

SAW multimedia filters

Series/Type: X6964D

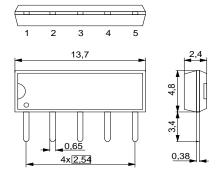
The following products presented in this data sheet are being withdrawn.

Ordering Code	Substitute Product		Deadline Last Orders	Last Shipments
B39438X6964N201		2011-01-14	2011-09-30	2012-09-30

For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

SAW Components	X 6964 D
Bandpass Filter	43,75 MHz

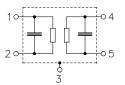
Data Sheet


Duroplast package SIP5D

Features

- IF filter for digital cable TV
- Standard IC package

Terminals


■ Tinned CuFe alloy

Dimensions in mm, approx. weight 0,5 g

Pin configuration

- 1 Input
- 2 Input ground
- 3 Chip carrier ground
- 4 Output
- 5 Output

Туре	Ordering code	Marking and package according to	Packing according to
X 6964 D	B39438-X6964-N201	C61157-A1-A21	F61074-V8049-Z000

Maximum ratings

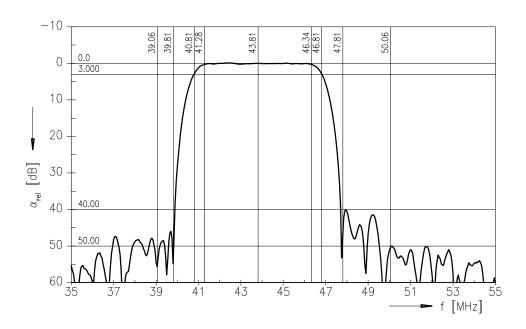
Operable temperature range	T_{A}	-25/+65	°C	
Storage temperature range	$T_{ m stg}$	-40/+85	°C	
DC voltage	$V_{\rm DC}$	5	V	between any terminals
AC voltage	$V_{\sf pp}$	10	V	between any terminals

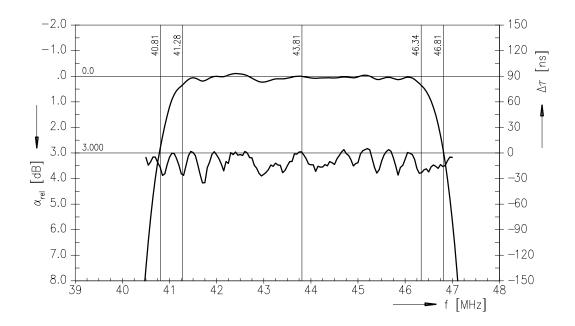
SAW Components X 6964 D
Bandpass Filter 43,75 MHz

Data Sheet

Characteristics

Reference temperature: $T_{\rm A} = 25 \ (45) \ ^{\circ}{\rm C}$ Terminating source impedance: $Z_{\rm S} = 50 \ \Omega$ Terminating load impedance: $Z_{\rm L} = 2 \ k\Omega \ || \ 3 \ {\rm pF}$

