Digital Indicators K3HB Series (Pulse Input Series)

The K3HB Series has been made complete with the addition of Digital Signal Input Models.

- Easy recognition of judgment results using two-color display that can be switched between red and green.
- Equipped with a position meter for monitoring operating status trends.
- External event inputs allows using various measurement and discrimination applications.
- Series expanded to include DeviceNet models.
- Short body with depth of only 95 mm (see note) (from behind the front panel).
- UL certification (Certification Mark License).
- CE Marking conformance by third party assessment body.
- Water-resistant enclosure conforms to NEMA 4X (equivalent to IP66).
Note: Depth of 97 mm for DeviceNet models.

```
Refer to Common Precautions on page 30.
```


Features

Red-Green Display Allows Easy Recognition of Judgment Results

The measurement value display can be set to switch between red and green in accordance with the status of comparative outputs. This means that the status can be easily seen at a distance.

Position Meter Enables Easy Monitoring of Operating Status Trends

The present value with respect to the measurement or display range (full scale) can be viewed on a bar display. The operating status can be grasped intuitively, allowing easy judgment of levels and threshold values.

Position meter

Note: This function is different from the single-LED display of the K3HB-C.
Short Body with Depth of Only 95 mm (from Behind the Front Panel)
A short body of only 95 mm (see note) contributes to the development of slimmer and smaller control panels and installations.

(The depth is 100 mm when mounted to the terminal cover.)
Note: Depth of DeviceNet models is 97 mm .

50 kHz High-speed Pulse Measurement (K3HB-R)

Supports high-speed pulse measurement (up to 50 kHz) of rotary encoders or any ON/OFF pulse signal, which enables rotational measurement of objects rotating at high speeds.

Note: No-voltage contacts of up to 30 Hz are supported.

Measurement of Wide Range of Pulse Interval Times (K3HB-P)

Measures and displays the results of the pulse interval between two points. The pulse interval measurement range is broad, from 10 ms to $3,200 \mathrm{~s}$.

High-speed Up/Down Counting Pulse Measurement (K3HB-C)
Perfect for high-speed measurement of rotary encoders or any ON/OFF pulse signals. Cumulative pulse input is 50 kHz , quadrature pulse inputs are 25 kHz , and up/down pulse inputs are 30 kHz .
Note: No-voltage contacts of up to 30 Hz are supported.

Many I/O Variations for Discrimination, Control, and Information Applications
Digital Indicators are used in a wide variety of applications, from an electronic measurement value display or equipment/device operating status display to a host communications interface in monitoring and control systems. OMRON provides a complete lineup for a variety of input and control output applications to meet all your application requirements.

Relay Outputs

Transistor Outputs

H and L: SPDT

Communications

Output
RS-232 or RS-485
HH, H, L, and LL: SPST-NO

Linear Output
Voltage Output or Current Output
PASS: SPDT

DeviceNet
BCD Output
NPN Open Collector

Select a Comparative Output Pattern to Suit the Discrimination or Control Application

- The output pattern for comparative outputs can be selected. In addition to high/low comparison with set values, output based on level changes is also possible. (Use the type of output pattern appropriate for the application.)

Note: The HH, H, L or LL outputs must be set in that order for the zone outputs to output correctly.
(This is because the comparative set values and outputs for standard and level outputs are in a 1-to-1 relationship, whereas the meaning of zone outputs depends on the settings of all the comparative set values.)

BCD

Lineup Includes DeviceNet Models Enabling High-speed Data Communications with PLCs without Special Programming

- DeviceNet compliance enables high-speed data transmission by allocating setting and monitoring parameters in the I/O memory of the PLC. This capability greatly reduces labor spent in developing communications programs.

Note: The applications provided in this catalog are intended as reference only. Do not attempt to use any of them in real systems without first confirming machine and device functions and safety. For applications that require safety, ensure that there is sufficient leeway in ratings and performances, install fail-safe measures, and take any other safety measures required by the application. In addition, contact your nearest OMRON representative and confirm specifications.

K3HB-series Product Lineup

■ K3HB-R Rotary Pulse Indicator (Page 4)

Performs High-speed Rotation Measurement Displaying Bread Baking Time and Passing Time Measurement

Rotary Pulse Input Model: K3HB-R
K3HB-RNB: NPN input/voltage pulse input
K3HB-RPB: PNP input

- Input types: rpm/circumferential speed, absolute ratio, error ratio, error, concentration, and passing time
- Measurement range: 0.5 mHz to 50 kHz

K3HB-P Time Interval Indicator (Page 10)

Measuring Passing Speed between Two Points and Providing Time Judgments
 Measuring Shot Speed

Pulse Input Model: K3HB-P
K3HB-PNB: NPN input/voltage pulse input
K3HB-PPB: PNP input

- Inputs: Passing speed, cycle, time difference, time band, measuring length, interval

- Measurement ranges: Functions F1, F3, and F4: 10 ms to 3200 s

Function F2: $\quad 20 \mathrm{~ms}$ to 3200 s
Functions F5 and F6: 0 to 4 gigacounts

■ K3HB-C Up/Down Counting Pulse Indicator (Page 15)

Measuring and Monitoring High-speed
Up/Down Pulses

Up/down Counting Pulse Input Model: K3HB-C
K3HB-CNB: NPN input/voltage pulse input

- Inputs: Individual inputs (up/down), quadrature inputs (up/down), cumulative input
- Response frequency: Individual inputs: 30 kHz , quadrature inputs 25 kHz, cumulative input: 50 kHz

Note: No-voltage contacts of up to 30 Hz are supported.

- Measurement ranges: Functions F1 and F2: ± 2 gigacounts

Function F3: 0 to 4 gigacounts

Counting Workpieces

Rotary Pulse Indicator K3HB-R

Digital Rotary Pulse Meter Capable of 50 kHz Measurements

- Measures High-speed Pulses at 50 kHz . Provides high-speed pulse measurements up to 50 kHz of rotary encoder or ON/OFF pulse signals and can perform rotating measurement of high-speed rotating objects.
Note: No-voltage contacts of up to 30 Hz are supported.
- Six Measurement Operations Including Rotation (rpm)/ Circumferential Speed, Ratio, and Cumulative One Rotary Pulse Meter has 6 rotary pulse measurement functions to support a variety of pulse measurement applications. Select the best function for your application from the following: rotation (rpm)/ circumferential speed, absolute ratio, error ratio, error, flow rate ratio, and passing time.

Refer to Common Precautions on page 30.
Model Number Structure

Model Number Legend

Base Units and Optional Boards can be ordered individually or as sets.

Base Units

1. Input Sensor Codes

NB: NPN input/voltage pulse input PB: PNP input
5. Supply Voltage

100-240 VAC: 100 to 240 VAC
24 VAC/VDC: 24 VAC/VDC

Optional Board

Sensor Power Supply/Output Boards

K33- \square
2
Relay/Transistor Output Boards
K34- \square

Event Input Boards

K35- \square
4

Base Units with Optional Boards

2. Sensor Power Supply/Output Type Codes

None: None
CPA: Relay output (PASS: SPDT) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 1.)
L1A: Linear current output (DC0(4)-20 mA) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
L2A: Linear voltage output (DC0(1)-5 V, 0 to 10 V) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
A: \quad Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$)
FLK1A: Communications (RS-232C) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
FLK3A: Communications (RS-485) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
3. Relay/Transistor Output Type Codes

None: None
C1: Relay contact (H/L: SPDT each)
C2: Relay contact (HH/H/LL/L: SPST-NO each)
T1: Transistor (NPN open collector: HH/H/PASS/L/LL)
T2: Transistor (PNP open collector: HH/H/PASS/L/LL)
BCD: BCD output + transistor output (NPN open collector: HH/H/PASS/L/LL)
DRT: DeviceNet (See note 2.)
4. Event input Type Codes

None: None
1: 5 points (M3 terminal blocks) NPN open collector
2: 8 points (10 -pin MIL connector) NPN open collector
3: $\quad 5$ points (M3 terminal blocks) PNP open collector
4: 8 points (10-pin MIL connector) PNP open collector

Note: 1. CPA can be combined with relay outputs only.
2. Only one of the following can be used by each Digital Indicator:

RS-232C/RS-485 communications, BCD communications, or DeviceNet communications.

