Low Cost DDR Phase Lock Loop Zero Delay Buffer

Recommended Application:

DDR Zero Delay Clock Buffer

Product Description/Features:

- Low skew, low jitter PLL clock driver
- Max frequency supported $=266 \mathrm{MHz}$ (DDR 533)
- $I^{2} \mathrm{C}$ for functional and output control
- Feedback pins for input to output synchronization
- Spread Spectrum tolerant inputs
- 3.3V tolerant CLK_INT/C input

Switching Characteristics:

- CYCLE - CYCLE jitter: <100ps
- OUTPUT - OUTPUT skew: <100ps
- DUTY CYCLE: 48\% - 52\%

Pin Configuration

DDRC0	1		28	GND
DDRTO	2		27	DDRC5
VDD	3		26	DDRT5
DDRT1	4		25	DDRC4
DDRC1	5	$\mathbf{0}$	24	DDRT4
GND	6	\mathbf{N}	23	VDD
SCLK	7	\mathbf{M}	22	SDATA
CLK_INT	8	$\mathbf{9}$	21	FB_INC
CLK_INC	9	$\mathbf{0}$	20	FB_INT
VDDA	10	\mathbf{U}	19	FB_OUTT
GND	11		18	FB_OUTC
VDD	12		17	DDRT3
DDRT2	13		16	DDRC3
DDRC2	14		15	GND

28-Pin 209mil SSOP

Functionality

INPUTS		OUTPUTS			PLL State
AVDD	CLK_INT	CLKT	CLKC	FB_OUTT	
$2.5 V$ (nom)	L	L	H	L	on
$2.5 V$ (nom)	H	H	L	H	on

Pin Descriptions

PIN \#	PIN NAME	PIN TYPE	DESCRIPTION
1	DDRC0	OUT	"Complementary" Clock of differential pair output.
2	DDRT0	OUT	"True" Clock of differential pair output.
3	VDD	PWR	Power supply, nominal 2.5 V
4	DDRT1	OUT	"True" Clock of differential pair output.
5	DDRC1	OUT	"Complementary" Clock of differential pair output.
6	GND	PWR	Ground pin.
7	SCLK	IN	Clock pin of SMBus circuitry, 5 V tolerant.
8	CLK_INT	IN	"True" reference clock input.
9	CLK_INC	IN	"Complementary" reference clock input.
10	VDDA	PWR	2.5V power for the PLL core.
11	GND	PWR	Ground pin.
12	VDD	PWR	Power supply, nominal 2.5 V
13	DDRT2	OUT	"True" Clock of differential pair output.
14	DDRC2	OUT	"Complementary" Clock of differential pair output.
15	GND	PWR	Ground pin.
16	DDRC3	OUT	"Complementary" Clock of differential pair output.
17	DDRT3	OUT	"True" Clock of differential pair output.
18	FB_OUTC	OUT	Complement single-ended feedback output, dedicated external feedback. It switches at the same frequency as other DDR outputs, This output must be connect to FB_INC.
19	FB_OUTT	OUT	True single-ended feedback output, dedicated external feedback. It switches at the same frequency as other DDR outputs, This output must be connect to FB_INT.
20	FB_INT	IN	True single-ended feedback input, provides feedback signal to internal PLL for synchronization with CLK_INT to eliminate phase error.
21	FB_INC	IN	Complement single-ended feedback input, provides feedback signal to internal PLL for synchronization with CLK_INT to eliminate phase error.
22	SDATA	I/O	Data pin for SMBus circuitry, 5 V tolerant.
23	VDD	PWR	Power supply, nominal 2.5 V
24	DDRT4	OUT	"True" Clock of differential pair output.
25	DDRC4	OUT	"Complementary" Clock of differential pair output.
26	DDRT5	OUT	"True" Clock of differential pair output.
27	DDRC5	OUT	"Complementary" Clock of differential pair output.
28	GND	PWR	Ground pin.

Absolute Maximum Ratings

```
Supply Voltage (VDD & AVDD) . . . . . . . . . -0.5V to 3.6V
Logic Inputs ........................... . GND - 0.5 V to VDD +0.5 V
```



```
Storage Temperature . . . . . . . . . . . . . . . . -65' C to + 150'0
```

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input / Supply / Common Output parameters

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=2.50 \mathrm{~V} \pm 0.20 \mathrm{~V}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Current	$\mathrm{I}_{\mathrm{DD} 2.5}$	$\mathrm{R}_{\mathrm{T}}=120 \mathrm{~W}, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ at 100 MHz			300	mA
		$\mathrm{R}_{\mathrm{T}}=120 \mathrm{~W}, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ at 133 MHz			300	
	$\mathrm{I}_{\text {DDPD }}$	CL=0 pF			100	mA
Output High Current	IOH	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}$	-48		-29	mA
Output Low Current	$\mathrm{IOL}^{\text {l }}$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}$	29		37	mA
High Impedance	loz	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$ or GND			10	
Ouptut Current					10	mA
High-level Output Voltage	V_{OH}	$\mathrm{V}_{\mathrm{DD}}=\mathrm{min}$ to max, $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2			V
		$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$				
Low-level Output Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{DD}}=\min$ to max, $\mathrm{I}_{\mathrm{OH}}=1 \mathrm{~mA}$			0.1	V
		$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=12 \mathrm{~mA}$			0.4	
Output Capacitance ${ }^{1}$	Cout	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or GND				pF

1. Guaranteed by design, not 100% tested in production.

Recommended Operation Conditions

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{AV} \mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{DD}}=2.50 \mathrm{~V} \pm 0.20 \mathrm{~V}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Analog / Core Supply Voltage	$\mathrm{AV}_{\mathrm{DD}}$		2.3		2.7	V
Input Voltage Level	V_{IN}		2		3	V