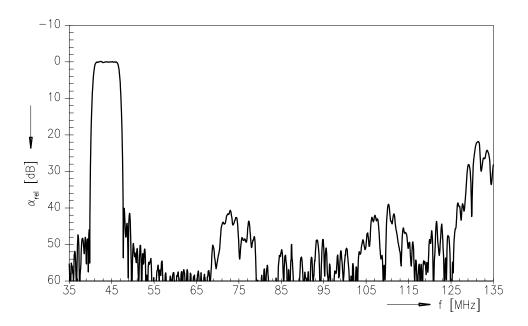

				min.	typ.	max.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			f_C	(43,68)	(43,75)	(43,82)	MHz
Reference level for the following data Pass bandwidth $\alpha_{\rm rel} \le 3 {\rm dB}$	(center between 10 dB poi	nts)					
following data	Insertion attenuation		α				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		43,81 (43,75) MHz	!	13,3	14,8	16,3	dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pass bandwidth						
Relative attenuation $\alpha_{\rm rel}$	$\alpha_{\text{rel}} \leq 3\text{dB}$		B_{3dB}	_	6,0	_	MHz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\alpha_{rel} \leq 30 dB$		B_{30dB}	_	7,6	_	MHz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Relative attenuation		α_{rel}				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		41,28 (41,22) MHz		_	0,3	_	dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		46,34 (46,28) MHz	!	-0,8	0,2	1,2	dB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40,81 (40,75) MHz	<u>:</u>	1,5	2,7	3,9	dB
Lower sidelobe 35,06 39,06 (35,00 39,00) MHz 42,0 48,0 — dB 39,06 39,81 (39,00 39,75) MHz 37,0 46,0 — dB Upper sidelobe 47,81 50,06 (47,75 50,00) MHz 36,0 41,0 — dB 50,06 55,06 (50,00 55,00) MHz 42,0 48,0 — dB Felected wave signal suppression 1,3 μ s 6,0 μ s after main pulse (test pulse 250 ns, carrier frequency 43,81 MHz) Feedthrough signal suppression 1,3 μ s 1,2 μ s before main pulse (test pulse 250 ns, carrier frequency 43,81 MHz) Group delay ripple (p-p) $\Delta \tau$ 40,81 46,81 (40,75 46,75) MHz — 40 — ns Impedance at 43,81 MHz Input: $Z_{\text{IN}} = R_{\text{IN}} \parallel C_{\text{IN}}$ — 1,1 \parallel 16,4 — $k\Omega \parallel p$		46,81 (46,75) MHz	<u>.</u>	1,5	2,7	3,9	dB
Lower sidelobe $35,06 \dots 39,06 \ (35,00 \dots 39,00) \ MHz \ 39,06 \dots 39,81 \ (39,00 \dots 39,75) \ MHz \ 37,0 \ 46,0 \ - \ dB$ Upper sidelobe $47,81 \dots 50,06 \ (47,75 \dots 50,00) \ MHz \ 50,06 \dots 55,06 \ (50,00 \dots 55,00) \ MHz \ 42,0 \ 48,0 \ - \ dB$ Reflected wave signal suppression $1,3 \ \mu s \dots 6,0 \ \mu s$ after main pulse $42,0 \ 52,0 \ - \ dB$ (test pulse 250 ns, carrier frequency 43,81 MHz) Feedthrough signal suppression $1,3 \ \mu s \dots 1,2 \ \mu s$ before main pulse $42,0 \ 52,0 \ - \ dB$ (test pulse 250 ns, carrier frequency 43,81 MHz) Group delay ripple (p-p) $\Delta \tau$ $\Delta $				38,0		_	dB
35,06 39,06 (35,00 39,00) MHz 39,06 39,81 (39,00 39,75) MHz 37,0 46,0 — dB 47,81 50,06 (47,75 50,00) MHz 36,0 41,0 — dB 50,06 55,06 (50,00 55,00) MHz 42,0 48,0 — dB $1.3 \mu s 6,0 \mu s$ after main pulse 42,0 $1.3 \mu s 6,0 \mu s$ after main pulse 42,0 $1.3 \mu s 6,0 \mu s$ after main pulse 42,0 $1.3 \mu s 1,2 \mu s$ before main pulse 50,0 $1.3 \mu s 1,2 \mu s$ before main pulse 50,0 $1.3 \mu s 1,2 \mu s$ before main pulse 50,0 $1.3 \mu s 1,2 \mu s$ before main pulse 50,0 $1.3 \mu s 1,2 \mu s$ before main pulse 50,0 $1.3 \mu s 1,2 \mu s$ before main pulse 60,0 $1.3 \mu s 1,2 \mu s$ before main pulse 70,0 $1.3 \mu s 1,2 \mu s$ before $1.3 \mu s 1,2 \mu s 1,$		47,81 (47,75) MHz	• =	37,0	48,0	_	dB
39,06 39,81 (39,00 39,75) MHz 37,0 46,0 — dB Upper sidelobe 47,81 50,06 (47,75 50,00) MHz 36,0 41,0 — dB 50,06 55,06 (50,00 55,00) MHz 42,0 48,0 — dB Reflected wave signal suppression 1,3 μs 6,0 μs after main pulse (test pulse 250 ns, carrier frequency 43,81 MHz) Feedthrough signal suppression 1,3 μs 1,2 μs before main pulse (test pulse 250 ns, carrier frequency 43,81 MHz) Group delay ripple (p-p) $\Delta \tau$ 40,81 46,81 (40,75 46,75) MHz — 40 — ns Impedance at 43,81 MHz $Z_{\rm IN} = R_{\rm IN} \parallel C_{\rm IN}$ — 1,1 \parallel 16,4 — 20 20 20 20 20 20 20 20							