Accessories (Sold Separately)

K32-DICN: Special Cable (for event inputs with 8-pin connector)
K32-BCD: Special BCD Output Cable

Specifications

Ratings

Supply voltage		100 to 240 VAC, 24 VAC/VDC, DeviceNet power supply: 24 VDC
Allowable power supply voltage range		85% to 110% of the rated power supply voltage, DeviceNet power supply: 11 to 25 VDC
Power consumption (See note 1.)		100 to 240 VAC: 18 VA max. (max. load) 24 VAC/DC: 11 VA/7 W max. (max. load)
Current consumption		DeviceNet power supply: 50 mA max. (24 VDC)
Input		No-voltage contact, voltage pulse, open collector
External power supply		$12 \mathrm{VDC} \pm 10 \%$, 80 mA (models with external power supply only)
Event inputs (See note 2.)	Startup compensation timer input	NPN open collector or no-voltage contact signal ON residual voltage: 2 V max. ON current at 0Ω : 4 mA max. Max. applied voltage: 30 VDC max. OFF leakage current: 0.1 mA max.
	Hold input	
	Reset input	
	Bank input	
Output ratings (depends on the model)	Relay output	250 VAC, 30 VDC, 5 A (resistive load) Mechanical life expectancy: 5,000,000 operations, Electrical life expectancy: 100,000 operations
	Transistor output	Maximum load voltage: 24 VDC , Maximum load current: 50 mA , Leakage current: $100 \mu \mathrm{~A}$ max.
	Linear output	Linear output 0 to $20 \mathrm{~mA} \mathrm{DC}, 4$ to 20 mA : Load: 500Ω max, Resolution: Approx. 10,000, Output error: $\pm 0.5 \%$ FS Linear output 0 to 5 VDC, 1 to 5 VDC, 0 to 10 VDC: Load: $5 \mathrm{k} \Omega$ max, Resolution: Approx. 10,000, Output error: $\pm 0.5 \%$ FS (1 V or less: $\pm 0.15 \mathrm{~V}$; not output for 0 V or less)
Display method		Negative LCD (backlit LED) display 7-segment digital display (Character height: PV: 14.2 mm (green/red); SV: 4.9 mm (green))
Main functions		Scaling function, measurement operation selection, averaging, previous average value comparison, output hysteresis, output OFF delay, output test, teaching, display value selection, display color selection, key protection, bank selection, display refresh period, maximum/minimum hold, reset
Ambient operating temperature		-10 to $55^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		25\% to 85\%
Storage temperature		-25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Altitude		2,000 m max.
Accessories		Watertight packing, 2 fixtures, terminal cover, unit stickers, instruction manual. DeviceNet models also include a DeviceNet connector (Hirose HR31-5.08P-5SC(01)) and crimp terminals (Hirose HR31-SC-121) (See note 3.)

Note: 1. DC power supply models require a control power supply capacity of approximately 1 A per Unit when power is turned ON. Particular attention is required when using two or more DC power supply models. The OMRON S8VS-series DC Power Supply Unit is recommended.
2. PNP input types are also available.
3. For K3HB-series DeviceNet models, use only the DeviceNet Connector included with the product. The crimp terminals provided are for Thin Cables.

■ Characteristics

Display range		-19,999 to 99,999
Measurement accuracy (at $23 \pm 5^{\circ} \mathrm{C}$)		Functions F1, F6: $\pm 0.006 \%$ rgd ± 1 digit (for voltage pulse/open collector sensors) Functions F2 to F5: $\pm 0.02 \%$ rgd ± 1 digit (for voltage pulse/open collector sensors)
Measurement range		Functions F1 to F6: 0.5 mHz to 50 kHz (for voltage pulse/open collector sensors)
Input signals		No-voltage contact ($30-\mathrm{Hz}$ max. with ON/OFF pulse width of 15 ms min.) Voltage pulse ($50-\mathrm{KHz}$ max. with ON/OFF pulse width of $9 \mu \mathrm{~s}$ min.; ON voltage: 4.5 to 30 V ; OFF voltage: -30 to 2 V ; input impedance: $10 \mathrm{k} \Omega$) Open collector ($50-\mathrm{KHz}$ max. with ON/OFF pulse width of $9 \mu \mathrm{~s}$ min.)
Connectable sensors		ON residual voltage: 3 V max. OFF leakage current: 1.5 mA max. Load current: Must have a switching capacity of 20 mA or higher. Must be able to properly switch load currents of 5 mA or less.
Comparative output response time (transistor output)		Functions F1 to F6: 100 ms max. (time until the comparative output is made when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%.)
Linear output response time		Functions F1 to F6: 110 ms max. (time until the final analog output value is reached when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%.)
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength		2,300 VAC for 1 min between external terminals and case
Noise immunity		100 to 240 VAC models: $\pm 1,500 \mathrm{~V}$ at power supply terminals in normal or common mode (waveform with 1 -ns rising edge and pulse width of $1 \mu \mathrm{~s} / 100 \mathrm{~ns}$) 24 VAC/VDC models: $\pm 1,500 \mathrm{~V}$ at power supply terminals in normal or common mode (waveform with 1 -ns rising edge and pulse width of $1 \mu \mathrm{~s} / 100 \mathrm{~ns}$)
Vibration resistance		Frequency: 10 to 55 Hz ; Acceleration: $50 \mathrm{~m} / \mathrm{s}^{2}, 10$ sweeps of 5 min each in X, Y, and Z directions
Shock resistance		$150 \mathrm{~m} / \mathrm{s}^{2}$ ($100 \mathrm{~m} / \mathrm{s}^{2}$ for relay outputs) 3 times each in 3 axes, 6 directions
Weight		Approx. 300 g (Base Unit only)
Degree of protection	Front panel	Conforms to NEMA 4X for indoor use (equivalent to IP66)
	Rear case	IP20
	Terminals	IP00 + finger protection (VDE0106/100)
Memory protection		EEPROM (non-volatile memory) Number of rewrites: 100,000
Applicable standards		UL61010C-1, CSA C22.2 No. 1010.1 (evaluated by UL) EN61010-1 (IEC61010-1): Pollution degree 2/Overvoltage category II EN61326: 1997, A1: 1998, A2: 2001
EMC		EMI: EN61326+A1 industrial applications Electromagnetic radiation interference CISPR 11 Group 1, Class A: CISPRL16-1/-2 Terminal interference voltage CISPR 11 Group 1, Class A: CISPRL16-1/-2 EMS: EN61326+A1 industrial applications Electrostatic Discharge Immunity EN61000-4-2: 4 kV (contact), 8 kV (in air) Radiated Electromagnetic Field Immunity EN61000-4-3: $10 \mathrm{~V} / \mathrm{m} 1 \mathrm{kHz}$ sine wave amplitude modulation (80 MHz to 1 GHz , 1.4 to 2 GHz) Electrical Fast Transient/Burst Immunity EN61000-4-4: 2 kV (power line), 1 kV (I/O signal line) Surge Immunity EN61000-4-5: 1 kV with line (power line), 2 kV with ground (power line) Conducted Disturbance Immunity EN61000-4-6: 3 V (0.15 to 80 MHz) Power Frequency Magnetic Immunity EN61000-4-8: $30 \mathrm{~A} / \mathrm{m}(50 \mathrm{~Hz}$) continuous time Voltage Dips and Interruptions Immunity EN61000-4-11: 0.5 cycle, $0 \% 180^{\circ}, 100 \%$ (rated voltage)

Operation

Functions (Operating Modes)

F1 to F6

Functions F1 to F6 provide rpm/circumferential speed and other calculation displays by measuring continuous pulses (frequencies).
Example

F1: Displays rotation (rpm) or circumferential speed for one input.
F2 to F5: Displays the calculation result for two rotation (rpm) speeds.
F6: Displays the passing time calculated from the circumferential speed and the length of the processing stage for one input.

The basic principle used by the Digital Indicator to calculate the rotation speed (rpm) display is to count the ON/OFF time (T) for input sensor or other device inputs using the internal system clock, and then automatically calculate the frequency. This frequency (f) is multiplied by 60 and displayed as the rotation (rpm) speed.

Input sensor or other input pulse ON/OFF time $(T)=\square \quad$ Frequency (f) $=\frac{1}{T}$

- Rotation speed (rpm) $=\mathrm{f} \times 60$
- Circumferential speed $=$ Roll circumference \times Rotation speed (rpm)
- Passing time $=\frac{\text { Length of processing stage }}{\text { Circumferential speed }}$

These calculations are automatically made internally and displayed whenever any input pulse is received.

Function	Operation	Operation image (application)
F2 Absolute ratio	Multiples input B divided by input $A\left(\frac{B}{A}\right)$ by 100 and displays the ratio as a percentage (\%). Display unit: \%	Measuring the speed ratio between two rollers
F3 Error ratio	Multiplies the error between input A and input B $\left(\frac{B}{A}-1\right)$ by 100 and displays the ratio as a percentage (\%). Display unit: \%	Measuring the line speed error ratio between two conveyors
F4 Rotational difference	Displays the difference between input A and input B ($\mathrm{B}-\mathrm{A}$) as the rotation (rpm) speed error or circumferential speed error.	Measuring the rotation (rpm)/circumferential speed error (absolute error) between two conveyors
F5 Flow rate ratio	Displays the flow rate ratio of B from inputs A and B $\left(\frac{B}{A+B}\right)$ as a ratio (\%). Display unit: \%	Monitoring liquid mixture flow rate ratio
F6 Passing time	Passing time $(s)=1 / f a \times \alpha$ fa: Input frequency (Hz) Set the prescale value for the desired display unit using the following table for reference. $\mathrm{N}=$ Pulses per rotation $\pi d=$ Circumferential length per rotation (m) $\mathrm{L}=$ Length of process (m)	Displaying the passing time for a conveyor line

What Is Prescaling？

To make calculations using the input pulse to display rotation（rpm） or circumferential speed，the number of pulses per rotation or the length of the circumference must be multiplied by a certain coefficient．This coefficient is called the prescale value．

Rotation speed（rpm）$=\mathrm{f} \times 60 \times \mathrm{a}$
f：Input pulse frequency（No．of pulses per second）
a：Prescale value
If there are 5 pulses per rotation，then
$a=1 / 5\left(=0.2=2 \times 10^{-1}\right)$
and an accurate rotation speed（rpm）can be calculated．
The actual setting is $\mathrm{X}=2.0000$（mantissa）and $\mathrm{Y}=10^{-1}$（exponent）．

What Is the Auto－zero Function？

（Set this function before using the Digital Indicator．）
If a function $\boldsymbol{F} \boldsymbol{;}$ to \boldsymbol{F} is set，the frequency can be force－set to zero if there is no input pulse for a set period．This period is called the auto－ zero time．Set the auto－zero time to slightly longer than the longest input pulse interval．（The display will not easily return to zero if the auto－zero time is too long or left at the default setting．）

Time Unit Settings

Setting	Meaning
55 Cl	Prescale value menu setting
号号	Minute display
4.00 .55	h．mm．ss display
万in．55．d	mm．ss．d display（ $\mathrm{d}=$ tenths of a second）

Note：Time unit can be set only when passing time（F6）is selected．
Input Type Setting

	NO：Voltage pulse high	NC：Voltage pulse Iow
No－contact or voltage pulse input		$2:$
Contact	iE	i：

Note：Set to 16 or i when there is a large variation in the display． The largest measurement range is 30 Hz ．

Timer Interval Indicator K3HB-P

Digital Time Interval Meter for Measuring Passing Speed, Time, or Cycle between Two Points.

