Table of Contents What is PGS? What is PGS made of? **PGS's General Characteristics** **PGS's Features** **PGS's Benefits** **PGS's Thermal Characteristics** **PGS versus Copper** **PGS Available Options** **PGS Typical Applications (1)** PGS Typical Applications (2) **PGS Data Sheet** ## Thermal Management / Heat-Sinking Solutions from Panasonic ### Panasonic's Thermally Conductive Pyrolytic Graphite Sheet (PGS) Panasonic Industrial Company Product Management Dept. 2005 Rev. 1/6/05 # What is a ... Pyrolytic Graphite Sheet (PGS) ? PGS (Pyrolytic Graphite Sheet) is a synthetically made, high thermally conductive sheet of an unique form of highly-oriented graphite polymer film ideal for providing thermal management / heat-sinking in limited spaces or provide supplemental heat-sinking in addition to other means. **Ordinary Graphite** PGS® graphite sheet ## Microscopic View of PGS Structure Lattice constant 3.354 ~ 3.356 Å ## PGS's General Characteristics | Characteristics | | Specifications | | | | |-------------------------|-----------|-----------------------------|--|--|--| | Thickness | | 0.10± 0.05 mm | | | | | Density | | 1 g/ cm ³ | | | | | Thermal conductivity | a-b plane | 600 to 800 W / (m·K) | | | | | | c axis | Approx. 15 W / (m⋅K) | | | | | Electrical conductivity | | 10000 S/ cm | | | | | Tensile stre | ngth | 19.6 MPa | | | | ### PGS's Features - ◆ Highly thermally conductive (600 to 800 W / (m•K)) - · Conductivity is twice that of copper, ten times that of ordinary graphite - ◆ Light weight (Density 1.0 g / cm³) - 1/9 th of copper and 1/3 rd of aluminum - ◆ Flexible sheet, easy to cut or trim - Easy to cut into any shape, even using hand-held scissors - High heat resistance - Stable up to about 500°C. ### PGS's Benefits Thermally conductive More thermally conductive than copper, aluminum, or ceramic materials **Energy-saving** Does not use electricity **Environmentally Friendly** Pure carbon material, has no toxic substances Thin and Light weight **Excellent heat transfer in any narrow space** Long life Stable at normal atmospheric conditions and is maintenance-free Flexible Flexible and can be easily cut into custom shapes Heat resistant Stable up to about 500 ℃ # Thermal Conductivity Characteristics ### Comparison of thermal conductivity in the a – b plane Coefficient of thermal Conductivity (W/m·K) # PGS's Performance vs Copper # PGS's Available Options | | | Adhesive type | | | | Insulation type | | Multilayered type | | |-----------------------|--|--|--|--|--|---|---|---|--| | Туре | ①PGS only | ② Double-sided
adhesive tape
attached type | 3 Double-sided
adhesive tape
attached type | Acrylic adhesion attached type | ⑤ Double-sided
adhesive tape
attached type
(Heat-resistance type) | ® Polyester tape attached type | Polyimide tape
attached type | Silicon layered One-sided type | Silicon layered Double-sided type | | Structure | PGS | PGS Separating paper Acrylic double-sided adhesive tape 30µ m | PGS Separating paper Acrylic double-sided adhesive tape 10µ m | PGS Separating paper Acrylic adhesive 10µ m | PGS Separating paper Acrylic double-sided adhesive tape (Heat-resistance type) 30µ m | Polyester tape | PGS Polyimide tape 30µ m | PGS
Silicon
100µ m | PGS
Silicon
100µ m | | Features | Usable up to 400°C Low thermal resistance Conductivity | Insulation Strong adhesion | Low thermal
resistance | Low thermal resistance Thin adhesive | Strong adhesion High heat resistance | Insulation High mechanical strength | High insulation High heat resistance High mechanical strength | Cushioning properties One-side insulation | Cushioning properties Both-side insulation | | Thickness | 100µ m | 130µ m | 110µ m | 110µ m | 130µ m | 130µ m | 130µ m | 200µ m | 300µ m | | Thermal conductivity | 600~ 800
W m∙K | 500~ 600
W m⋅K | 550~ 650
W m⋅K | 550~ 650
W m⋅K | 400~ 500
W m⋅K | 500~ 600
W m⋅K | 500~ 600
W m⋅K | 250~ 300
W m⋅K | 250~ 300
