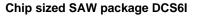
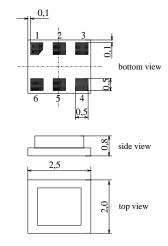


SAW Components

Data Sheet B7715

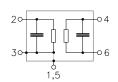




SAW Components		B7715
Low-Loss Filter for M	obile Communication	897,5 MHz
Data Sheet	SMD	

Features

- Low-loss RF filter for mobile telephone EGSM systems, transmit path
- Low amplitude ripple
- Usable passband 35 MHz
- Balanced to unbalanced operation
- Impedance transformation from 200 Ω to 50 Ω
- Ceramic package for Surface Mounted Technology (SMT)


Terminals

Ni, gold-plated

Dimensions in mm, approx. weight 0,014g

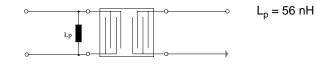
Pin configuration

2	Output, unbalanced
4, 6	Balanced inputs
1, 3, 5	To be grounded
1, 5	Case ground

Туре	Ordering code	Marking and Package according to	Packing according to
B7715	B39901-B7715-C610	C61157-A7-A76	F61074-V8153-Z000

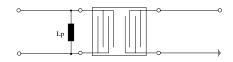
Electrostatic Sensitive Device (ESD)

Maximum ratings


Operable temperature range	Т	- 10 / + 80	°C	
Storage temperature range	T _{stg}	- 40 / + 85	°C	
DC voltage	V _{DC}	5	V	
ESD voltage	V _{ESD}	50	V	
Input power max.				> 2000 hrs at 85°C peak power of GSM signal,
880 915 MHz	P _{IN}	14	dBm	duty cycle 2 : 8
		12	dBm	duty cycle 4 : 8,
elsewhere		0	dBm	continuous wave

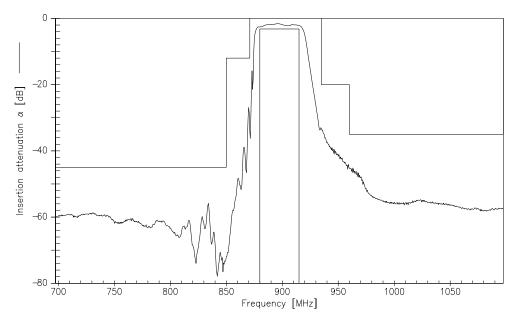
2

				B7715
munication			897	7,5 MHz
ΞM				
$Z_{\rm S}$ =	200Ω including	ng matching	network	
	min.	typ.	max.	
f	ťc —	897,5	—	MHz
5,0 MHz	x _{max} —	2,6	3,0	dB
	Δα	1,1	1,5	dB
5,0 MHz	_	1,7	2,0	
5,0 MHz	_	1,8	2,2	
	S _{sc12} 20	23	_	dB
	-10	_	+10	degree
5,0 MHz	-1,0	_	1,0	dB
50,0 MHz 71,0 MHz 50,0 MHz 50,0 MHz 50,0 MHz	x 45 12 20 35 35 15	58 21 34 42 40 26		dB dB dB dB dB dB
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