- Measures Wide Range of Pulse Interval Times Measures, calculates, and displays pulse intervals between two points. Wide range for pulse interval measurements, from 10 ms to 3,200 s, max.
- Six Measurement Operations, Including Passing Speed, Time, and Cycle Measurement between Two Points
One Digital Time Interval Meter has six measurement functions, to support a variety of pulse interval measurement applications. Select the best function for your application from the following: Passing speed, cycle, time difference, time band, measuring length, and interval.

Model Number Structure

Model Number Legend

Base Units and Optional Boards can be ordered individually or as sets.

Base Units

1. Input Sensor Codes

NB: NPN input/voltage pulse input PB: PNP input
5. Supply Voltage

100-240 VAC: 100 to 240 VAC
24 VAC/VDC: 24 VAC/VDC

Optional Board

Sensor Power Supply/Output Boards

K33- \square

Relay/Transistor Output Boards
K34- \square
3

Event Input Boards

K35- \square
$\overline{4}$

Base Units with Optional Boards

2. Sensor Power Supply/Output Type Codes

None: None
CPA: Relay output (PASS: SPDT) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 1.)
L1A: Linear current output (DC0(4)-20 mA) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
L2A: Linear voltage output (DC0(1)-5 V, 0 to 10 V) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
A: Sensor power supply (12 VDC $\pm 10 \%, 80 \mathrm{~mA}$)
FLK1A: Communications (RS-232C) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
FLK3A: Communications (RS-485) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
3. Relay/Transistor Output Type Codes

None: None
C1: Relay contact (H/L: SPDT each)
C2: Relay contact (HH/H/LL/L: SPST-NO each)
T1: Transistor (NPN open collector: HH/H/PASS/L/LL)
T2: Transistor (PNP open collector: HH/H/PASS/L/LL)
BCD: BCD output + transistor output (NPN open collector: HH/H/PASS/L/LL)
DRT: DeviceNet (See note 2.)
4. Event input Type Codes

None: None
1: $\quad 5$ points (M3 terminal blocks) NPN open collector
2. 8 points (10-pin MIL connector) NPN open collector

3: 5 points (M3 terminal blocks) PNP open collector
4: 8 points ($10-$ pin MIL connector) PNP open collector

Note: 1. CPA can be combined with relay outputs only.
2. Only one of the following can be used by each Digital Indicator:

RS-232C/RS-485 communications, a linear output, or DeviceNet communications.

Accessories (Sold Separately)

K32-DICN: Special Cable (for event inputs with 8-pin connector)
K32-BCD: Special BCD Output Cable

Specifications

Ratings

Supply voltage		100 to 240 VAC, 24 VAC/VDC, DeviceNet power supply: 24 VDC
Allowable power supply voltage range		85\% to 110% of the rated power supply voltage, DeviceNet power supply: 11 to 25 VDC
Power consumption (See note 1.)		100 to 240 VAC: 18 VA max. (max. load) 24 VAC/DC: 11 VA/7 W max. (max. load)
Current consumption		DeviceNet power supply: 50 mA max. (24 VDC)
Input		No-voltage, voltage pulse, open collector
External power supply		$12 \mathrm{VDC} 10 \%$, 80 mA (for models with external power supplies only)
Event inputs (See note 2.)	Hold input	NPN open collector or no-voltage contact signal ON residual voltage: 2 V max. ON current at 0Ω : 4 mA max. Max. applied voltage: 30 VDC max. OFF leakage current: 0.1 mA max.
	Reset input	
	Bank input	
Output ratings (depends on the model)	Relay output	250 VAC, 30 VDC, 5 A (resistive load) Mechanical life expectancy: 5,000,000 operations, Electrical life expectancy: 100,000 operations
	Transistor output	Maximum load voltage: 24 VDC, Maximum load current: 50 mA , Leakage current: $100 \mu \mathrm{~A}$ max.
	Linear output	Linear output 0 to $20 \mathrm{~mA} \mathrm{DC}, 4$ to 20 mA : Load: 500Ω max, Resolution: Approx. 10,000, Output error: $\pm 0.5 \%$ FS Linear output 0 to 5 VDC, 1 to 5 VDC, 0 to 10 VDC: Load: $5 \mathrm{k} \Omega$ max, Resolution: Approx. 10,000, Output error: $\pm 0.5 \%$ FS (1 V or less: $\pm 0.15 \mathrm{~V}$; not output for 0 V or less)
Display method		Negative LCD (backlit LED) display 7-segment digital display (Character height: PV: 14.2 mm (green/red); SV: 4.9 mm (green))
Main functions		Scaling function, measurement operation selection, output hysteresis, output OFF delay, output test, teaching, display value selection, display color selection, key protection, bank selection, display refresh period, maximum/minimum hold, reset
Ambient operating temperature		-10 to $55^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		25\% to 85\%
Storage temperature		-25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Altitude		2,000 m max.
Accessories		Watertight packing, 2 fixtures, terminal cover, unit stickers, instruction manual. DeviceNet models also include a DeviceNet connector (Hirose HR31-5.08P-5SC(01)) and crimp terminals (Hirose HR31-SC-121) (See note 3.)

Note: 1. DC power supply models require a control power supply capacity of approximately 1 A per Unit when power is turned ON. Particular attention is required when using two or more DC power supply models. The OMRON S8VS-series DC Power Supply Unit is recommended.
2. PNP input types are also available.
3. For K3HB-series DeviceNet models, use only the DeviceNet Connector included with the product. The crimp terminals provided are for Thin Cables.

■ Characteristics

Display range		-19,999 to 99,999						
Measurement accuracy (at $23 \pm 5^{\circ} \mathrm{C}$)		$\pm 0.08 \% \mathrm{rgd} \pm 1$ digit (for voltage pulse/open collector sensors)						
Measurement range		Functions F1, F3, and F4: 10 ms to $3,200 \mathrm{~s}$ Function F2: Functions F5 and F6: $\quad 0$ ms to $3,200 \mathrm{~s}$						
Input signals		- No-voltage contact (30 Hz max. with ON/OFF pulse width of 15 ms min .)						
		Mode	Input frequency range	ON/OFF pulse width	ON voltage	OFF voltage	Input impedance	\bullet •Voltage pulse
		F1 to F4	0 to 50 kHz	$9 \mu \mathrm{~s} \mathrm{~min}$.	4.5 to 30 V	-30 to 2 V	$10 \mathrm{k} \Omega$	
		F5, F6	0 to 30 kHz	$16 \mu \mathrm{~s}$ min.				
		Mode	Input frequency range	ON/OFF pulse width	Note: The will	Digital Time Int malfunction if a	erval Meter pulse greater	Opencollector
		F1 to F4	0 to 50 kHz	$9 \mu \mathrm{~s}$ min.	in	he input frequ SYSERR ma	ency range is appear on	
		F5, F6	0 to 30 kHz	$16 \mu \mathrm{~s}$ min.		splay.		
Connectable sensors		ON residual voltage: 3 V max. OFF leakage current: 1.5 mA max. Load current: Must have a switching capacity of 20 mA or higher. Must be able to properly switch load currents of 5 mA or less.						
Comparative output response time (transistor output)		2 ms max. (time until the comparative output is made when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%)						
Linear output response time		10 ms max. (time until the final analog output value is reached when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%)						
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC$)$						
Dielectric strength		2,300 VAC for 1 min between external terminals and case						
Noise immunity		100 to 240 VAC models: $\pm 1,500 \mathrm{~V}$ at power supply terminals in normal or common mode (waveform with 1-ns rising edge and pulse width of $1 \mu \mathrm{~s} / 100 \mathrm{~ns}$) 24 VAC/VDC models: $\pm 1,500 \mathrm{~V}$ at power supply terminals in normal or common mode (waveform with 1-ns rising edge and pulse width of $1 \mu \mathrm{~s} / 100 \mathrm{~ns}$)						
Vibration resistance		Frequency: 10 to 55 Hz ; Acceleration: $50 \mathrm{~m} / \mathrm{s}^{2}, 10$ sweeps of 5 min each in X, Y, and Z directions						
Shock resistance		$150 \mathrm{~m} / \mathrm{s}^{2}$ (100 m/ ${ }^{2}$ for relay outputs) 3 times each in 3 axes, 6 directions						
Weight		Approx. 300 g (Base Unit only)						
Degree of protection	Front panel	Conforms to NEMA 4X for indoor use (equivalent to IP66)						
	Rear case	IP20						
	Terminals	IP00 + finger protection (VDE0106/100)						
Memory protection		EEPROM (non-volatile memory) Number of rewrites: 100,000						
Applicable standards		UL61010C-1, CSA C22.2 No. 1010.1 (evaluated by UL) EN61010-1 (IEC61010-1): Pollution degree 2/Overvoltage category II EN61326: 1997, A1: 1998, A2: 2001						
EMC		EMI: EN61326+A1 industrial applications Electromagnetic radiation interference CISPR 11 Group 1, Class A: CISPRL16-1/-2 Terminal interference voltage CISPR 11 Group 1, Class A: CISPRL16-1/-2 EMS: EN61326+A1 industrial applications Electrostatic Discharge Immunity EN61000-4-2: 4 kV (contact), 8 kV (in air) Radiated Electromagnetic Field Immunity EN61000-4-3: $10 \mathrm{~V} / \mathrm{m} 1 \mathrm{kHz}$ sine wave amplitude modulation (80 MHz to $1 \mathrm{GHz}, 1.4 \mathrm{GHz}$ to 2 GHz) Electrical Fast Transient/Burst Immunity EN61000-4-4: 2 kV (power line), 1 kV (I/O signal line) Surge Immunity EN61000-4-5: 1 kV with line (power line), 2 kV with ground (power line) Conducted Disturbance Immunity EN61000-4-6: 3 V (0.15 to 80 MHz) Power Frequency Magnetic Immunity EN61000-4-8: $30 \mathrm{~A} / \mathrm{m}(50 \mathrm{~Hz})$ continuous time Voltage Dips and Interruptions Immunity EN61000-4-11: 0.5 cycle, $0^{\circ} / 180^{\circ}, 100 \%$ (rated voltage)						