W m·K | | Withstand temperature | 40°C | 80°C | 80°C | 80°C | 150°C | 80°C | 180°C | 180°C | 180°C | | Standard sample | 180× 230
mm | 90× 115
mm | 115× 180
mm | 115× 180
mm | | Part No. | EYGS182310 | EYGA091210A | EYGA091210B | EYGC091210C | EYGA091210A T | EYGA091210P | EYGA091210K | EYGM121810SS | EYGM121810SW | # Typical PGS Applications # Typical PGS Applications ## GS Data Sheet ■ Recommended applications phones Notebook personal computers,DVDs,DVCs,mobile Semiconductor manufacturing equipment #### **Panasonic** "PGS" Graphite Sheets #### "PGS" Graphite Sheets Туре: **EYG** PGS (Pyrolytic Graphite Sheet) is a heat sink sheet rus (ryrolytic Graphite Sheet) is a heat sink sheet with high thermal conductivity and high flexibility. PGS is made of graphite with a structure that is close to a single crystal. This is achieved by highly oriented polymer film sheet, a process which has never been implemented before. - Features Excellent thermal conductivity:600 to 800W/(m·K) Excellent thermal conductivity:600 to 800W/(m·K) (Twice as high as copper, three times as high as alu-minum) #### ■ Dimensions in mm | Part No. | Dimension X (Short) | Dimension Y (Long) | Thickness | |------------|---------------------|--------------------|-------------| | EYGS182310 | 18.0±0.5cm | 23.0±0.5cm | 0.10±0.05mm | | EYGS121810 | 11.5±0.5cm | 18.0±0.5cm | 0.10±0.05mm | | EYGS091210 | 9.0±0.5cm | 11.5±0.5cm | 0.10±0.05mm | | Characteristics | | Specification | | | |-------------------------|-----------|----------------------------|--|--| | Thickness | | 0.10 ± 0.05 mm | | | | Density | | 1.0 g/cm ³ | | | | Thermal conductivity | a-b plane | 600 to 800 W/(m·K) | | | | Electrical conductivity | | 10000 S/cm | | | | Extensional strength | | 19.6 MPa | | | | Expansion coefficient | a-b plane | 9.3 × 10 ⁻⁷ 1/K | | | | Expandion dodinolon | c axis | 3.2 × 10 ⁻⁵ 1/K | | | | Heat resistance | | 400 °C | | | | Bending(angle 180,R5) | | 10000 cycles | | | Besign and appositions are each subject to change without notice. Ask factory for the surrent technical specifications before purchase and/or use, Should a safety concern arise regarding this product, please be sure to context us immediately. #### **PGS Data Sheet Hyperlink** #### **Panasonic** "PGS" Graphite Sheets #### Coefficient of thermal conductivity (W/(m-k)) ■ Dimensions in mm (not to scale) | | EYGS182310 | EYGM121810SS | EYGM121810SW | EYGA091210K | EYGA091210A | EYGC091210C | EYGL P2 | EYGM091210CT | |--|--|--|---|---|---|---|--|---| | Туре | PGS only | Silicon lay
One-
sided type | Double-
sided type | Polyimide tape
attached | Doble-side-
adhesive
tape at-
tached type | Acrylic
adhesive
(one side)
attached type | PET-
covered
type | Conductive
adhesive
tape type | | Structure | 28 | PGS
Sillicon:
100µm | Silicon:
100jun | Polymide
tape: 30µm | Acrylic double-
alded-adheave super Sounn
Protective paper (separating paper) | Acrylic adhosive 10µm Protective paper (separating paper) | PG\$ PET film: 25 j/m | Conductive adhesive tape Protective paper (separating paper) | | Thickness
(µm) | 100±50 | 200±50 | 300±50 | 130±50 | 130±50 | 110±50 | 150±50
(1 pcs.)
350±50
(3 pcs.) | 130±50 | | Thermal*
resistance
(°C/W) | 0.4 | 1.0 | 1.4 | 2.4 | 1.7 | 0.8 | 2.0 | 1.6 | | Thermal*
conductivity
(direction of the
sheet surface)
(W/m·k) | 600 to 800 | 250 to 300 | 250 to 300 | 500 to 600 | 500 to 600 | 550 to 650 | 500 to 600 | 500 to 600 | | Withstand
temperature
max. ("C) | 400 | 180 | 180 | 180 | 80 | 80 | 105 | 80 | | Standard
To be
separately
consulted
sample,
(± 5 mm) | 180×230 | 115×180 | 115×180 | 90×115 | 90×115 | 90×115 | To be
separately
consulted | 90×115 | | Features | · Usable up
to 400°C
· Low
thermal
resistance
· Conductiv-
ity | · Cushioning
properties
· One-side
insulation | Cushioning properties Both-side insulation | · High
insulation
· High heat
resistance | · Insulation
· Strong
adhesion | · Low
thermal
resistance | · High
insulation | · Conductiv-
ity |