

12-Bit, 20/40/65 MSPS 3 V A/D Converter

AD9235

FEATURES

Single 3 V Supply Operation (2.7 V to 3.6 V) SNR = 70 dBc to Nyquist at 65 MSPS SFDR = 85 dBc to Nyquist at 65 MSPS Low Power: 300 mW at 65 MSPS

Differential Input with 500 MHz Bandwidth

On-Chip Reference and SHA

 $DNL = \pm 0.4 LSB$

Flexible Analog Input: 1 V p-p to 2 V p-p Range Offset Binary or Twos Complement Data Format

Clock Duty Cycle Stabilizer

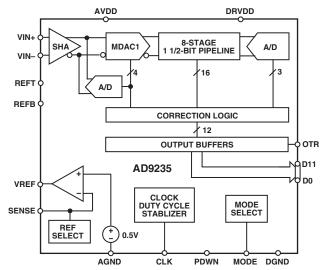
APPLICATIONS

Ultrasound Equipment IF Sampling in Communications Receivers: IS-95, CDMA-One, IMT-2000 **Battery-Powered Instruments** Hand-Held Scopemeters **Low Cost Digital Oscilloscopes**

PRODUCT DESCRIPTION

The AD9235 is a family of monolithic, single 3 V supply, 12-bit, 20/40/65 MSPS analog-to-digital converters. This family features a high performance sample-and-hold amplifier (SHA) and voltage reference. The AD9235 uses a multistage differential pipelined architecture with output error correction logic to provide 12-bit accuracy at 20/40/65 MSPS data rates and guarantee no missing codes over the full operating temperature range.

The wide bandwidth, truly differential SHA allows a variety of user-selectable input ranges and offsets including single-ended applications. It is suitable for multiplexed systems that switch full-scale voltage levels in successive channels and for sampling single-channel inputs at frequencies well beyond the Nyquist rate. Combined with power and cost savings over previously available analog-to-digital converters, the AD9235 is suitable for applications in communications, imaging, and medical ultrasound.


A single-ended clock input is used to control all internal conversion cycles. A duty cycle stabilizer (DCS) compensates for wide variations in the clock duty cycle while maintaining excellent overall ADC performance. The digital output data is presented in straight binary or twos complement formats. An out-of-range (OTR) signal indicates an overflow condition that can be used with the most significant bit to determine low or high overflow.

Fabricated on an advanced CMOS process, the AD9235 is available in a 28-lead thin shrink small outline package (TSSOP) and a 32-lead chip scale package (LFCSP) and is specified over the industrial temperature range (-40°C to +85°C).

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. The AD9235 operates from a single 3 V power supply and features a separate digital output driver supply to accommodate 2.5 V and 3.3 V logic families.
- 2. Operating at 65 MSPS, the AD9235 consumes a low 300 mW.
- 3. The patented SHA input maintains excellent performance for input frequencies up to 100 MHz and can be configured for single-ended or differential operation.
- 4. The AD9235 pinout is similar to the AD9214-65, a 10-bit, 65 MSPS ADC. This allows a simplified upgrade path from 10 bits to 12 bits for 65 MSPS systems.
- 5. The clock DCS maintains overall ADC performance over a wide range of clock pulsewidths.
- 6. The OTR output bit indicates when the signal is beyond the selected input range.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com

Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved.