Operation

Functions (Operating Modes)

F1 to F6

These functions use the internal system clock to measure the time between pulses or the pulse ON time and then display time measurements or a variety of other calculations.

Example: F1 Passing Speed

Function name	Function No.
Passing speed	Fi
Cycle	Fs
Time difference	Fs
Time band	F4
Measuring length	FS
Interval	FS

The time (T) between input A pulse and input B pulse is measured by the internal system clock. If, for example, the system clock measures 100,000 counts during time T , then
$\mathrm{T}=1$ system clock count $(0.5 \mu \mathrm{~s}) \times 100,000$

$$
\mathrm{T}=0.05 \mathrm{~s}
$$

F1 (the passing speed) is calculated internally using the formula $\frac{1}{T} \times 60(\mathrm{~m} / \mathrm{min})$, and the display, in this example, would be $\frac{1}{0.05 \mathrm{~s}} \times 60=$ 1200 ($\mathrm{m} / \mathrm{min}$).

Function	Operation	Operation image (application)
F1 Passing speed	The reciprocal of the time (T) from input A ON to input B ON is multiplied by 60 and displayed. - Recovery time (T_{R}) of 20 ms is required before starting the next measurement. $\left(\begin{array}{l} \text { Display unit: } \\ \mathrm{mm} / \mathrm{s}, \mathrm{~m} / \mathrm{s} \\ \mathrm{~m} / \mathrm{min}, \mathrm{~km} / \mathrm{h}, \text { etc. } \end{array}\right)$	Measuring workpiece passing speed between A and B
F2 Cycle	Measures and displays input A cycle (T).	Measuring feed cycles for parts
F3 Time difference	Displays the time (T) from input A ON to input B ON. Measurement range: 10 ms to $3,200 \mathrm{~s}$ - Recovery time (TR) of 20 ms is required before starting the next measurement. $\left(\begin{array}{c} \text { Display unit: } \\ \text { ms, s, min., } \\ \min . s .1 / 10 \mathrm{~s} \end{array}\right)$	Measuring workpiece passing time between A and B Measuring the length of a workpiece step by changing prescale values.

Function	Operation	Operation image (application)
F4 Time band	Displays input A ON time (T). Measurement range: 10 ms to $3,200 \mathrm{~s}$ - Recovery time (TR) of 20 ms is required before starting the next measurement. $\left(\begin{array}{c} \text { Display unit: } \\ \text { ms, s, min., } \\ \min . s .1 / 10 \mathrm{~s} \end{array}\right)$	Monitoring the ON time of a printing press Managing the valve release time
F5 Measuring length	Displays the number of input A pulses while input B is ON. - Recovery time (TR) of 20 ms is required before starting the next measurement. $\binom{\text { Display unit: }}{\mathrm{mm}, \mathrm{~cm}, \mathrm{~m}, \text { etc. }}$	Measuring workpiece length
F6 Interval	Displays the number of input A pulses from when input B turns ON until input B turns ON again. Measurement is made every other time input B turns ON . - Recovery time (TR) of 20 ms is required before starting the next measurement. $\binom{\text { Display unit: }}{\mathrm{mm}, \mathrm{~cm}, \mathrm{~m}, \text { etc. }}$	Measuring slit intervals

What Is Prescaling?

To make calculations using the input pulse to display the passing speed between two points, the distance between the two points and the display unit must be set and the internally measured time multiplied by a certain coefficient. This coefficient is called the prescale value. (For information on settings details, refer to the User's Manual.)

Time Unit Settings

Setting	Meaning
568t	Prescale value menu setting
兄为	Minute display
4.00 .55	h.mm.ss display
¢7.55.d	mm.ss.d display ($\mathrm{d}=$ tenths of a second)

Input Type Setting

	NO: Voltage pulse high	NC: Voltage pulse low
No-contact or voltage pulse input		
Contact	IS	it

Note: Set to or $i f$ when there is a large variation in the display. The largest measurement range is 30 Hz .

Up/Down Counting Pulse Indicator K3HB-C

Measure High-speed Up/down Pulses with this Up/down Pulse Meter.

- Perfect for Measuring Rotary Encoder and ON/OFF Pulse Signals at High Speed
Cumulative pulse input is 50 kHz , quadrature pulse inputs are 25 kHz , and up/down pulse inputs are 30 kHz .
Note: No-voltage contacts of up to 30 Hz are supported.
- The count value can be converted to any value.

The length equivalent for any pulse can be set to any desired value. This is effective for feed amount and position monitor displays.

Model Number Structure

Model Number Legend

Base Units and Optional Boards can be ordered individually or as sets.

Base Units

1. Input Sensor Codes

NB: NPN input/voltage pulse input PB: PNP input
5. Supply Voltage
$100-240$ VAC: 100 to 240 VAC
24 VAC/VDC: 24 VAC/VDC

Optional Board

Sensor Power Supply/Output Boards
K33- $-\frac{\square}{2}$
Relay/Transistor Output Boards
K34- \square

Event Input Boards
K35-
4

Base Units with Optional Boards

2. Sensor Power Supply/Output Type Codes

None: None
CPA: Relay output (PASS: SPDT) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 1.)
L1A: Linear current output (DC0(4)-20 mA) + Sensor power supply
($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
L2A: Linear voltage output (DC0(1)-5 V, 0 to 10 V) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
A: Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$)
FLK1A: Communications (RS-232C) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
FLK3A: Communications (RS-485) + Sensor power supply ($12 \mathrm{VDC} \pm 10 \%, 80 \mathrm{~mA}$) (See note 2.)
3. Relay/Transistor Output Type Codes

None: None
C1: Relay contact (H/L: SPDT each)
C2: Relay contact (HH/H/LL/L: SPST-NO each)
T1: Transistor (NPN open collector: HH/H/PASS/L/LL)
T2: Transistor (PNP open collector: HH/H/PASS/L/LL)
BCD: BCD output + transistor output (NPN open collector: $\mathrm{HH} / \mathrm{H} / \mathrm{PASS} / \mathrm{L} / \mathrm{LL}$)
DRT: DeviceNet (See note 2.)
4. Event input Type Codes

None: None
1: 5 points (M3 terminal blocks) NPN open collector
2: 8 points (10-pin MIL connector) NPN open collector
3: 5 points (M3 terminal blocks) PNP open collector
4. 8 points (10-pin MIL connector) PNP open collector

Note: 1. CPA can be combined with relay outputs only.
2. Only one of the following can be used by each Digital Indicator:

RS-232C/RS-485 communications, a linear output, or DeviceNet communications.