Upper sidelobe $47,81 \dots 50,06 \ (47,75 \dots 50,00) \ \text{MHz}$ $36,0 \ 41,0 \ - \ \text{dB}$ $50,06 \dots 55,06 \ (50,00 \dots 55,00) \ \text{MHz}$ $42,0 \ 48,0 \ - \ \text{dB}$ 8 Reflected wave signal suppression $1,3 \ \mu s \dots 6,0 \ \mu s$ after main pulse $42,0 \ 52,0 \ - \ \text{dB}$ $42,0 \ 42,0 \ - \$		• • •			,	_	1
47,81 50,06 (47,75 50,00) MHz 36,0 41,0 — dB 50,06 55,06 (50,00 55,00) MHz 42,0 48,0 — dB Reflected wave signal suppression 1,3 μs 6,0 μs after main pulse (test pulse 250 ns, carrier frequency 43,81 MHz)				37,0	46,0	_	dB
50,06 55,06 (50,00 55,00) MHz 42,0 48,0 — dB Reflected wave signal suppression 1,3 μs 6,0 μs after main pulse 42,0 52,0 — dB (test pulse 250 ns, carrier frequency 43,81 MHz) Group delay ripple (p-p) $\Delta \tau$ $40,81$ $46,81$ ($40,75$ $46,75$) MHz — 40 — ns Impedance at 43,81 MHz Input: $Z_{\rm IN} = R_{\rm IN} \parallel C_{\rm IN}$ — 1,1 \parallel 16,4 — $\kappa \Omega \parallel p$		(47.75		00.0	44.0		-10
Reflected wave signal suppression1,3 μs 6,0 μs after main pulse42,052,0—dB(test pulse 250 ns, carrier frequency 43,81 MHz)50,056,0—dBFeedthrough signal suppression 1,3 μs 1,2 μs before main pulse (test pulse 250 ns, 					,	_	
1,3 μs 6,0 μs after main pulse (test pulse 250 ns, carrier frequency 43,81 MHz) Feedthrough signal suppression 1,3 μs 1,2 μs before main pulse 50,0 56,0 — dB (test pulse 250 ns, carrier frequency 43,81 MHz) Group delay ripple (p-p) $\Delta \tau$ Δ	•		1	42,0	48,0	_	ав
(test pulse 250 ns, carrier frequency 43,81 MHz) Feedthrough signal suppression 1,3 μ s 1,2 μ s before main pulse (test pulse 250 ns, carrier frequency 43,81 MHz) Group delay ripple (p-p) 40,81 46,81 (40,75 46,75) MHz Input: $Z_{\text{IN}} = R_{\text{IN}} \parallel C_{\text{IN}}$							
carrier frequency 43,81 MHz) Feedthrough signal suppression 1,3 μ s 1,2 μ s before main pulse (test pulse 250 ns, carrier frequency 43,81 MHz) Group delay ripple (p-p) 40,81 46,81 (40,75 46,75) MHz $\Delta \tau$	·			42,0	52,0	_	gB
Feedthrough signal suppression 1,3 μs 1,2 μs before main pulse 50,0 56,0 — dB (test pulse 250 ns, carrier frequency 43,81 MHz) $\Delta \tau$ — 40,81 46,81 (40,75 46,75) MHz — 40 — ns Impedance at 43,81 MHz Input: $Z_{\text{IN}} = R_{\text{IN}} \parallel C_{\text{IN}}$ — 1,1 16,4 — kΩ p		1-1					
1,3 μs 1,2 μs before main pulse (test pulse 250 ns, carrier frequency 43,81 MHz)	• •	•					
(test pulse 250 ns, carrier frequency 43,81 MHz)							
carrier frequency 43,81 MHz)	•			50,0	56,0	_	dB
Group delay ripple (p-p) $\Delta \tau$ 40,81 46,81 (40,75 46,75) MHz — 40 — ns Impedance at 43,81 MHz Input: $Z_{\text{IN}} = R_{\text{IN}} \parallel C_{\text{IN}}$ — 1,1 16,4 — kΩ p							
40,81 46,81 (40,75 46,75) MHz — 40 — ns Impedance at 43,81 MHz Input: $Z_{\text{IN}} = R_{\text{IN}} \parallel C_{\text{IN}}$ — 1,1 16,4 — kΩ p	• •	HZ)					
Impedance at 43,81 MHz Input: $Z_{IN} = R_{IN} \parallel C_{IN}$ — 1,1 16,4 — $k\Omega \parallel p$	Oroup delay ripple (ρ-ρ)						
Input: $Z_{IN} = R_{IN} C_{IN} $ — 1,1 16,4 — $ k\Omega p$	40,81 46,81	(40,75 46,75) MHz	!	_	40	_	ns
	Impedance at 43,81 MHz						
Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT} \qquad \qquad 1,1 \parallel 5,0 \qquad \qquad k\Omega \parallel p$	Input: $Z_{IN} = R_{IN} \parallel C_{IN}$			_	1,1 16,4	_	kΩ pF
	Output: Z	$C_{\text{OUT}} = R_{\text{OUT}} \parallel C_{\text{OUT}}$		_	1,1 5,0		kΩ pF
Temperature coefficient of frequency $TC_{\rm f}$ — -72 — ppm/K	Temperature coefficient	of frequency	TC _f	_	-72	_	ppm/K

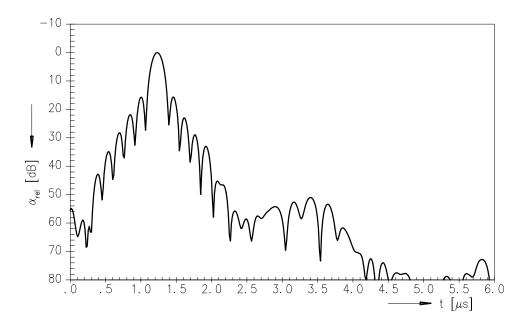


SAW Components X 6964 D
Bandpass Filter 43,75 MHz

Data Sheet

Frequency response




SAW Components X 6964 D
Bandpass Filter 43,75 MHz

Data Sheet

Frequency response

Time domain response

SAW Components	X 6964 D
Bandpass Filter	43,75 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW CE MM PD P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2004. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.