

Distributed Power Front-End

FXP7000 Front and Rear Views

The FXP7000 Series of rack-mounted power systems provides AC front-end capability to automatic test equipment, telecom, data communications, and other distributed power designs. The pluggable FXP supplies do not include an output isolation diode and may be paralleled up to 210 kW of total output power. These supplies provide excellent protection against input voltage transients.

Access to interfaces for remote sensing, remote voltage adjust, current sharing, current monitoring, power supply status, standby voltage and inhibit, as well as power connections, is through a connector at the rear of the supply. The FXP has its fan, handles, voltage adjust, and

Features

- Three-phase AC input
- Suitable for 3U or 5U height mounting
- Single-wire current share or Droop current share
- Remote voltage adjust and current monitoring
- Overtemperature, overload, and overvoltage protection
- LED supply status indicators
- · Current share control for up to 30 units
- Standard & customized rack adaptors available
- · Front panel selectable-input-range

indicator lights on the front panel and a single hot-plug connector on the rear. Airflow is from the front through the rear. Alarm, monitoring, and control signals are floating from the main output and can be referenced to the positive or negative output or sense line of the power supply. The output is floating with respect to the chassis and may be used as a positive or negative polarity supply.

The FXP7000 Series meets international safety requirements and is CE Marked to the Low Voltage Directive. This series operates on three-phase European voltages as well as (up to) 480VAC, delta or wye.

Hot-Pluggable Model

MODEL	OUTPUT VOLTAGE	INPUT VOLTAGE RANGE 3-PHASE (VAC)	ADJUSTMENT RANGE	MAXIMUM OUTPUT CURRENT	LINE REGULATION	LOAD Regulation (Note 1)	INITIAL SETTING Accuracy	
FXP7000-48-S	48V	180 to 264 or 342 to 528	45.6V to 50.4V	145A	0.15%	0.2%	47.90V to 48.10V	
	mote Sense conne		45.00 10 50.40	145A	0.1376	0.270	47.900 แ	

Input Specifications

PARAMETER	DESCRIPTION/CONDITIONS		MIN	NOM	MAX	UNITS	
Input Voltage - AC	3-phase delta low input range, nominal.		200		240	VAC	
	3-phase delta high input range, nominal.				480	VAG	
	Continuous deviation from the above nomina	ls.	-10		+10	%	
Input Current	Per phase at full rated load.	FXP7000 at 180 VAC:			30	Arms	
Inrush Surge Current	Internally limited.	Vin = 264VAC (one cycle). 25° C:			38	Арк	
-	-	Vin = 528VAC (one cycle). 25° C:			38	APK	
Input Frequency	AC input.		50		60	Hz	
Hold-up Time	After last AC line peak at full power.	208 VAC:	17				
		400 VAC:	13			ms	
Operating Frequency	Switching frequency, fixed.			100		kHz	
Power Factor			0.90			W/VA	

Output Specifications

PARAMETER	DESCRIPTION/CONDITIONS		MIN	NOM	MAX	UNITS
Output Voltage	An additional 1.0 Volt is provided to the output terminals to provide for		45.6	48	50.4	V
Adjustment Range	load lead losses.					
Output Power	Continuous duty rating.				7000	Watts
Output Current	Continuous duty rating.				145	А
Efficiency	Full rated load (208Vac).		88	91		%
Regulation	Load, Maximum deviation with 0 to 100% load change:					
	With Remote Sense connected:				0.2	
	With Remote Sens	e not connected:			0.75	%
	Utilizing Droo	p Current Share:			2.0	
	Line, Under all specified operating conditions.				0.2	
Ripple & Noise	Measured at mating connector w/ 0.01µF + 10µF Tant.					
		20 MHz BW:			1	% р-р
		100 MHz BW:			2	70 P P
Overshoot / Undershoot	Output voltage overshoot/undershoot at turn-on.				0	%
Minimum Loads	Minimum loading required to maintain regulation.		0			А
Transient Response	Maximum recovery time, to within 1% of initial set	Time:			800	μs
	point due to a 25% load change, $1A/\mu S$.	Deviation:			3.2	%
Turn-On Delay	Time required for initial output voltage stabilization after po	ower-up.			3	S
Turn-on Rise Time	Time required for output voltage to rise from 10% to 90%.				100	ms