Accessories (Sold Separately)

K32-DICN: Special Cable (for event inputs with 8-pin connector)
K32-BCD: Special BCD Output Cable

Specifications

Ratings

Supply voltage		100 to 240 VAC, 24 VAC/VDC, DeviceNet power supply: 24 VDC
Allowable power supply voltage range		85% to 110% of the rated power supply voltage, DeviceNet power supply: 11 to 25 VDC
Power consumption (See note 1.)		100 to 240 VAC: 18 VA max. (max. load) 24 VAC/DC: 11 VA/7 W max. (max. load)
Current consumption		DeviceNet power supply: 50 mA max. (24 VDC)
Input		No-voltage, voltage pulse, open collector
External power supply		$12 \mathrm{VDC} \pm 10 \% 80 \mathrm{~mA}$
Event inputs	Hold input	NPN open collector or no-voltage contact signal ON residual voltage: 2 V max. ON current at 0Ω : 4 mA max. Max. applied voltage: 30 VDC max. OFF leakage current: 0.1 mA max.
	Reset input	
	Bank input	
Output ratings (depends on the model)	Relay output	250 VAC, 30 VDC, 5 A (resistive load) Mechanical life expectancy: 5,000,000 operations, Electrical life expectancy: 100,000 operations
	Transistor output	Maximum load voltage: 24 VDC, Maximum load current: 50 mA , Leakage current: $100 \mu \mathrm{~A}$ max.
	Linear output	Linear output 0 to $20 \mathrm{~mA} \mathrm{DC}$,4 to 20 mA : Load: 500Ω max, Resolution: Approx. 10,000, Output error: $\pm 0.5 \%$ FS Linear output 0 to 5 VDC, 1 to 5 VDC, 0 to 10 VDC: Load: $5 \mathrm{k} \Omega$ max, Resolution: Approx. 10,000, Output error: $\pm 0.5 \%$ FS (1 V or less: $\pm 0.15 \mathrm{~V}$; not output for 0 V or less)
Display method		Negative LCD (backlit LED) display 7-segment digital display (Character height: PV: 14.2 mm (green/red); SV: 4.9 mm (green))
Main functions		Scaling function, measurement operation selection, output hysteresis, output OFF delay, output test, display value selection, display color selection, key protection, bank selection, display refresh period, maximum/minimum hold, reset
Ambient operating temperature		-10 to $55^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		25\% to 85\%
Storage temperature		-25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Altitude		2,000 m max.
Accessories		Watertight packing, 2 fixtures, terminal cover, unit stickers, instruction manual. DeviceNet models also include a DeviceNet connector (Hirose HR31-5.08P-5SC(01)) and crimp terminals (Hirose HR31-SC-121) (See note 3.)

Note: 1. DC power supply models require a control power supply capacity of approximately 1 A per Unit when power is turned ON. Particular attention is required when using two or more DC power supply models. The OMRON S8VS-series DC Power Supply Unit is recommended.
2. For K3HB-series DeviceNet models, use only the DeviceNet Connector included with the product. The crimp terminals provided are for Thin Cables.

Characteristics

Display range		-19,999 to 99,999						
Measurement range		Functions F1, F2: ± 2 gigacounts Functions F3 : 0 to 4 gigacounts						
Input signals		- No-voltage contact (30 Hz max. with ON/OFF pulse width of 15 ms min .)						
		- Voltage pulse	Mode	Input frequency range	ON/OFF pulse width	ON voltage	OFF voltage	Input impedance
			F1	0 to 30 kHz	$16 \mu \mathrm{~s}$ min.	4.5 to 30 V	-30 to 2 V	$10 \mathrm{k} \Omega$
			F2	0 to 25 kHz	$20 \mu \mathrm{~s}$ min.			
			F3	0 to 50 kHz	$9 \mu \mathrm{~s} \mathrm{~min}$.			
		- Open collector	Mode	Input frequency range	ON/OFF pulse width	Note: The	Up/Down Coun	ting Puls
			F1	0 to 30 kHz	$16 \mu \mathrm{~s}$ min.		will malfunctio	if if a puls
			F2	0 to 25 kHz	$20 \mu \mathrm{~s}$ min.		is input. SYS	Rrequen
			F3	0 to 50 kHz	$9 \mu \mathrm{~s} \mathrm{~min}$.		on the di	
Connectable sensors								
Max. No. of display digits		5 (-19999 to 99999)						
Comparative output response time		1 ms max.: Transistor output; 10 ms max.: Relay contact output (time until the comparative output is made when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%)						
Linear output response time		10 ms max. (time until the final analog output value is reached when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%)						
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)						
Dielectric strength		2,300 VAC for 1 min between external terminals and case						
Noise immunity		100 to 240 VAC models: $\pm 1,500 \mathrm{~V}$ at power supply terminals in normal or common mode (waveform with 1 -ns rising edge and pulse width of $1 \mu \mathrm{~s} / 100 \mathrm{~ns}$) 24 VAC/VDC models: $\pm 1,500 \mathrm{~V}$ at power supply terminals in normal or common mode (waveform with 1 -ns rising edge and pulse width of $1 \mu \mathrm{~s} / 100 \mathrm{~ns}$)						
Vibration resistance		Frequency: 10 to 55 Hz ; Acceleration: $50 \mathrm{~m} / \mathrm{s}^{2}, 10$ sweeps of 5 min each in X, Y, and Z directions						
Shock resistance		$150 \mathrm{~m} / \mathrm{s}^{2}$ ($100 \mathrm{~m} / \mathrm{s}^{2}$ for relay outputs) 3 times each in 3 axes, 6 directions						
Weight		Approx. 300 g (Base Unit only)						
Degree of protection	Front pane	Conforms to NEMA 4X for indoor use (equivalent to IP66)						
	Rear case	IP20						
	Terminals	IP00 + finger protection (VDE0106/100)						
Memory protection		EEPROM (non-volatile memory) Number of rewrites: 100,000						
Applicable standards		UL61010C-1, CSA C22.2 No. 1010.1 (evaluated by UL) EN61010-1 (IEC61010-1): Pollution degree 2/Overvoltage category II EN61326: 1997, A1: 1998, A2: 2001						
EMC		EMI: EN61326+A1 industrial applications Electromagnetic radiation interference CISPR 11 Group 1, Class A: CISPRL16-1/-2 Terminal interference voltage CISPR 11 Group 1, Class A: CISPRL16-1/-2 EMS: EN61326+A1 industrial applications Electrostatic Discharge Immunity EN61000-4-2: 4 kV (contact), 8 kV (in air) Radiated Electromagnetic Field Immunity EN61000-4-3: $10 \mathrm{~V} / \mathrm{m} 1 \mathrm{kHz}$ sine wave amplitude modulation (80 MHz to 1 GHz , 1.4 to 2 GHz) Electrical Fast Transient/Burst Immunity EN61000-4-4: 2 kV (power line), 1 kV (I/O signal line) Surge Immunity EN61000-4-5: 1 kV with line (power line), 2 kV with ground (power line) Conducted Disturbance Immunity EN61000-4-6: 3 V (0.15 to 80 MHz) Power Frequency Magnetic Immunity EN61000-4-8: $30 \mathrm{~A} / \mathrm{m}(50 \mathrm{~Hz})$ continuous time Voltage Dips and Interruptions Immunity EN61000-4-11: 0.5 cycle, $0^{\circ} / 180^{\circ}, 100 \%$ (rated voltage)						

Operation

Functions (Operating Modes)

F1 to F3

Function name	Function No.
Individual inputs	$F 1$
Phase differential inputs	$F 2$
Pulse counting input	$F 3$

Function	Operation	Operation image (application)
F1 Individual inputs	Counts input A as incremental pulses and input B as decremental pulses. The count is incremented on the rising edge of input A and decremented on the rising edge of input B . If both inputs rise at the same time, the count is not changed. The count is incremented when input B is later than input A and decremented when input B is earlier than input A.	Counting the number of people entering an area
F2 Phase differential inputs	This function is normally used when connected to an incremental rotary encoder. The count is incremented on the falling edge of input B when input A is OFF. The count is decremented on the rising edge of input B when input A is OFF.	Detecting position and speed on a semiconductor wafer conveyor line
F3 Pulse counting input	Counted on the rising edge of input A	Counting the number of workpieces

Note: 1. Meaning of H and L in Display

Symbol	Input method	No-voltage input
	H	Short-circuit
L	Open	

2. Requires at least half the minimum signal width. If there is less than half, $a \pm 1$ count error may occur.

Input Type Setting

	NO: Voltage pulse high	NC: Voltage pulse low
No-contact or voltage pulse input	0	$0:$
Contact	i	11

What Is Prescaling?

Prescaling converts the count value to any numeric value.
To display $\square \square \square \square . \square \mathrm{mm}$ in a system that outputs 250 pulses for a $0.5-\mathrm{m}$ feed,
the length per pulse $=500 \mathrm{~mm}(0.5 \mathrm{~m}) \div 250=2$.

1. The prescale value for the K3HB-C is set using the mantissa $X \times$ exponent Y, so the prescale value $=2.0000 \times 10^{\circ}$,

$$
X=2.000 \text {, and } Y^{\prime}=00 \text {. }
$$

2. Next, set the decimal point position for one digit to the right of the decimal point: 0000.0

Common Specifications

Event Input Ratings

K3HB-R	S-TMR, HOLD, RESET, BANK1, BANK2, BANK4	
K3HB-P/-C	HOLD, RESET, BANK1, BANK2, BANK4	
Contact	ON: $1 \mathrm{k} \Omega$ max., OFF: $100 \mathrm{k} \Omega$ min.	
No-contact	ON residual voltage:	2 V max.
	OFF leakage current:	0.1 mA max.
	Load current:	4 mA max.
	Maximum applied voltage: 30 VDC max.	