AD9235-SPECIFICATIONS

		Test	AD9	235BR	U-20	AD9	235BR	U-40	AD92	35BRU	/BCP-65	
Parameter	Temp	Level	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
RESOLUTION	Full	VI	12			12			12			Bits
ACCURACY No Missing Codes Guaranteed Offset Error Gain Error¹ Differential Nonlinearity (DNL)² Integral Nonlinearity (INL)²	Full Full Full Full 25°C Full	VI VI VI IV I	12	± 0.30 ± 0.35 ± 0.35 ± 0.45	±1.20 ±2.40 ±0.65 ±0.80	12	± 0.50 ± 0.35 ± 0.35 ± 0.50	±1.20 ±2.50 ±0.75 ±0.90	12	± 0.50 ± 0.40 ± 0.35 ± 0.70	±1.20 ±2.60 ±0.80 ±1.30	Bits % FSR % FSR LSB LSB
	25°C	I		±0.40			±0.40			±0.45		LSB
TEMPERATURE DRIFT Offset Error Gain Error ¹	Full Full	V V		±2 ±12			±2 ±12			±3 ±12		ppm/°C ppm/°C
INTERNAL VOLTAGE REFERENCE Output Voltage Error (1 V Mode) Load Regulation @ 1.0 mA Output Voltage Error (0.5 V Mode) Load Regulation @ 0.5 mA	Full Full Full Full	VI V V		±5 0.8 ±2.5 0.1	±35		±5 0.8 ±2.5 0.1	±35		±5 0.8 ±2.5 0.1	±35	mV mV mV
INPUT REFERRED NOISE VREF = 0.5 V VREF = 1.0 V	25°C 25°C	V V		0.54 0.27			0.54 0.27			0.54 0.27		LSB rms LSB rms
ANALOG INPUT Input Span, VREF = 0.5 V Input Span, VREF = 1.0 V Input Capacitance ³	Full Full Full	IV IV V		1 2 7			1 2 7			1 2 7		V p-p V p-p pF
REFERENCE INPUT RESISTANCE	Full	V		7			7			7		kΩ
POWER SUPPLIES Supply Voltages AVDD DRVDD Supply Current	Full Full	IV IV	2.7 2.25	3.0 3.0	3.6 3.6	2.7 2.25	3.0 3.0	3.6 3.6	2.7 2.25	3.0 3.0	3.6 3.6	V V
IAVDD ² IDRVDD ² PSRR	Full Full Full	V V V		30 2 ±0.01			55 5 ±0.01			100 7 ±0.01		mA mA % FSR
POWER CONSUMPTION DC Input ⁴ Sine Wave Input ² Standby Power ⁵	Full Full Full	V VI V		90 95 1.0	110		165 180 1.0	205		300 320 1.0	350	mW mW mW

NOTES

Specifications subject to change without notice.

¹Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.0 V external reference).

 $^{^{2}}$ Measured at maximum clock rate, f_{IN} = 2.4 MHz, full-scale sine wave, with approximately 5 pF loading on each output bit.

³Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 2 for the equivalent analog input structure.

⁴Measured with dc input at maximum clock rate.

⁵Standby power is measured with a dc input, the CLK pin inactive (i.e., set to AVDD or AGND).

DIGITAL SPECIFICATIONS

		Test	AD9235BRU-20		AD9235BRU-40			AD9235BRU/BCP-65				
Parameter	Temp	Level	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
LOGIC INPUTS												
High Level Input Voltage	Full	IV	2.0			2.0			2.0			V
Low Level Input Voltage	Full	IV			0.8			0.8			0.8	V
High Level Input Current	Full	IV	-10		+10	-10		+10	-10		+10	μΑ
Low Level Input Current	Full	IV	-10		+10	-10		+10	-10		+10	μΑ
Input Capacitance	Full	V		2			2			2		pF
LOGIC OUTPUTS*												
DRVDD = 3.3 V												
High-Level Output Voltage	Full	IV	3.29			3.29			3.29			V
$(IOH = 50 \mu A)$												
High-Level Output Voltage	Full	IV	3.25			3.25			3.25			V
(IOH = 0.5 mA)												
Low-Level Output Voltage	Full	IV			0.2			0.2			0.2	V
(IOL = 1.6 mA)												
Low-Level Output Voltage	Full	IV			0.05			0.05			0.05	V
$(IOL = 50 \mu A)$												
DRVDD = 2.5 V	F "	***	2.40			2.40			2.40			* 7
High-Level Output Voltage	Full	IV	2.49			2.49			2.49			V
(IOH = 50 μA)	Full	$ _{\text{IV}}$	2.45			2.45			2.45			V
High-Level Output Voltage (IOH = 0.5 mA)	Full	1 1 V	2.45			2.45			2.45			V
Low-Level Output Voltage	Full	IV			0.2			0.2			0.2	V
(IOL = 1.6 mA)	run	1 1 1			0.2			0.2			0.2	v
Low-Level Output Voltage	Full	IV			0.05			0.05			0.05	V
(IOL = $50 \mu A$)	I ull	* '			0.05			0.03			0.03	,
(10L – 30 μ1)												

^{*}Output voltage levels measured with 5 pF load on each output.

