FEATURES

- Very low $\mathrm{I}_{\mathrm{GT}}=10 \mathrm{~mA} \max$
- Low $\mathrm{I}_{\mathrm{H}}=15 \mathrm{~mA}$ max
- BTA Family:

Insulating voltage $=2500 \mathrm{~V}_{(\mathrm{RMS})}$
(UL recognized: E81734)

DESCRIPTION

The BTA/BTB04 T/D/S/A triac family are high performance glass passivated PNPN devices. These parts are suitables for general purpose applications where gate high sensitivity is required. Application on $4 Q$ such as phase control and static switching.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter			Value	Unit
$I_{\text {T(RMS }}$	RMS on-state current (360° cor aniction angle)	BTA	$\mathrm{Tc}=90^{\circ} \mathrm{C}$	4	A
		BTB	$\mathrm{Tc}=95^{\circ} \mathrm{C}$		
$I_{\text {TSM }}$	Non repetitive surge neith ni-state current (Tj initial $=25^{\circ} \mathrm{C}$)		tp $=8.3 \mathrm{~ms}$	42	A
			$t \mathrm{p}=10 \mathrm{~ms}$	40	
$1^{2} t$	$1^{2} t$ value -		tp $=10 \mathrm{~ms}$	8	A ${ }^{2} \mathrm{~s}$$\mathrm{~A} / \mu \mathrm{s}$
dl/dt	Critical - ite or rise of on-state current Gat. supply: $\mathrm{I}_{\mathrm{G}}=50 \mathrm{~mA} \quad \mathrm{dl} \mathrm{I}_{\mathrm{G}} / \mathrm{dt}=0.1 \mathrm{~A} / \mu \mathrm{s}$		$\begin{aligned} & \text { Repetitive } \\ & \mathrm{F}=50 \mathrm{~Hz} \\ & \hline \end{aligned}$	10	
			Non repetitive	50	
Tsts T,	'Storage and operating junction temperature range			$\begin{aligned} & -40 \text { to }+150 \\ & -40 \text { to }+110 \end{aligned}$	${ }^{\circ} \mathrm{C}$
$\underline{+}$	Maximum lead soldering temperature during 10s at 4.5 mm from case			260	${ }^{\circ} \mathrm{C}$

Symbol	Parameter	BTA / BTB04-			
		400 T/D/S/A	600 T/D/S/A	700 T/D/S/A	
		400	600	700	V

BTA04 T/D/S/A BTB04 T/D/S/A
THERMAL RESISTANCE

Symbol	Parameter		Value	Unit
Rth (j-a)	Junction to ambient		60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rth (j-c) DC	Junction to case for DC	BTA	4.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		BTB	3.2	
Rth (j-c) AC	Junction to case for 360° conduction angle ($\mathrm{F}=50 \mathrm{~Hz}$)	BTA	3.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		BTB	2.4	

GATE CHARACTERISTICS (maximum values)
$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}=1 \mathrm{~W} \quad \mathrm{P}_{\mathrm{GM}}=40 \mathrm{~W}(\mathrm{tp}=20 \mu \mathrm{~s}) \quad \mathrm{I}_{\mathrm{GM}}=4 \mathrm{~A}(\mathrm{tp}=20 \mu \mathrm{~s}) \quad \mathrm{V}_{\mathrm{GM}}=16 \mathrm{~V}(\mathrm{tp}=20 \mu \mathrm{~s})$

