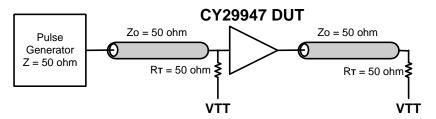



Figure 2. LVCMOS\_CLK CY29947 Test Reference for  $V_{CC}$  = 3.3V and  $V_{CC}$  = 2.5V



Figure 3. LVCMOS Propagation Delay (TPD) Test Reference

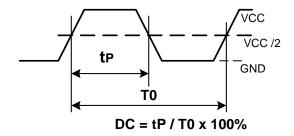



Figure 4. Output Duty Cycle (FoutDC)

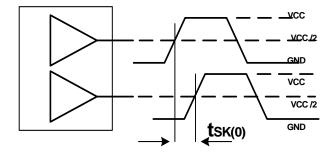
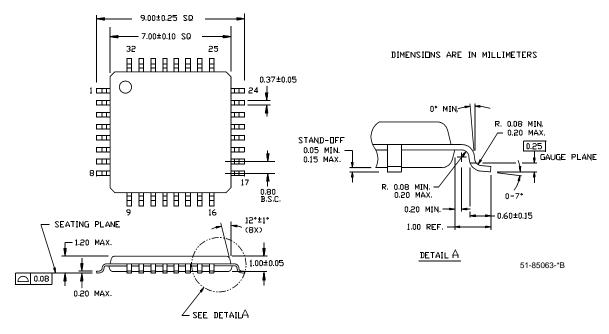



Figure 5. Output-to-Output Skew tsk(0).

[+] Feedback




### **Ordering Information**

| Part Number | Package Type                | Production Flow            |
|-------------|-----------------------------|----------------------------|
| CY29947AI   | 32 Pin TQFP                 | Industrial, -40°C to +85°C |
| CY29947AIT  | 32 Pin TQFP - Tape and Reel | Industrial, -40°C to +85°C |
| CY29947AC   | 32 Pin TQFP                 | Commercial, 0°C to +70°C   |
| CY29947ACT  | 32 Pin TQFP - Tape and Reel | Commercial, 0°C to +70°C   |

### **Package Drawing and Dimensions**

### 32-Lead Thin Plastic Quad Flatpack 7 x 7 x 1.0mm A32



All product and company names mentioned in this document may be the trademarks of their respective holders.



## **Revision History**

| Document Title: CY29947 2.5V or 3.3V, 200-MHz, 1:9 Clock Distribution Buffer Document Number: 38-07287 |         |               |                    |                                                                               |  |
|--------------------------------------------------------------------------------------------------------|---------|---------------|--------------------|-------------------------------------------------------------------------------|--|
| REV.                                                                                                   | ECN NO. | Issue<br>Date | Orig. of<br>Change | Description of Change                                                         |  |
| **                                                                                                     | 111098  | 02/07/02      | BRK                | New data sheet                                                                |  |
| *A                                                                                                     | 116781  | 08/14/02      | HWT                | Added Commercial Temperature Range in the ordering information                |  |
| *B                                                                                                     | 118462  | 09/09/02      | HWT                | Corrected the Package Drawing and Dimension in page 6 from 32 LQFP to 32 TQFP |  |
| *C                                                                                                     | 122879  | 12/22/02      | RBI                | Added power up requirements to Maximum Ratings                                |  |

Document #: 38-07287 Rev. \*C