Interface Signals and Protection

DESCRIPTION/CONDITIONS		MIN	NOM	MAX	UNITS
Warning provided prior to Vout dropping 5% after loss of AC input.					ms
Output voltage - diode isolated. Inclusive of line, load, and initial tolerances.		11.6	12.0	12.4	V
Output current.				500	mA
Monitor output current over a compliance range of 0~10	Ι.				
	Normal output:		0.10		mA/A
	Total error current:	0.5	0	0.5	mA
Static sharing deviation as a percent of full-load rating	Active:			5	%
for loads >10%.	Passive:			10	
Maximum signal resistance in high input voltage range s	election.			0.10	Ω
Warning provided prior to protective reduction in current	limit.	500			ms
Voltage required to enable supply (0.5 mA sink). (NOTE 3)				1.0	V
Voltage required to enable supply (6 mA sink). (NOTE 3)				1.0	V
Straight line current limit (above approx. 5V Vout).		149		156	Α
Signal level on overload.		2.2			V
Occurs on overload when Vout is below approx. 5V.	lavg:	25		90	Α
May operate in burst-mode.					
Deviation from adjusted Vout that is considered as a faul	t.	±3	±4	±5	%
Output voltage swing available through Margin pin (analo	g).	±4.8	±5.0	±5.2	%
Time between fault warning and shutdown.		100			ms
Latching shutdown.					
Latch style overvoltage protection.		55.2	57.6	60.0	V
Resistance to logic ground upon insertion of supply.			1000		Ω
Maximum load lead loss compensation (round trip).				1.0	V
	DESCRIPTION/CONDITIONS Warning provided prior to Vout dropping 5% after loss or Output voltage - diode isolated. Inclusive of line, load, an Output current. Monitor output current over a compliance range of 0~10V Static sharing deviation as a percent of full-load rating for loads >10%. Maximum signal resistance in high input voltage range se Warning provided prior to protective reduction in current Voltage required to enable supply (0.5 mA sink). (NOTE 3) Straight line current limit (above approx. 5V Vout). Signal level on overload. Occurs on overload when Vout is below approx. 5V. May operate in burst-mode. Deviation from adjusted Vout that is considered as a fault Output voltage swing available through Margin pin (analo Time between fault warning and shutdown. Latch style overvoltage protection. Resistance to logic ground upon insertion of supply.	DESCRIPTION/CONDITIONS Warning provided prior to Vout dropping 5% after loss of AC input. Output voltage - diode isolated. Inclusive of line, load, and initial tolerances. Output current. Monitor output current over a compliance range of 0~10V. Normal output: Total error current: Static sharing deviation as a percent of full-load rating for loads >10%. Passive: Maximum signal resistance in high input voltage range selection. Warning provided prior to protective reduction in current limit. Voltage required to enable supply (0.5 mA sink). (NOTE 3) Voltage required to enable supply (6 mA sink). (NOTE 3) Straight line current limit (above approx. 5V Vout). Signal level on overload. Occurs on overload when Vout is below approx. 5V. lavg: May operate in burst-mode. Deviation from adjusted Vout that is considered as a fault. Output voltage swing available through Margin pin (analog). Time between fault warning and shutdown. Latch style overvoltage protection. Resistance to logic ground upon insertion of supply.	DESCRIPTION/CONDITIONSMINWarning provided prior to Vout dropping 5% after loss of AC input.4Output voltage - diode isolated. Inclusive of line, load, and initial tolerances. Output current.11.6Monitor output current over a compliance range of 0~10V. Normal output: Total error current:11.6Static sharing deviation as a percent of full-load rating 	DESCRIPTION/CONDITIONSMINNOMWarning provided prior to Vout dropping 5% after loss of AC input.4Output voltage - diode isolated. Inclusive of line, load, and initial tolerances.11.612.0Output current.Normal output:0.10Monitor output current over a compliance range of 0~10V.0.50Static sharing deviation as a percent of full-load rating for loads >10%.Active: Passive:0.50Static sharing deviation as a percent of full-load rating for loads >10%.Passive:10.50Maximum signal resistance in high input voltage range selection.Voltage required to enable supply (0.5 mA sink). (NOTE 3)500Voltage required to enable supply (6 mA sink). (NOTE 3)149149Signal level on overload.2.20ccurs on overload when Vout is below approx. 5V.lavg: lavg: lavg:2525100Deviation from adjusted Vout that is considered as a fault.±3±4.8±5.0100Latch style overvoltage protection.55.257.657.657.655.257.6	DESCRIPTION/CONDITIONSMINNOMMAXWarning provided prior to Vout dropping 5% after loss of AC input.4Output voltage - diode isolated. Inclusive of line, load, and initial tolerances.11.612.012.4Output current.Normal output:0.10500Monitor output current over a compliance range of 0~10V.Normal output:0.10500Total error current:0.500.55Static sharing deviation as a percent of full-load rating for loads >10%.Active:55for loads >10%.Passive:1010Maximum signal resistance in high input voltage range selection.0.100.10Voltage required to enable supply (0.5 mA sink). (NOTE 3)1.01.0Voltage required to enable supply (6 mA sink). (NOTE 3)1.01.0Signal level on overload.2.22590May operate in burst-mode.2.29044.8 ± 5.0 Deviation from adjusted Vout that is considered as a fault. ± 3 ± 4 ± 5.2 Time between fault warning and shutdown.100100100Latch style overvoltage protection.55.257.660.0Resistance to logic ground upon insertion of supply.10001000