Output Ratings

Contact Output

Item	Resistive loads (250 VAC, $\cos \phi=1$; 30 VDC, L/R=0 ms)	Inductive loads (250 VAC, closed circuit, $\cos \phi=0.4$; 30 VDC, L/R=7 ms)
Rated load	$\begin{aligned} & 5 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 5 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \text { at } 250 \text { VAC } \\ & 1 \mathrm{~A} \text { at } 30 \text { VDC } \end{aligned}$
Rated through current	5 A	
Mechanical life expectancy	5,000,000 operations	
Electrical life expectancy	100,000 operations	

Transistor Outputs

Maximum load voltage	24 VDC
Maximum load current	50 mA
Leakage current	$100 \mu \mathrm{~A}$ max.

Linear Output

Item Outputs	0 to 20 mA	4 to 20 mA	0 to 5 V	1 to 5 V	0 to 10 V
Allowable load impedance	500Ω max.		$5 \mathrm{k} \Omega \mathrm{min}$.		
Resolution	Approx. 10,000				
Output error	$\pm 0.5 \%$ FS		$\begin{array}{\|l\|} \hline \pm 0.5 \% ~ F S \\ (\pm 0.15 \mathrm{~V} \text { for } 1 \mathrm{~V} \text { or less and no output for } 0 \mathrm{~V}) \end{array}$		

Serial Communications Output

Item Type	RS-232C, RS-485
Communications method	Half duplex
Synchronization method	Start-stop synchronization (asynchronous)
Baud rate	$9600 / 19200 / 38400$ bps
Transmission code	ASCII
Data length	7 bits or 8 bits
Stop bit length	2 bits or 1 bit
Error detection	Vertical parity and FCS
Parity check	Odd, even

BCD Output I/O Ratings (Input Signal Logic: Negative)

I/O signal name				Item	Rating
Inputs	K3HB-R/P REQUEST HOLD MAX MIN RESET	K3HB-C REQUEST COMPENSATION RESET	Input signal		No-voltage contact input
			Input current for no-voltage input		10 mA
			Signal	ON voltage	1.5 V max.
				OFF voltage	3 V min.
Outputs	DATA POLARITY OVER DATA VALID RUN		Maximum load voltage		24 VDC
			Maximum load current		10 mA
			Leakage current		$100 \mu \mathrm{~A}$ max.
	K3HB-R/P HH H PASS L LL	K3HB-C OUT1 OUT2 OUT3 OUT4 OUT5	Maximum load voltage		24 VDC
			Maximum load current		50 mA
			Leakage current		$100 \mu \mathrm{~A}$ max.

Refer to the K3HB Communications User's Manual (Cat. No. N129)
for details on serial and DeviceNet communications.

DeviceNet Communications

Communications protocol		Conforms to DeviceNet			
Supported communications	Remote I/O communications	Master-Slave connection (polling, bit-strobe, COS, cyclic) Conforms to DeviceNet communications standards.			
	I/O allocations	Allocate any I/O data using the Configurator. Allocate any data, such as DeviceNet-specific parameters and variable area for Digital Indicators. Input area: 2 blocks, 60 words max. Output area: 1 block, 29 words max. (The first word in the area is always allocated for the Output Execution Enabled Flags.)			
	Message communications	Explicit message communications CompoWay/F communications commands can be executed (using explicit message communications)			
Connection methods		Combination of multi-drop and T-branch connections (for trunk and drop lines)			
Baud rate		DeviceNet: 500, 250, or 125 Kbps (automatic follow-up)			
Communications media		Special 5-wire cable (2 signal lines, 2 power supply lines, 1 shield line)			
Communications distance		Baud rate	Network length (max.)	Drop line length (max.)	Total drop line length (max.)
		500 Kbps	100 m max. (100 m max.)	6 m max.	39 m max.
		250 Kbps	100 m max. (250 m max.)	6 m max.	78 mmax .
		125 Kbps	100 m max. (500 m max.)	6 m max.	156 m max.
		The values in parentheses are for Thick Cable.			
Communications power supply		24-VDC DeviceNet power supply			
Allowable voltage fluctuation range		11 to 25-VDC DeviceNet power supply			
Current consumption		50 mA max. (24 VDC)			
Maximum number of nodes		64 (DeviceNet Configurator is counted as one node when connected.)			
Maximum number of slaves		63			
Error control checks		CRC errors			
DeviceNet power supply		Supplied from DeviceNet communications connector			

Connections

External Connection Diagrams
Terminal Arrangements
Note: Refer to "Internal Block Diagram" on page 24 for information on isolation.

B Sensor Power Supply/Output

Note: The BCD Output Cable has a D-sub plug. Cover: 17JE-37H-1A (manufactured by DDK); Connector: equivalent to 17JE-23370-02 (D1) (manufactured by DDK)
Special Cable (for Event Inputs with 8-pin Connector)

Model	Appearance		Wiring
K32-DICN		Pin No.	Signal name
		- 1	N/C
		2	S-TMR
		3	HOLD
		4	RESET
		5	N/C
		6	COM
		7	BANK4
		8	BANK2
		9	BANK1
		10	COM

\square Derating Curve for Sensor Power Supply (Reference Values)

For 12V

Note: 1. The above values were obtained under test conditions with the standard mounting. The derating curve will vary with the mounting conditions, so be sure to adjust accordingly.
2. Internal components may be deteriorated or damaged. Do not use the Digital Indicator outside of the derating range (i.e., do not use it in the area labeled (1), above).
■ Internal Block Diagram

■ BCD Output Timing Chart

A REQUEST signal from a Programmable Controller or other external device is required to read BCD data.

Single Sampling Data Output

The data is set in approximately 30 ms from the rising edge of the REQUEST signal and the DATA VALID signal is output. When reading the data from a Programmable Controller, start reading the data when the DATA VALID signal turns ON
The DATA VALID signal will turn OFF 40 ms later, and the data will turn OFF 16 ms after that.

Continuous Data Output

Measurement data is output every 64 ms while the REQUEST signal remains ON.

Note: If HOLD is executed when switching between data 1 and data 2 , either data 1 or data 2 is output depending on the timing of the hold signal. The data will not go LOW.

- The K3HB BCD output model has an open collector output, so wired OR connection is possible
 OVER) and DATA VALID can be used in a wired OR can be used in a wired OR. LU, HH, H, PASS, L, and LL are always output, with or without a REQUEST signal Do not used a wired OR connect for these signals

Note: Leave 20 ms min. between DATA VALID turning OFF and the REQUEST signal.

Programmable Controller Connection Example

Display Unit Connection Example

Digital Indicator

Note: The BCD output connector pin number is the D-sub connector pin number when the BCD Output Cable (sold separately) is connected. This number differs from the pin number for the Digital Indicator narrow pitch connector (manufactured by Honda Tsushin Kogyo Co., Ltd.).

[^0]
■ Component Names and Functions

Max./Min. status indicator
Turns ON when the maximum value or minimum
value is displayed in the RUN level. value is displayed in the RUN level.

Level/bank display

In RUN level, displays the bank if the bank function is
ON. (Turns OFF if the bank function is OFF.) In other levels, displays the current level.

Comparative output status indicators

Display the status of comparative outputs.

Status indicators	
Display	Function
CMW	Lit when communications writing is ON (enabled) and not lit when OFF (prohibited).
Hold	Turns ON/OFF when hold input turns ON/OFF.

PV display
Displays PVs, maximum value

Position meter

Displays the position of the PV with respect to a desired scale.

SV display status indicators

K3HB-R	
Indicator	Function
T	Turns ON when parameters for which teaching can be performed are displayed.
HH, H, L, LL	In RUN level, turn ON when the comparative set value $\mathrm{HH}, \mathrm{H}, \mathrm{L}$, or LL is displayed.

K3HB-P

Indicator	Function
$\mathrm{HH}, \mathrm{H},$ L, LL	In RUN level, turn ON when the comparative set value $\mathrm{HH}, \mathrm{H}, \mathrm{L}$, or LL is displayed.

K3HB-C

Indicator	Function
Turns ON when parameters for which teaching can be performed are displayed.	
5, 4, 2,1	In RUN R Ievel, turn ON when the comparative set value $1,2,3,4$, or 5 is displayed.

MAX/MIN Key

Used to switch the display between the PV, maximum value, and minimum value and to reset the maximum and minimum values.
LEVEL Key

Used to switch level.
 parameters displayed.
SHIFT Key

Used to change parameter settings. When changing a set value, this key is used to move along the digits.

UP Key
When changing a set value, this key is used to change the actual value.
When a measurement value is displayed, this key is used to execute or clear the forced-zero function or to execute teaching.

Dimensions

Wiring Precautions

- For terminal blocks, use the crimp terminals suitable for M3 screws.
- Tighten the terminal screws to the recommended tightening torque of approx. $0.5 \mathrm{~N} \cdot \mathrm{~m}$.
- To prevent inductive noise, separate the wiring for signal lines from that for power lines.

Wiring

- Use the crimp terminals suitable for M3 screws shown below.

Unit Stickers (included)

- No unit stickers are attached to the Digital Indicator.
- Select the appropriate units from the unit sticker sheets provided.

Note: For measurements for commercial purposes, be sure to use the unit required by any applicable laws or regulations.

Mounting Method

1. Insert the K3HB into the mounting cutout in the panel.
2. Insert watertight packing around the Unit to make the mounting watertight.