ELECTRICAL CHARACTERISTICS

Symbol	Test conditions		Quadrant		BTA / BTB04				Unit	
				T	D	S	A			
$I_{\text {GT }}$	$V_{D}=12 \mathrm{~V}(\mathrm{DC}) \mathrm{R}_{\mathrm{L}}=33 \Omega$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		I- II- III	MAX.	5	5	10	10	mA
			IV	MAX.	5	10	10	25		
V_{GT}	$V_{D}=12 \mathrm{~V}$ (DC) $\mathrm{R}_{\mathrm{L}}=33 \Omega$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	I-II-III - IV	MAX.			. 5		V	
V_{GD}	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }} \quad \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega$	$\mathrm{Tj}=110^{\circ} \mathrm{C}$	I-II - III - IV	MIN.			. 2		V	
tgt	$\begin{aligned} & V_{D}=V_{D R M} \quad I_{G}=40 \mathrm{~mA} \\ & d \mathrm{l}_{\mathrm{G}} / \mathrm{dt}=0.5 \mathrm{~A} / \mathrm{\mu s} \end{aligned}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	I-II-III - IV	TYP.			2		$\mu \mathrm{s}$	
IL	$\mathrm{I}_{\mathrm{G}}=1.2 \mathrm{l}_{\mathrm{GT}}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	I-III-IV	TYP.	10	10	20	20	mA	
			II		20	20	40	40		
IH^{*}	$\mathrm{I}_{\mathrm{T}}=100 \mathrm{~mA}$ Gate open	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		MAX.	15	15	25	25	mA	
$\mathrm{V}_{\text {TM }}$ *	$\mathrm{I}_{\text {тм }}=5.5 \mathrm{~A} \quad \mathrm{tp}=380 \mu \mathrm{~s}$	Tj $=25^{\circ} \mathrm{C}$		MAX.	1.65				V	
IDRM Irrm	$V_{\text {DRM }}$ rated VRRM rated	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		MAX.	0.01				mA	
		$\mathrm{Tj}=110^{\circ} \mathrm{C}$		MAX.	0.75					
dV/dt *	Linear slope up to $V_{D}=67 \% V_{\text {DRM }}$ gate open	$\mathrm{Tj}=110^{\circ} \mathrm{C}$		TYP.	10	10	-	-	V/us	
				MIN.	-	-	10	10		
(dl/dt) c^{*}	$(\mathrm{dl} / \mathrm{dt}) \mathrm{C}=1.8 \mathrm{~A} / \mathrm{ms}$	$\mathrm{Tj}=110^{\circ} \mathrm{C}$		TYP.	1	1	5	5	V/us	

* For either polarity of electrode A_{2} voltage with reference to electrode A_{1}

PRODUCT INFORMATION

Package	$\mathrm{It}_{\text {(RMS }}$	$\mathrm{V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$	Sensitivity Specification			
	A	V	T	D	S	A
BTA (Insulated)	4	400	X			X
		600	X	X		
		700	X		X	
BTB (Uninsulated)		400	X	X		
		600	X		X	

ORDERING INFORMATION

Fig. 1: Maximum RMS power dissipation versus RMS on-state current ($F=50 \mathrm{~Hz}$). (Curves are cut off by (dl/dt)c limitation)

Fig. 3: Correlation between maximum RMS power dissipation and maximum allowable temperature (Tamb and Tcase) for different thermal resistances heatsink + contact (BTB).

Fig. 5: Relative variation of thermal impedance versus pulse duration.

Fig. 2: Correlation between maximum RMS power dissipation and maximum allowable temperature (Tamb and Tcase) for different thermal resistances heatsink + contact (BTA).

P(W)
Tcase (${ }^{\circ} \mathrm{C}$)

Fig. 4: RMS on-state current versus case temperature.

Fig. 6: Relative variation of gate trigger current and holding current versus junction temperature.

Fig. 7: Non repetitive surge peak on-state current versus number of cycles.

Fig. 8: Non repetitive surge peak on-state current for a sinusoidal pulse with width: $\mathrm{t} \leq 10 \mathrm{~ms}$, and corresponding value of $\mathrm{I}^{2} \mathrm{t}$.

Fig. 9: On-state characteristics (maximum values).

PACKAGE MECHANICAL DATA
TO-220AB (Plastic)

OTHER INFORMATION

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
BTA/BTB04-xxxy	BTA/BTB04-xxxy	TO-220AB	2.3 g	250	Bulk

- Epoxy meets UL94,V0
- Cooling method: C
- Recommended torque value: $0.8 \mathrm{~m} . \mathrm{N}$.
- Maximum torque value: $1 \mathrm{~m} . \mathrm{N}$.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