NOTES: 1) All logic outputs listed below feature a standard active pull-down output with 0.4V max at 40 mA sink capability, and a 100k pull-up to 5V.

2) In addition to those listed below, signals and front-panel LEDs are provided to indicate: overtemperature/fan fault, AC phase

imbalance, output good, interlock open, and supply inhibited. The FXP also provides 4 LED's indicating output loading.

3) Both signals must be pulled to logic ground for the unit to operate. Enables are 100% redundant internally for applications where redundant inhibit is desirable. Contact factory for additional design details.

Safety, Regulatory, and EMI Specifications

PARAMETER	CONDITIONS/DESCRIPTION		MIN	NOM	MAX	UNITS	
Agency Approvals	UL60950/CSA60950-00 (cULus), IEC609	950, EN60950 (TÜV),					
	CE marked for the Low Voltage Directive	9					
Electromagnetic Interference	FCC CFR title 47 Part 15 Sub-Part B - Conducted.		А			01	
	EN55022 / CISPR 22 Conducted.		А			Class	
ESD Susceptibility	Per EN61000-4-2, level 4.		8			kV	
Radiated Susceptibility	Per EN61000-4-3, level 3.		10			V/M	
EFT/Burst	Per EN61000-4-4, level 4.		±4			kV	
Input Transient Protection	Per EN61000-4-5.	Line-to-Line:	4			kV	
		Line-to-Ground:	3				
Voltage Sag Immunity	Per SEMI F47-0200 FXC/FXP7000			Pend	ding		
Leakage Current	Per UL60950 and	FXP7000 at 240 VAC, 60 Hz:			5		
	EN60950:	FXP7000 at 400 VAC, 50 Hz:			7	mA	
		FXP7000 at 480 VAC, 60 Hz:			10		

Environmental Specifications

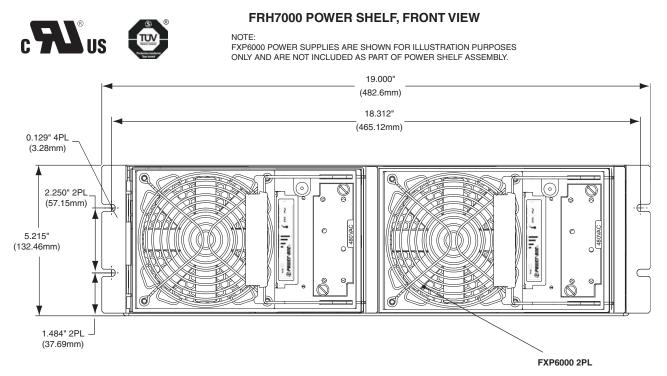
PARAMETER	CONDITIONS/DESCRIPTION	MIN	NOM	MAX	UNITS
Altitude	Operating. Non-Operating.			10k 40k	ASL Ft.
Operating Temperature		% load: 0 % load:		40 70	°C
Storage Temperature		-40		85	°C
Temperature Coefficient	0°C to 70°C (after 15-minute warm-up).			.02	%/°C
Relative Humidity	Non-Condensing.			95	%RH
Shock	Operating: half-sine 10 ms, 3 axis Non-operating: half-sine 10 ms, 3 axis			+20 +40	Gрк
Vibration	Operating: swept sine 5-2000-5 Hz, 5-32 Hz, 0.02îDA, 32-2000 Hz Non-operating: random 10-2000 Hz			1 6.15	Gрк Grms
Airflow	Airflow provided through the supply from front to rear.		155		cfm
			4.4 555 2.8		m ³ /min Ifm m/s
Weight				29 13	lb kg