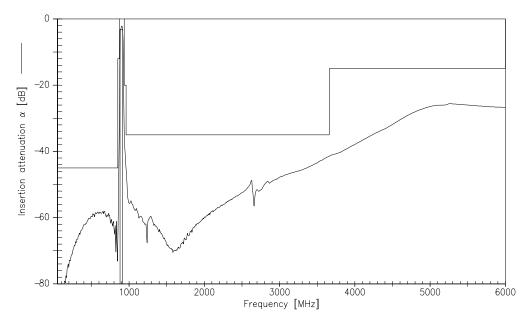

Test matching network

Low-Loss Filter for Mobile Communication 897,5 f Data Sheet Characteristics T = -10 to 80 °C Operating temperature range: T = -10 to 80 °C Terminating source impedance: $Z_S = 200 \Omega$ including matching network Z_L = 50 Ω Maximum insertion attenuation 880,0 α_{max} - 2,7 3,2 dB Amplitude ripple (p-p) 880,0 $\Delta \alpha$ - 1,2 1,8 dB Balanced input VSWR 880,0 $\alpha_{915,0}$ MHz - 1,7 2,0 Unbalanced output VSWR 880,0 $\alpha_{915,0}$ MHz - 1,8 2,2 Diff. to common mode suppression 880,0 S_{sc12} 20 23 - dB Input phase balance ($\phi(S_{31})-\phi(S_{21})+180^\circ$) 880,0 MHz -10 - +10 deg Attenuation $\alpha_{0,0}$ $\alpha_{17,0}$ $\alpha_{1,0}$ $\alpha_{1,0}$ $\alpha_{1,0}$ $\alpha_{1,0}$ Balanced input VSWR 800,0 $\alpha_{15,0}$ MHz -10 -10 -10 -10 Input pha								
Data Sheet Characteristics Image: Total constraints Total const	SAW Components							B7715
Characteristics 7 = -10 to 80 °C Terminating source impedance: $Z_S = 200 \Omega$ including matching network Terminating load impedance: $Z_L = 50 \Omega$ min. typ. max. Center frequency f_C — MH Maximum insertion attenuation α_{max} — $2,7$ $3,2$ MH Maximum insertion attenuation α_{max} — $2,7$ $3,2$ MH Maximum insertion attenuation α_{max} — $2,7$ $3,2$ MH Maximum insertion attenuation α_{max} — $1,2$ $1,8$ $2,7$ $3,2$ M Maximum insertion attenuation α_{max} $ 1,2$ $1,8$ $2,7$ $3,2,0$ $3,6$ $3,6$	Low-Loss Filter for Mobile Communication 897,5 MH					7,5 MHz		
Terminating source impedance: $Z_S = 200 \Omega$ including matching network Terminating load impedance: $Z_L = 50 \Omega$ min. typ. max. Center frequency f_C - 897.5 - MH Maximum insertion attenuation 880,0 α_{max} - 2,7 3,2 dB Amplitude ripple (p-p) 880,0 $880,0$ 915,0 MHz - 1,2 1,8 dB Balanced input VSWR 880,0 $880,0$ 915,0 MHz - 1,7 2,0 Unbalanced output VSWR 880,0 $880,0$ 915,0 MHz - 1,8 2,2 Diff. to common mode suppression 880,0 $915,0$ MHz -10 - +10 deg Input phase balance ($\phi(S_{31})-\phi(S_{21})+180^\circ$) 880,0 MHz -10 - +10 deg Attenuation α α α α α α α α Balance output VSWR 880,0 $915,0$ MHz -10 -1 α α Diff. to common mode suppression 880,0 $915,0$ MHz -10 <								
Center frequency $f_{\rm C}$ $R_{\rm B7,5}$ $R_{\rm M}$ $R_{\rm B80,0}$ $R_{\rm B80,0}$ $R_{\rm B80,0}$ $R_{\rm B80,0}$ $R_{\rm B1,0}$ $R_{\rm M}$ <	Terminating source impedance:		Zs	= 200	Ω including	g matching	network	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					min.	typ.	max.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Center frequency			f _C	—	897,5		MHz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			MHz	$lpha_{max}$	_	2,7	3,2	dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		915,0	MHz	Δα	_	1,2	1,8	dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	915,0	MHz		_	1,7	2,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	915,0	MHz		_	1,8	2,2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			MHz	S _{sc12}	20	23		dB
880,0 915,0 MHz -1,0 — 1,0 dB Attenuation α 850,0 MHz 45 58 — dB 0,0 850,0 MHz 12 21 — dB 935,0 960,0 MHz 20 34 — dB 960,0 1850,0 MHz 35 42 — dB					-10	_	+10	degree
0,0 850,0 MHz 45 58 — dB 850,0 871,0 MHz 12 21 — dB 935,0 960,0 MHz 20 34 — dB 960,0 1850,0 MHz 35 42 — dB			MHz		-1,0	_	1,0	dB
3660,06000,0 MHz 15 26 — dB	0,0 . 850,0 . 935,0 . 960,0 . 1850,0 .	871,0 960,0 1850,0 3660,0	MHz MHz MHz MHz	α	12 20 35 35	21 34 42 40		dB dB dB dB dB dB

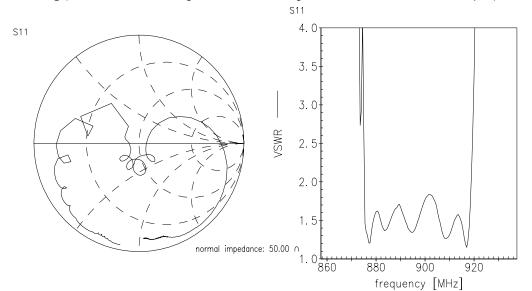
Test matching network

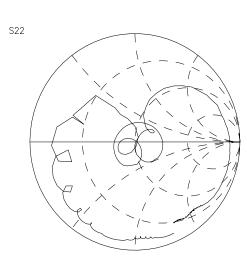


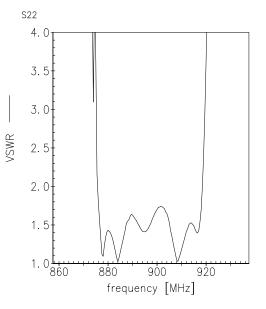
L_p = 56 nH


4

Transfer function (measurement)


Transfer function (wideband measurement)




	EPCOS	
SAW Components		B7715
Low-Loss Filter for M	Mobile Communication	897,5 MHz
Data Sheet	SMD	

Ĵ

Matching (measurement including calculated matching network; S11 is unbalanced output)

Jan 30, 2003

6

Downloaded from **Elcodis.com** electronic components distributor

	ÉPCOS	
SAW Components		B7715
Low-Loss Filter for Mo	obile Communication	897,5 MHz
Data Sheet	SMD	

Published by EPCOS AG Corporate Communications, P.O. Box 80 17 09, 81617 Munich, GERMANY ++49 89 636 09, FAX (0 89) 636-2 26 89

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.