SWITCHING SPECIFICATIONS

		Test	AD92	35BRU	-20	AD92	235BRU	-40	AD923	5BRU/	BCP-65	
Parameter	Temp	Level	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
CLOCK INPUT PARAMETERS												
Maximum Conversion Rate	Full	VI	20			40			65			MSPS
Minimum Conversion Rate	Full	V			1			1			1	MSPS
CLK Period	Full	V	50.0			25.0			15.4			ns
CLK Pulsewidth High ¹	Full	V	15.0			8.8			6.2			ns
CLK Pulsewidth Low ¹	Full	V	15.0			8.8			6.2			ns
DATA OUTPUT PARAMETERS												
Output Delay ² (t _{PD})	Full	V		3.5			3.5			3.5		ns
Pipeline Delay (Latency)	Full	V		7			7			7		Cycles
Aperture Delay (t _A)	Full	V		1.0			1.0			1.0		ns
Aperture Uncertainty Jitter (t _I)	Full	V		0.5			0.5			0.5		ps rms
Wake-Up Time ³	Full	V		3.0			3.0			3.0		ms
OUT-OF-RANGE RECOVERY												
TIME	Full	V		1			1			2		Cycles

Specifications subject to change without notice.

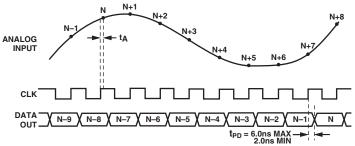


Figure 1. Timing Diagram

Specifications subject to change without notice.

¹For the AD9235-65 model only, with duty cycle stabilizer enabled. DCS function not applicable for -20 and -40 models.

²Output delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load on each output.

³Wake-up time is dependent on value of decoupling capacitors; typical values shown with 0.1 μF and 10 μF capacitors on REFT and REFB.

AD9235-SPECIFICATIONS

 $\textbf{AC SPECIFICATIONS} \begin{array}{l} \text{(AVDD} = 3 \text{ V, DRVDD} = 2.5 \text{ V, Maximum Sample Rate, 2 V p-p Differential Input, AIN} = -0.5 \text{ dBFS,} \\ \text{1.0 V internal reference, T_{MIN} to T_{MAX}, unless otherwise noted.)} \\ \end{aligned}$

		Test	AD	9235BR	U-20	AD9235BRU-40		AD923	AD9235BRU/BCP-65			
Parameter	Temp	Level	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
SIGNAL-TO-NOISE RATIO												
$f_{INPUT} = 2.4 \text{ MHz}$	25°C	V		70.8			70.6			70.5		dBc
$f_{INPUT} = 9.7 \text{ MHz}$	Full	IV	70.0	70.4								dBc
11.201	25°C	I		70.6								dBc
$f_{INPUT} = 19.6 \text{ MHz}$	Full	IV				69.9	70.3					dBc
11.201	25°C	I					70.4					dBc
$f_{INPUT} = 32.5 \text{ MHz}$	Full	IV							68.7	69.7		dBc
11.201	25°C	I								70.1		dBc
$f_{INPUT} = 100 \text{ MHz}$	25°C	V		68.7			68.5			68.3		dBc
SIGNAL-TO-NOISE RATIO												
AND DISTORTION												
$f_{\text{INPUT}} = 2.4 \text{ MHz}$	25°C	V		70.6			70.5			70.4		dBc
$f_{\text{INPUT}} = 9.7 \text{ MHz}$	Full	IV	69.9	70.3								dBc
-INFU1 > IVIII	25°C	I	5,,,	70.5								dBc
$f_{INPUT} = 19.6 \text{ MHz}$	Full	IV				69.7	70.2					dBc
-INFUI 2500 IVIII	25°C	I				02	70.3					dBc
$f_{INPUT} = 32.5 \text{ MHz}$	Full	IV					10.5		68.3	69.5		dBc
INFOI SEIS INIII	25°C	I							00.5	69.9		dBc
$f_{INPUT} = 100 \text{ MHz}$	25°C	V		68.6			68.3			67.8		dBc
TOTAL HARMONIC												
DISTORTION												
$f_{\text{INPUT}} = 2.4 \text{ MHz}$	25°C	V		-88.0			-89.0			-87.5		dBc
$f_{\text{INPUT}} = 9.7 \text{ MHz}$	Full	IV		-86.0	-79.0		03.0			01.5		dBc
INPUT 3.1 IVIII	25°C	I		-87.4	13.0							dBc
$f_{INPUT} = 19.6 \text{ MHz}$	Full	IV		07.1			-85.5	-79.0				dBc
INPUT 13.0 IVIII	25°C	I					-86.0	17.0				dBc
$f_{INPUT} = 32.5 \text{ MHz}$	Full	IV					00.0			-81.8	-74.0	dBc
$I_{INPUT} = 32.5 IVIII2$	25°C	I								-82.0	14.0	dBc
$f_{INPUT} = 100 \text{ MHz}$	25°C	V		-84.0			-82.5			-78.0		dBc
WORST HARMONIC												
(Second or Third)												
$f_{\text{INPUT}} = 9.7 \text{ MHz}$	Full	IV		-90.0	-80.0							dBc
$f_{\text{INPLIT}} = 19.6 \text{ MHz}$	Full	IV					-90.0	-80.0				dBc
$f_{\text{INPUT}} = 32.5 \text{ MHz}$	Full	IV								-83.5	-74.0	dBc
SPURIOUS FREE DYNAMIC												
RANGE												
$f_{\text{INPUT}} = 2.4 \text{ MHz}$	25°C	V		92.0			92.0			92.0		dBc
$f_{\text{INPUT}} = 9.7 \text{ MHz}$	Full	IV	80.0	88.5								dBc
-INFUI	25°C	I	55.0	91.0								dBc
$f_{INPUT} = 19.6 \text{ MHz}$	Full	IV		71.0		80.0	89.0					dBc
INFUI 17.0 IVIII2	25°C	I				50.0	90.0					dBc
$f_{INPUT} = 32.5 \text{ MHz}$	Full	IV					70.0		74.0	83.0		dBc
INFUI 52.5 WIII2	25°C	I							1.0	85.0		dBc
$f_{INPUT} = 100 \text{ MHz}$	25°C	V		84.0			85.0			80.5		dBc
INPUT - 100 MILE	250	*		04.0			0.00			00.5		ubt

