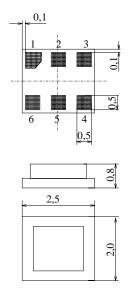


SAW Components

Data Sheet B7719

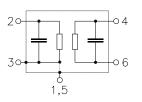


SAW Components	B7719	
Low-Loss Filter for Mo	bile Communication	881,5 MHz
Data Sheet	SMD	

Features

- Low-loss RF filter for mobile telephone GSM850 system, receive path
- Low amplitude ripple
- Usable passband 25 MHz
- Unbalanced to balanced operation
- Impedance transformation from 50 Ω to 200 Ω
- Suitable for GPRS class 1 to 12
- Ceramic package for Surface Mounted Technology (SMT)

Chip sized SAW package DCS6I


Terminals

Ni, gold-plated

Dimensions in mm, approx. weight 0,014g

Pin configuration

2	Unbalanced input
4, 6	Balanced output
1, 3, 5	To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to
B7719	B39881-B7719-C610	C61157-A7-A76	F61074-V8112-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	- 30 / + 85	°C	
Storage temperature range	T _{stg}	- 40 / + 85	°C	
DC voltage	V _{DC}	5	V	
ESD	V _{ESD}	50	V	
Input power at	P _{IN}	15	dBm	peak power of GSM signal,
GSM850, GSM900,				duty cycle 4:8
GSM1800 and GSM1900				
Tx bands				

2 Ju

Jun 10, 2002

SAW Components		B7719
Low-Loss Filter for Mobile Comr	nunication	881,5 MHz
Data Sheet Characteristics	SMD	
Operating temperature range: Terminating source impedance: Terminating load impedance:	$T = 25 \pm 2 \degree C$ $Z_S = 50 \Omega \text{ (unbalanced)}$ $Z_L = 200 \Omega \text{ (balanced)}$	

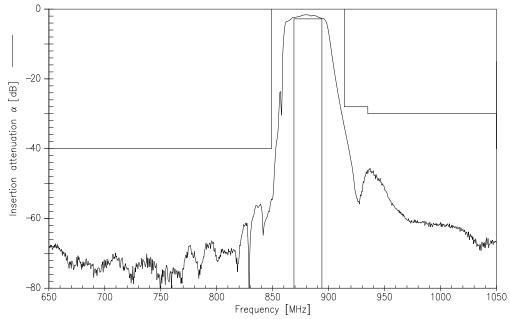
				min.	typ.	max.	
Center frequency			f _C	—	881,5		MHz
Maximum insertion attenuat	ion		α_{max}				
869,0	894,0	MHz		—	2,6	2,8	dB
Amplitude ripple (p-p)			Δα				
869,0	894,0	MHz			1,0	1,2	dB
Unbalanced input VSWR							
869,0	894,0	MHz			1,6	2,0	
Balanced output VSWR							
869,0	894,0	MHz			1,7	2,0	
Output phase balance ($\phi(S_{31})$)°)					
869,0	894,0	MHz		-10	—	+10	degre
Output amplitude balance (
869,0	894,0	MHz		-2,0	—	2,0	dB
Common mode Suppression	n		S _{sc12}				
0,1		MHz		20	45	_	
869,0		MHz		20	25	_	
914,0	6000,0	MHz		20	30	_	
Attenuation			α				
0,0	•	MHz		40	60	_	dB
824,0		MHz		40	57	—	dB
914,0		MHz		28	33	—	dB
935,0		MHz		30	45	—	dB
1135,0		MHz		40	65	—	dB
1175,0		MHz		35	45	—	dB
2500,0		MHz		30	34	-	dB
4000,0	6000,0	MHz		15	25		dB

Downloaded from Elcodis.com electronic components distributor

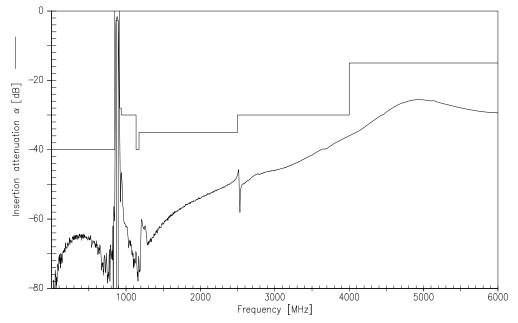
SAW Components		B7719
Low-Loss Filter for Mobile Comm	nunication	881,5 MHz
Data Sheet Characteristics		
Operating temperature range: Terminating source impedance: Terminating load impedance:	T = -20 to +80 °C $Z_{\text{S}} = 50 \Omega \text{ (unbalanced)}$ $Z_{\text{L}} = 200 \Omega \text{ (balanced)}$	