3. Insert the adapter into the grooves on the left and right sides of the rear case and push until it reaches the panel and is fixed in place.

LCD Field of Vision

The K3HB is designed to have the best visibility at the angles shown in the following diagram.

Waterproof Packing

The waterproof packing ensures a level of waterproofing that conforms to NEMA 4X. Depending on the operating environment, deterioration, contraction, or hardening may occur and replacement may be necessary. In this case, consult your OMRON representative.

Main Functions

Main Functions and Features

Measurement

Function Fine R P C

The K3HB－R has the following six functions for receiving and displaying input pulses．
F1：Rotation（rpm）／circumferential speed
F2：Absolute ratio
F3：Error ratio
F4：Rotational difference
F5：Flow rate ratio
F6：Passing time
The K3HB－P has the following six functions for receiving and displaying input pulses．
F1：Passing speed
F2：Cycle
F3：Time difference
F4：Time band
F5：Measuring length
F6：Interval
The K3HB－C has the following three functions for receiving and displaying input pulses．
F1：Individual inputs
F2：Phase differential inputs
F3：Pulse counting input

Filters

Average Processing Rivit，R R

Average processing of input signals with extreme changes or noise smooths out the display and makes control stable．

```
Input Types
    in-tR, in-tb RP
    In-ŁR C
```

Specify the types of sensor connected to input A and input B．

Input Compensation

Auto－zero Times Rt．ミR，Rt．こと R

The frequency is forced to zero if there is no pulse input for a set period．

The display can be changed to a preset compensation value using the compensation input．

Key Operations

Teaching

R C

The present measurement value can be used as a scaling value．

Key Protection R C

Key protection restricts level or parameter changes using the keys to prevent unintentional key operations and malfunctions．

Outputs

Comparative Output Pattern ölt -P R P

Standard, zone, and level comparative output patterns can be selected for comparative outputs.

Hysteresis

HY5 R
Prevents comparative outputs from chattering when the measurement value fluctuates slightly near the set value.

Output Refresh Stop $\bar{o}-5 t \mathbf{P} \mathbf{R}$

Holds the output status when a comparative result output other than PASS turns ON.

PASS Output Change PR5S R P

Comparative results other than PASS and error signals can be output from the PASS output terminal.

Output OFF Delay äFF-d R P

Delays turning OFF comparatives for a set period. This can be used to provide sufficient time to read the comparative output ON status when the comparative result changes at short intervals.

Shot Output
 5Höt R P C

Turns ON the comparative output for a specific time.

Output Logic
 就-n R P C

Reverses the output logic of comparative results.

Startup Compensation Timer 5-trir R

Measurements can be stopped for a set time using an external input.

Output Test \quad tESE R P C

Output operation can be checked without using actual input signals by using the keys to set a test measurement value.

Linear Outputs isEt.[, LSEt.u, L5Et.H, L5EE.L R P C

A current or voltage proportional to the change in the measurement value can be output.

Standby Sequence Stdby R P

The comparison outputs can be kept OFF until the measurement value enters the PASS range.

Display

Display Value Selection disp R P C
The display value can be set to the present value, the maximum value, or the minimum value.

Display Color Selection [öLör R P C

The present value display color can be set to green or red. The color of the present value can also be switched according to the comparative output.

Display Refresh Period d.rEF R P C

When the input changes rapidly, the display refresh period can be lengthened to control flickering and make the display easier to read.

Position Meter Pä5-t, Pä5-H, Pä5-L R P C

The present measurement value can be displayed as a position in relation to the scaling width on a 20 -gradation position meter.

Prescale	P5.R̄̈, P5.RY, P5.bü, P5.by
R P C	

The input signal can be converted and displayed as any value.

Comparative Set Value Display 5u.d5p R C

Select whether or not to display the comparative value during operation.

Display auto-return rEt R P

Automatically returns the display to RUN level when there are no key operations (e.g., max./min. switching, bank settings using keys).

Other

Max./Min. Hold
 $R \mathbf{P}$

Holds the maximum and minimum measurement values.

Bank Selection \quad - \mathbf{H} R P C

Switch between 8 comparative value banks using the keys on the front panel or external inputs. A set of set comparative values can be selected as a group.

Bank Copy Cōpy R P C

Any bank settings can be copied to all banks.

Interruption Memory n̄Eño C

The measured value can be recorded when the power supply is interrupted.

> User Calibration
> R P C
> The K3HB can be calibrated by the user.

Precautions

© WARNING

Do not touch the terminals while power is being supplied. Doing so may possibly result in electric shock. Make sure that the terminal cover is installed before using the product.
Always provide protective circuits in the network. Without protective circuits, malfunctions may possibly result in accidents that cause serious injury or significant property damage. Provide double or triple safety measures in external control circuits, such as emergency stop circuits, interlock circuits, or limit circuits, to ensure safety in the system if an abnormality occurs due to malfunction of the product or another external factor affecting the product's operation.

\triangle CAUTION

Do not allow pieces of metal, wire clippings, or fine metallic shavings or filings from installation to enter the product. Doing so may occasionally result in minor electric shock, fire, or malfunction.
Do not use the product in locations where flammable or explosive gases are present. Doing so may occasionally result in minor or moderate explosion, causing minor or moderate injury, or property damage.
Do not attempt to disassemble, repair, or modify the product. Doing so may occasionally result in minor or moderate injury due to electric shock.

Do not use the equipment for measurements within Measurement Categories II, III or IV (according to IEC61010-1). Doing so may occasionally cause unexpected operation, resulting in minor or moderate injury, or damage to the equipment. Use the equipment for measurements only within the Measurement Category for which the product is designed.
Perform correct setting of the product according to the application. Failure to do so may occasionally cause unexpected operation, resulting in minor or moderate injury, or damage to the equipment.
Ensure safety in the event of product failure by taking safety measures, such as installing a separate monitoring system. Product failure may occasionally prevent operation of comparative outputs, resulting in damage to
 the connected facilities and equipment.
Tighten the screws on the terminal block and the connector locking screws securely using a tightening torque within the following ranges. Loose screws may occasionally cause fire, resulting in minor or moderate injury, or damage to the equipment.

Terminal block screws: 0.43 to $0.58 \mathrm{~N} \cdot \mathrm{~m}$

Connector locking screws: 0.18 to $0.22 \mathrm{~N} \cdot \mathrm{~m}$
Make sure that the product will not be adversely affected if the DeviceNet cycle time is lengthened as a result of changing the program with online editing. Extending the cycle time may cause unexpected operation, occasionally resulting in minor or moderate injury, or damage to the equipment.
Before transferring programs to other nodes or changing I/O memory of other nodes, check the nodes to confirm safety. Changing the program or I/O memory of other nodes may occasionally cause unexpected operation, resulting in minor or moderate injury, or damage to the
 equipment.

Precautions for Safe Use

1. Do not use the product in the following locations.

- Locations subject to direct radiant heat from heating equipment
- Locations where the product may come into contact with water or oil
- Locations subject to direct sunlight
- Locations where dust or corrosive gases (in particular, sulfuric or ammonia gas) are present
- Locations subject to extreme temperature changes
- Locations where icing or condensation may occur
- Locations subject to excessive shocks or vibration

2. Do not use the product in locations subject to temperatures or humidity levels outside the specified ranges or in locations prone to condensation. If the product is installed in a panel, ensure that the temperature around the product (not the temperature around the panel) does not go outside the specified range.
3. Provide sufficient space around the product for heat dissipation.
4. Use and store the product within the specified temperature and humidity ranges. If several products are mounted side-by-side or arranged in a vertical line, the heat dissipation will cause the internal temperature of the products to rise, shortening the service life. If necessary, cool the products using a fan or other cooling method.
5. The service life of the output relays depends on the switching capacity and switching conditions. Consider the actual application conditions and use the product within the rated load and electrical service life. Using the product beyond its service life may result in contact welding or burning.
6. Install the product horizontally.
7. Mount to a panel between 1 and $8-\mathrm{mm}$ thick.
8. Use the specified size of crimp terminals (M3, width: 5.8 mm max.) for wiring. To connect bare wires, AWG22 (cross section: $0.326 \mathrm{~mm}^{2}$) to AWG14 (cross section: $2.081 \mathrm{~mm}^{2}$) to wire the power supply terminals and AWG28 (cross section: $0.081 \mathrm{~mm}^{2}$) to AWG16 (cross section: $1.309 \mathrm{~mm}^{2}$) for other terminals. (Length of exposed wire: 6 to 8 mm)
9. In order to prevent inductive noise, wire the lines connected to the product separately from power lines carrying high voltages or currents. Do not wire in parallel with or in the same cable as power lines. Other measures for reducing noise include running lines along separate ducts and using shield lines.
10. Ensure that the rated voltage is achieved no longer than 2 s after turning the power ON.
11. Allow the product to operate without load for at least 15 minutes after the power is turned ON.
12. Do not install the product near devices generating strong highfrequency waves or surges. When using a noise filter, check the voltage and current and install it as close to the product as possible.
13. Do not use thinner to clean the product. Use commercially available alcohol.
14. Be sure to confirm the name and polarity for each terminal before wiring the terminal block and connectors.
15. Use the product within the noted supply voltage and rated load.
16. Do not connect anything to unused terminals.
17. Output turns OFF when the mode is changed or settings are initialized. Take this into consideration when setting up the control system.
18. Install an external switch or circuit breaker that complies with applicable IEC60947-1 and IEC60947-3 requirements and label them clearly so that the operator can quickly turn OFF the power.
19. Use the specified cables for the communications lines and stay within the specified DeviceNet communications distances. Refer to the User's Manual (Cat. No. N129) for details on communications distance specifications and cables.
20.Do not pull the DeviceNet communications cables with excessive force or bend them past their natural bending radius.
21.Do not connect or remove connectors while the DeviceNet power is being supplied. Doing so will cause product failure or malfunction.
20. Use cables with heat resistance of $70^{\circ} \mathrm{C}$ min.