(362.18mm) 11.704" (297.28mm) 7.509 (190.73mm) 4.954" MAINTAIN 25 SQ IN MIN (125.83mm) FREE AREA (FRONT AND 0 REAR) FOR AIR COOLING -0.87 l (22.1mm) LOCK HANDLE A А А А 0 LED HANDLE 0 ۲ <--AIRFLOW 5.750" 1 (146.05mm) 8.00' (203.2mm) 7 SIDE VIEW Ø 0.341" 1.100" 0 (8.66mm) (27.94mm) ¥ 0.649" 0.204 (16.48mm) (5.18mm) 0.590' LOCK HOOK (14.99mm) 0.480" NOTE: TOTAL BOTTOM STACKUP OF RACK MUST BE NO GREATER THAN 0.204". (12.19mm) 16.96" (430.8mm) t , et., p 0 <u>¢</u> 0 0 nl А А Δ 4.000" ILL III. 0 © . ا ((101.6mm) BOTTOM VIEW FOR OPTIONAL HARD MOUNTING, USE M4 X 0.7 SCREWS, 8PL (MARKED A) ON SIDE OR BOTTOM WITH MAXIMUM PENETRATION 3.8mm. 6 .0 0 ò 1.759". (44.68mm) RECOMMENDED MOUNTING TORQUE 10.5 INCH LBS. (0.64N/M) 15.462" (392.73mm) FRONT VIEW 5.000" REAR VIEW (127mm) LOCK HANDLE INPUT VOLTAGE RANGE RELEASE SELECT MODULE ROTATE 180 DEGREES FOR 240 VAC 2 FRUET ALL INPUT VOLTAGE CENTER 2.437 DISPLAY CUTOUT 6 ٦, (61.90mm) -TO-CENTER 0.090' ٥Ø (2.29mm) 2PI 4 552' 0.521' (115.62mm) 3.901" (13.24mm) (99.09mm) 0 222" 0 226" (5.64mm) (5.74mm) MATING CONNECTOR INFORMATION É É Tyco PN Elcon PN Description 1648601-1 CONN HSING FEM 52P TOP DRAWER 296-22-01100 CONTACT SOCKET #0 DOUBLE CROWN 1648420-1 712-12-01107 1648318-1 702-32-01107 CONN SOCKET #12 BLIND MATE

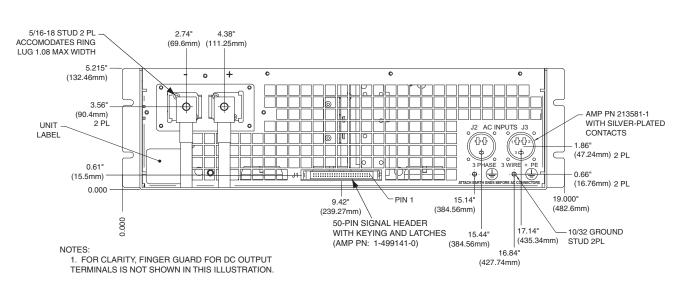
FXP7000 OVERALL SIZE: 16.96" x 8.00" x 5.00" (430.8mm x 203.2mm x 127.0mm)

16.09" (408.7mm)