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

	With			
Pin Name	Respect to	Min	Max	Unit
ELECTRICAL				
AVDD	AGND	-0.3	+3.9	V
DRVDD	DGND	-0.3	+3.9	V
AGND	DGND	-0.3	+0.3	V
AVDD	DRVDD	-3.9	+3.9	V
Digital Outputs	DGND	-0.3	DRVDD + 0.3	V
CLK, MODE	AGND	-0.3	AVDD + 0.3	V
VIN+, VIN-	AGND	-0.3	AVDD + 0.3	V
VREF	AGND	-0.3	AVDD + 0.3	V
SENSE	AGND	-0.3	AVDD + 0.3	V
REFB, REFT	AGND	-0.3	AVDD + 0.3	V
PDWN	AGND	-0.3	AVDD + 0.3	V
ENVIRONMENTA	L^2			
Operating Tempe	rature	-40	+85	°C
Junction Tempera	iture		150	°C
Lead Temperatur			300	°C
Storage Temperat	ure	-65	+150	°C

NOTES

EXPLANATION OF TEST LEVELS

- I 100% production tested.
- II 100% production tested at 25°C and sample tested at specified temperatures.
- III Sample tested only.
- IV Parameter is guaranteed by design and characterization testing.
- V Parameter is a typical value only.
- VI 100% production tested at 25°C; guaranteed by design and characterization testing for industrial temperature range; 100% production tested at temperature extremes for military devices.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD9235BRU-20	-40°C to +85°C	28-Lead Thin Shrink Small Outline Package (TSSOP)	RU-28
AD9235BRU-40	−40°C to +85°C	28-Lead Thin Shrink Small Outline Package (TSSOP)	RU-28
AD9235BRU-65	–40°C to +85°C	28-Lead Thin Shrink Small Outline Package (TSSOP)	RU-28
AD9235BCP-20*	–40°C to +85°C	32-Lead Lead Frame Chip Scale Package (LFCSP) (Contact Factory)	CP-32
AD9235BCP-40*	–40°C to +85°C	32-Lead Lead Frame Chip Scale Package (LFCSP) (Contact Factory)	CP-32
AD9235BCP-65*	–40°C to +85°C	32-Lead Lead Frame Chip Scale Package (LFCSP)	CP-32
AD9235-20PCB		TSSOP Evaluation Board	
AD9235-40PCB		TSSOP Evaluation Board	
AD9235-65PCB		TSSOP Evaluation Board	
AD9235BCP-20EB		LFCSP Evaluation Board (Contact Factory)	
AD9235BCP-40EB		LFCSP Evaluation Board (Contact Factory)	
AD9235BCP-65EB		LFCSP Evaluation Board	

^{*}It is recommended that the exposed paddle be soldered to the ground plane. There is an increased reliability of the solder joints and maximum thermal capability of the package is achieved with exposed paddle soldered to the customer board.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9235 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. B -5-

¹Absolute maximum ratings are limiting values to be applied individually and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.

²Typical thermal impedances (28-lead TSSOP), θ_{JA} = 67.7°C/W; (32-lead LFCSP), θ_{JA} = 32.5°C/W, θ_{JC} = 32.71°C/W. These measurements were taken on a 4-layer board in still air, in accordance with EIA/JESD51-1.