\square Noise Countermeasures

1. Do not install the product near devices generating strong highfrequency waves or surges, such as high-frequency welding and sewing machines.
2. Mount a surge suppressor or noise filter to peripheral devices generating noise, in particular, motors, transformers, solenoids, and magnet coils.

3. In order to prevent inductive noise, wire the lines connected to the terminal block separately from power lines carrying high voltages or currents. Do not wire in parallel with or in the same cable as power lines. Other measures for reducing noise include running lines along separate ducts and using shield lines.

Example of Countermeasures for Inductive Noise on Input Lines

4. If a noise filter is used for the power supply, check the voltage and current, and install the noise filter as close to the product as possible.
5. Reception interference may occur if the product is used close to a radio, television, or wireless.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS, OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.
In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

■ SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.
At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.
The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products.

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

Cat. No. N135-E1-02 In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation

Industrial Automation Company
Industrial Devices and Components Division H.Q.
Measuring Components Department
Shiokoji Horikawa, Shimogyo-ku,
Kyoto, 600-8530 Japan Printed in Japan
Tel: (81)75-344-7080/Fax: (81)75-344-7189
0305 (0804)

1. Offer; Acceptance. These terms and conditions (these "Terms") are deemed part of all quotes, agreements, purchase orders, acknowledgments, price lists catalogs, manuals, brochures and other documents, whether electronic or in writing, relating to the sale of products or services (collectively, the "Products") by Omron Electronics LLC and its subsidiary companies ("Omron"). Omron objects to any terms or conditions proposed in Buyer's purchase order or other documents which are inconsistent with, or in addition to, these Terms.
2. Prices; Payment Terms. All prices stated are current, subject to change without notice by Omron. Omron reserves the right to increase or decrease prices on any unshipped portions of outstanding orders. Payments for Products are due net 30 days unless otherwise stated in the invoice.
3. Discounts. Cash discounts, if any, will apply only on the net amount of invoices sent to Buyer after deducting transportation charges, taxes and duties, and will be allowed only if (i) the invoice is paid according to Omron's payment terms and (ii) Buyer has no past due amounts.
4. Interest. Omron, at its option, may charge Buyer $1-1 / 2 \%$ interest per month or the maximum legal rate, whichever is less, on any balance not paid within the stated terms.
5. Orders. Omron will accept no order less than $\$ 200$ net billing.
. Governmental Approvals. Buyer shall be responsible for, and shall bear all costs involved in, obtaining any government approvals required for the importation or sale of the Products
6. Taxes. All taxes, duties and other governmental charges (other than genera real property and income taxes), including any interest or penalties thereon, imposed directly or indirectly on Omron or required to be collected directly or indirectly by Omron for the manufacture, production, sale, delivery, importation, consumption or use of the Products sold hereunder (including customs duties and sales, excise, use, turnover and license taxes) shall be charged to and remitted by Buyer to Omron.
7. Financial. If the financial position of Buyer at any time becomes unsatisfactory to Omron, Omron reserves the right to stop shipments or require satisfactory security or payment in advance. If Buyer fails to make payment or otherwise comply with these Terms or any related agreement, Omron may (without liability and in addition to other remedies) cancel any unshipped portion of Products sold hereunder and stop any Products in transit until Buyer pays all amounts, including amounts payable hereunder, whether or not then due which are owing to it by Buyer. Buyer shall in any event remain liable for all unpaid accounts
8. Cancellation; Etc. Orders are not subject to rescheduling or cancellation unless Buyer indemnifies Omron against all related costs or expenses
9. Force Majeure. Omron shall not be liable for any delay or failure in delivery resulting from causes beyond its control, including earthquakes, fires, floods, strikes or other labor disputes, shortage of labor or materials, accidents to machinery, acts of sabotage, riots, delay in or lack of transportation or the requirements of any government authority
10. Shipping; Delivery. Unless otherwise expressly agreed in writing by Omron:
a. Shipments shall be by a carrier selected by Omron; Omron will not drop ship except in "break down" situations
b. Such carrier shall act as the agent of Buyer and delivery to such carrier shal constitute delivery to Buyer;
c. All sales and shipments of Products shall be FOB shipping point (unless otherwise stated in writing by Omron), at which point title and risk of loss shall pass from Omron to Buyer; provided that Omron shall retain a security interest in the Products until the full purchase price is paid;
d. Delivery and shipping dates are estimates only; and
e. Omron will package Products as it deems proper for protection against normal handling and extra charges apply to special conditions.
11. Claims. Any claim by Buyer against Omron for shortage or damage to the Products occurring before delivery to the carrier must be presented in writing to Omron within 30 days of receipt of shipment and include the original transportation bill signed by the carrier noting that the carrier received the Products from Omron in the condition claimed.
12. Warranties. (a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied (b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABIL-

ITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or oth erwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obli gation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsi ble for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were prop erly handled, stored, installed and maintained and not subject to contamina tion, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Compa nies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components circuits, system assemblies or any other materials or substances or environ ments. Any advice, recommendations or information given orally or in writing are not to be construed as an amendment or addition to the above warranty See http://oeweb.omron.com or contact your Omron representative for pub lished information
14. Limitation on Liability; Etc. OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY Further, in no event shall liability of Omron Companies exceed the individua price of the Product on which liability is asserted. Indemnities. Buyer shall indemnify and hold harmless Omron Companies and their employees from and against all liabilities, losses, claims, costs and expenses (including attorney's fees and expenses) related to any claim, inves tigation, litigation or proceeding (whether or not Omron is a party) which arise or is alleged to arise from Buyer's acts or omissions under these Terms or in any way with respect to the Products. Without limiting the foregoing, Buyer (a its own expense) shall indemnify and hold harmless Omron and defend or set tle any action brought against such Companies to the extent based on a claim that any Product made to Buyer specifications infringed intellectual property rights of another party
16. Property; Confidentiality. Any intellectual property in the Products is the exclu sive property of Omron Companies and Buyer shall not attempt to duplicate it in any way without the written permission of Omron. Notwithstanding any charges to Buyer for engineering or tooling, all engineering and tooling shal remain the exclusive property of Omron. All information and materials supplied by Omron to Buyer relating to the Products are confidential and proprietary, and Buyer shall limit distribution thereof to its trusted employees and strictly prevent disclosure to any third party
17. Export Controls. Buyer shall comply with all applicable laws, regulations and licenses regarding (i) export of products or information; (iii) sale of products to "forbidden" or other proscribed persons; and (ii) disclosure to non-citizens o regulated technology or information.
18. Miscellaneous. (a) Waiver. No failure or delay by Omron in exercising any right and no course of dealing between Buyer and Omron shall operate as a waiver of rights by Omron. (b) Assignment. Buyer may not assign its rights hereunder without Omron's written consent. (c) Law. These Terms are governed by the law of the jurisdiction of the home office of the Omron company from which Buyer is purchasing the Products (without regard to conflict of law princi ples). (d) Amendment. These Terms constitute the entire agreement between Buyer and Omron relating to the Products, and no provision may be changed or waived unless in writing signed by the parties. (e) Severability. If any provi sion hereof is rendered ineffective or invalid, such provision shall not invalidate any other provision. (f) Setoff. Buyer shall have no right to set off any amounts against the amount owing in respect of this invoice. (g) Definitions. As used herein, "including" means "including without limitation"; and "Omron Companies" (or similar words) mean Omron Corporation and any direct or indirect subsidiary or affiliate thereof.

Certain Precautions on Specifications and Use

1. Suitability of Use. Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by ratings and limitations of use which apply to the Product. This information by
itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases but the following is a non-exhaustive list of applications for which particular attention must be given: (i) Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document
(ii) Use in consumer products or any use in significant quantities.
(iii) Energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations. (iv) Systems, machines and equipment that could present a risk to life or property. Please know and observe all prohibitions of use applicable to this Product.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO

ADDRESS THE RISKS, AND THAT THE OMRON'S PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM
2. Programmable Products. Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.
3. Performance Data. Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application require ments. Actual performance is subject to the Omron's Warranty and Limitations of Liability.
4. Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.
5. Errors and Omissions. Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions. at www.omron.com/oei - under the "About Us" tab, in the Legal Matters section.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OmROn

OMRON ELECTRONICS LLC
One Commerce Drive
Schaumburg, IL 60173
847-843-7900
For US technical support or other inquiries: 800-556-6766

[^0]: I Refer to the following User's Manual for application precautions and other information required when using the Digital Indicator: | K3HB-R/P/C Digital Indicator User's Manual (Cat. No. N136)
 The manual can be downloaded from the following site in PDF format: OMRON Industrial Web http://www.fa.omron.co.jp