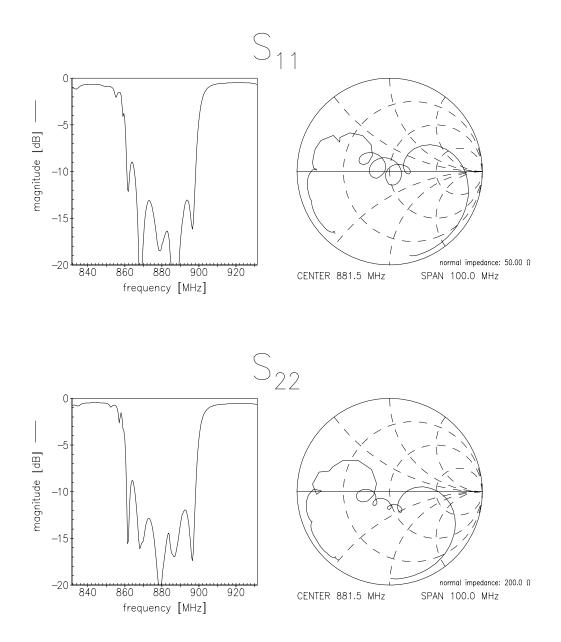
$f_{\rm C}$ $\alpha_{\rm max}$ $\Delta \alpha$	_	881,5 2,8		MHz
	_	2,8	3,1	dB
Δα	_	2,8	3,1	dB
Δα				
	—	1,2	1,5	dB
	—	1,6	2,0	
	_	1,7	2,0	
	-10		+10	degree
	-2,0		2,0	dB
S _{sc12}				
	20	45	—	
			—	
	20	30		
α				
	40	60	—	dB
	38	54	—	dB
	26	31	—	dB
	30	45	—	dB
	40	65	—	dB
	35	45	—	dB
	30	34	—	dB
	15	25	—	dB
	S _{sc12}	$\begin{array}{c c} & - & \\ & -10 & \\ & -2,0 & \\ S_{sc12} & & \\ & 20$	$\begin{array}{c c} & - & 1,7 \\ & -10 & - \\ & -2,0 & - \\ S_{sc12} & & \\ & 20 & 45 \\ & 20 & 25 \\ & 20 & 30 \\ & & \\ & & 40 & 60 \\ & 38 & 54 \\ & 26 & 31 \\ & 30 & 45 \\ & 40 & 65 \\ & 35 & 45 \\ & 30 & 34 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

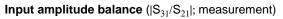
4

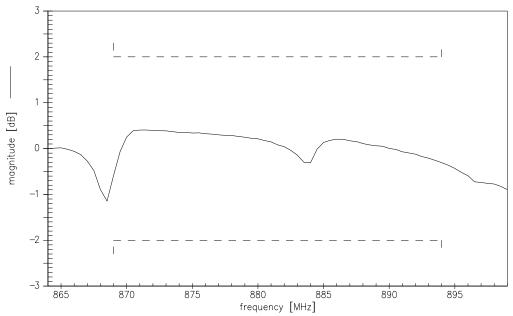


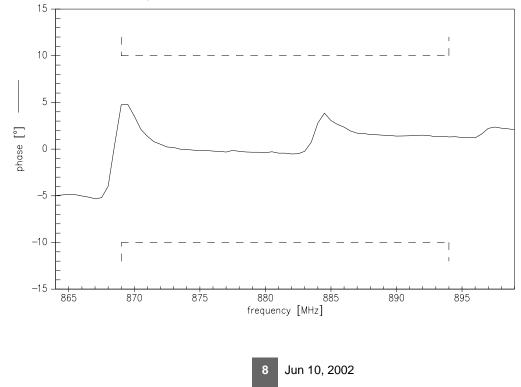

SAW Components Low-Loss Filter for Mobile Commu	inicatio	n			881	B7719 I,5 MHz
Data Sheet	A				00	,0 11112
Characteristics						
Operating temperature range: Terminating source impedance: Terminating load impedance:	Z_{S}	= 50 Ω	o +85 °C (unbalanc Ω (balance			
			min.	typ.	max.	
Center frequency		f _C	—	881,5	—	MHz
Maximum insertion attenuation		α _{max}				
869,0 894,0	MHz	Tildx	_	2,8	3,2	dB
Amplitude ringle (n)		1.01				
Amplitude ripple (p-p) 869,0 894,0	MHz	Δα		1,2	1,6	dB
					.,.	-
Unbalanced input VSWR						
869,0 894,0	MHz			1,6	2,0	
Balanced output VSWR						
869,0 894,0	MHz		—	1,7	2,0	
Output phase balance $(A(S_{-}), A(S_{-}))$	າດ					
Output phase balance (φ(S ₃₁)-φ(S ₂₁)+18 869,0 894,0			-10	_	+10	degree
Output amplitude balance (S_{31}/S_{21})						
869,0 894,0	MHz		-2,0	_	2,0	dB
Common mode Suppression		S _{sc12}				
0,1 849,0			20	45	_	
869,0 894,0			20	25	-	
914,06000,0	MHz		20	30	-	
Attenuation		α				
0,0 824,0	MHz		40	60	_	dB
824,0 849,0			38	54	—	dB
914,0 935,0	MHz		26	31	—	dB
935,01135,0	MHz		30	45	— —	dB
1135,01175,0			40	65	_	dB
1175,02500,0	MHz		35	45	_	dB
2500,04000,0			30	34	-	dB
4000,06000,0	MHz		15	25	-	dB


Downloaded from **Elcodis.com** electronic components distributor






Matching (measurement; S22 is balanced output)


Jun 10, 2002

	EPCOS	
SAW Components		B7719
Low-Loss Filter for M	obile Communication	881,5 MHz
Data Sheet		

Input phase balance ($\phi(S_{31})-\phi(S_{21})+180^{\circ}$; measurement)

	ÉPCOS	
SAW Components		B7719
Low-Loss Filter for Mo	bile Communication	881,5 MHz
Data Sheet	SMD	

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

Downloaded from Elcodis.com electronic components distributor