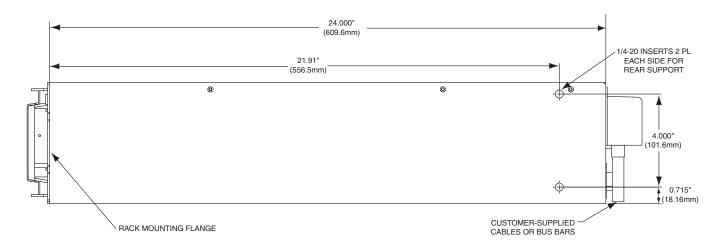
14.259


1648325-1

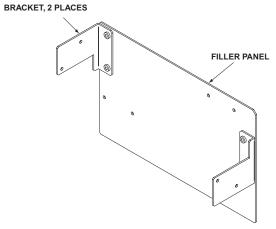
702-92-01109


CONN SOCKET #20 BLIND MATE

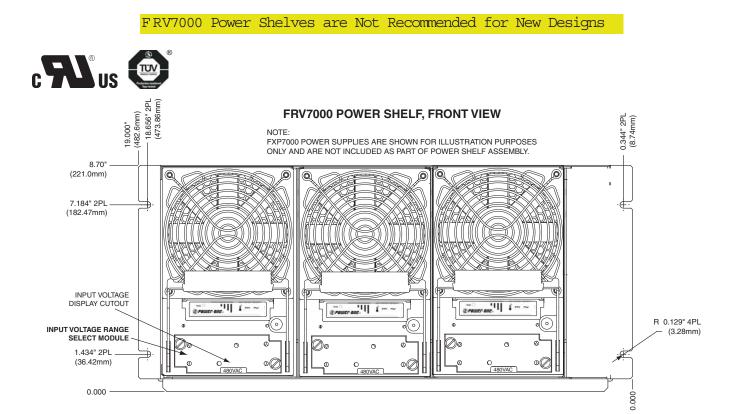
FRH7000 Power Shelves are Not Recommended for New Designs


Note: The FRH7000 Power Shelf is designed for alternative vertical mounting with the right side down.

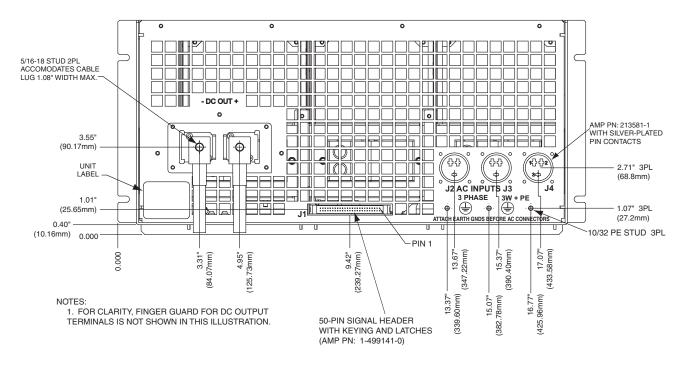
FRH7000 POWER SHELF, REAR VIEW


FRH7000 POWER SHELF, RIGHT-SIDE VIEW

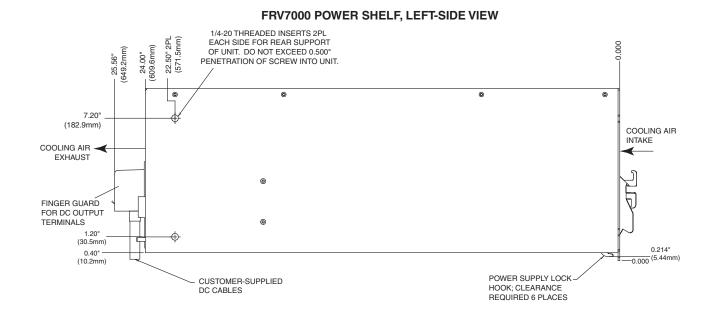
FILLER PANEL KIT, PN: 088-101378


(Used with FRH7000 Power Shelf)

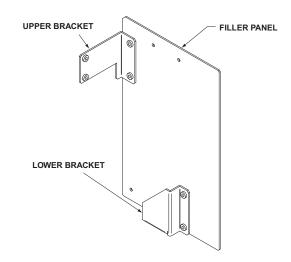
This kit is used to cover an unused right-side slot of the FRH7000 Power Shelf (as viewed from the front of the FRH7000). The kit can be installed before, or after installation of the power shelf into the rack.



(FILLER PANEL KIT AS SEEN FROM INSIDE OF POWER SHELF)



FRV7000 POWER SHELF, REAR VIEW



FILLER PANEL KIT, PN: 088-101348

(Used with FRV7000 Power Shelf)

This kit is used to cover an unused left or center slot of the FRV7000 Power Shelf (as viewed from the front of the FRV7000). One kit is required per slot. Kits can be installed before, or after installation of the power shelf into the rack.

(FILLER PANEL KIT AS SEEN FROM INSIDE OF POWER SHELF)

NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.