Timing Requirements

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{AV} \mathrm{DD}, \mathrm{V}_{\mathrm{DD}}=2.50 \mathrm{~V}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Clock Frequency		freq $_{\text {op }}$	Input Voltage level: 0-2.50V	22		340
Input Clock Duty Cycle 1	$\mathrm{~d}_{\text {tin }}$		40	50	60	$\%$
Clock Stabilization 1	$\mathrm{t}_{\text {STAB }}$	from VDD $=2.5 \mathrm{~V}$ to 1% target frequency			100	$\mu \mathrm{~s}$

1. Guaranteed by design, not 100% tested in production.

Switching Characteristics

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $A \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=2.50 \mathrm{~V} \pm 0.20 \mathrm{~V}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Cycle to cycle Jitter ${ }^{1,2}$	$\mathrm{t}_{\mathrm{c}-\mathrm{c}}$	66 MHz to 266 MHz			100	ps
Phase Error ${ }^{1}$	t_{pe}		-150		150	ps
Output to output Skew ${ }^{1}$	$\mathrm{T}_{\text {skew }}$				100	ps
Duty Cycle (Sign Ended) ${ }^{1,3}$	DC	66 MHz to 267 MHz	48		52	\%
Rise Time, Fall Time ${ }^{4}$	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{f}}$	Load $=120 \Omega / 14 \mathrm{pF}$			950	ps
Output Differential Pair	V_{Oc}	$\mathrm{V}_{\mathrm{DD}}=2.50 \mathrm{~V}$	1.23		1.32	V
Crossing Voltage						

1. Guaranteed by design, not 100% tested in production.
2. Refers to transistion on non-inverting period.
3. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formular: duty_cycle $=\mathrm{t}_{\mathrm{wH}} / \mathrm{t}_{\mathrm{c}}$, where the cycle time $\left(\mathrm{t}_{\mathrm{c}}\right)$ decreases as the frequency increases.

ICS93776

General SMBus serial interface information

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D4 ${ }_{(H)}$
- ICS clock will acknowledge
- Controller (host) sends the begining byte location $=\mathrm{N}$
- ICS clock will acknowledge
- Controller (host) sends the data byte count $=\mathrm{X}$
- ICS clock will acknowledge
- Controller (host) starts sending Byte \mathbf{N} through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D4 ${ }_{(H)}$
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D5 ${ }_{(H)}$
- ICS clock will acknowledge
- ICS clock will send the data byte count $=\mathrm{X}$
- ICS clock sends Byte $\mathbf{N + X - 1}$
- ICS clock sends Byte 0 through byte X (if $X_{(H)}$ was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Bytes 2 to 6 are reseved power up default = 1. This allows operation with main clock.

$\begin{gathered} \text { BYTE } \\ 0 \end{gathered}$	Affected Pin		Control Function	Type	Bit Control		
	Pin \#	Name			0	1	PWD
Bit 7	2, 1	DDR0(T\&C)	Output Control	RW	DISABLE	ENABLE	1
Bit 6	4, 5	DDR1(T\&C)	Output Control	RW	DISABLE	ENABLE	1
Bit 5	-	-	Reserved	X	-	-	1
Bit 4	-	-	Reserved	X	-	-	1
Bit 3	13, 14	DDR2(T\&C)	Output Control	RW	DISABLE	ENABLE	1
Bit 2	26, 27	DDR5(T\&C)	Output Control	RW	DISABLE	ENABLE	1
Bit 1	-	-	Reserved	X	-	-	1
Bit 0	24, 25	DDR4(T\&C)	Output Control	RW	DISABLE	ENABLE	1

Note: PWD = Power Up Default

$\begin{gathered} \text { BYTE } \\ 1 \end{gathered}$	Affected Pin		Control Function	Type	Bit Control		
	Pin \#	Name			0	1	PWD
Bit 7	-	-	Reserved	X	-	-	1
Bit 6	16,17	DDR3(T\&C)	Output Control	RW	DISABLE	ENABLE	1
Bit 5	-	-	Reserved	X	-	-	0
Bit 4	-	-	Reserved	X	-	-	0
Bit 3	-	-	Reserved	RW	-	-	0
Bit 2	-	-	Reserved	X	-	-	0
Bit 1	-	-	Reserved	RW	-	-	0
Bit 0	-	-	Reserved	X	-	-	0

Note: PWD = Power Up Default

ICS93776

SYMBOL	In Millimeters		In Inches		
	COMMON DIMENSIONS	COMMON DIMENSIONS			
	MIN	MAX	MIN	MAX	
A	--	2.00	--	.079	
A1	0.05	--	.002	--	
A2	1.65	1.85	.065	.073	
b	0.22	0.38	.009	.015	
c	0.09	0.25	.0035	.010	
D	SEE VARIATIONS		SEE VARIATIONS		
E	7.40	8.20	.291	.323	
E1	5.00		5.60	.197	.220
e	0.65 BASIC		0.0256 BASIC		
L	0.55		0.95	.022	
N	SEE VARIATIONS		.037		
α	0°		8°	0°	

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
28	9.90	10.50	.390	.413

Reference Doc.: JEDEC Publication 95, MO-150
10-0033
209 mil SSOP

Ordering Information

ICS93776yFLF-T

ICS93776

Revision History

Rev.	Issue Date	Description	Page \#
N/A	$8 / 12 / 2004$	Updated I2c	6
N/A	$8 / 20 / 2004$	Updated I2c	6

