Energy Management Smart Modular Power Analyzer Type WM30 96

- Front protection degree: IP65, NEMA4X, NEMA12
- One RS232 or RS485 port (on request)
- Communication protocol: MODBUS-RTU, iFIX SCADA compatibility
- MODBUS TCP/IP Ethernet port (on request)
- BACNet-IP over Ethernet port (on request)
- Up to 2 digital outputs (pulse, alarm, remote control) (on request)
- Up to 4 freely configurable virtual alarms
- Up to 2 analogue outputs (+20mA, +10VDC) (on request)

Product Description

Three-phase smart power analyzer with built-in advanced configuration system and LCD data displaying. Particularly recommended for the measurement of the main electrical variables. WM30 is based on a modular housing for panel mounting with IP65 (front) protection degree. Moreover, the analyzer can
be provided with digital outputs that can be either for pulse proportional to the active and reactive energy being measured or/and for alarm outputs. The instrument can be equipped with the following modules: RS485/RS232, Ethernet, BACNet-IP communication ports, pulse and alarm outputs.

- Class 0.5 (kWh) according to EN62053-22
- Class C (kWh) according to EN50470-3
- Class 2 (kvarh) according to EN62053-23
- Accuracy $\pm 0.2 \%$ RDG (current/voltage)
- Instantaneous variables readout: 4x4 DGT
- Energies readout: 9+1 DGT
- System variables: VLL, VLN, A, VA, W, var, PF, Hz, Phase-sequence-asymmetry-loss.
- Single phase variables: VLL, VLN, AL, An (calculated), VA, W, var, PF
- Both system and single phase variables with average and max calculation
- Harmonic analysis (FFT) up to the 32nd harmonic (current and voltage)
- Energy measurements (imported/exported): total and partial kWh and kvarh
- Energy measurements according to ANSI C12.20 CA 0.5 , ANSI C12.1 (revenue grade)
- Run hours counter (8+2 DGT)
- Real time clock function
- Application adaptable display and programming procedure (Easyprog function)
- Universal power supply: 18 to 60VAC/DC, 90 to 260AC/VDC
- Front dimensions: 96x96 mm

How to order WM30-96 AV5 3 HR2 A2 S1 XX
Model
Range code
System
Power Supply
A Outputs
B Outputs
Communication
Option

option

Position of modules and combination

Ref	Description	Main features	Part number	Pos. A	Pos. B	Pos. C
1	WM30 base provided with display, power supply, measuring inputs	- Inputs/system: AV5.3 - Power supply: H	WM30 AV5 3 H			
2		- Inputs/system: AV6. 3 - Power supply: H	WM30 AV6 3 H			
3		- Inputs/system: AV5.3 - Power supply: L	WM30 AV5 3 L			
4		- Inputs/system: AV6.3 - Power supply: L	WM30 AV6 3 L			
5	Dual relay output (SPDT)	- 2-channel - Alarm or/and pulse output	M O R2 (1)	X		
6	Dual static output (AC/DC Opto-Mos)	- 2-channel - Alarm or/and pulse output	M O O2 (1)	X		
7	Dual analogue output (+20mADC)	- 2-channel	M O A2 (2)		X	
8	Dual analogue output (+10VDC)	- 2-channel	M O V2 (2)		X	
9	RS485 / RS232 port module	- Max. 115.2 Kbps	M C 485232 (3)			X
10	Ethernet port module	- RJ45 10/100 BaseT	M C ETH (3)			X
11	BACNet-IP port module	- Based on Ethernet bus	M C BACnet-IP (3)			X

NOTE:

(1) Only one A type module per meter in a maximum combination of 3 total mixed modules on the same meter.
(2) Only one B type module per meter in a maximum combination of 3 total mixed modules on the same meter.
(3) Only one C type module per meter in a maximum combination of 3 total mixed modules on the same meter.

The B-C position is not mandatory, if to fulfil the application, module " A " is not necessary, then maybe just " B " can be mounted.

Another example: if modules " A " and " B " (anyone) are not needed, then just module " C " maybe be mounted. If " A " module is needed, it is mandatory to put it in "A" position.

When no modules are mounted, then WM30-96 becomes a simple indicator.

Input specifications

Rated inputs	System type: 1, 2 or 3phase
Current type	Galvanic insulation by means of built-in CT's
Current range (by CT)	AV5 and AV6: 5(6)A AV4 and AV7: 1(2)A
Voltage (by direct connection or VT/PT)	AV4, AV5: 400/690VLL; AV6, AV7: 100/208VLL
Accuracy (Display + RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%, 48$ to 62 Hz)	In: see below, Un: see below
AV4 model	In: 1A, Imax: 2A; Un: 160 to 480 VLN (277 to 830 VLL)
AV5 model	In: 5A, Imax: 6A; Un: 160 to 480 VLN (277 to 830 VLL)
AV6 model	In: 5A, Imax: 6A; Un: 40 to 144VLN (70 to 250VLL)
AV7 model	In: 1A, Imax: 2A; Un: 40 to 144VLN (70 to 250VLL)
Current AV4, AV5, AV6, AV7 models	From 0.01In to 0.05 In : $\pm(0.5 \%$ RDG +2 DGT) From 0.05In to Imax: $\pm(0.2 \%$ RDG +2 DGT)
Phase-neutral voltage	In the range Un: \pm (0,2\% RDG +1DGT)
Phase-phase voltage	In the range Un: \pm (0.5% RDG +1DGT)
Frequency Active and Apparent power	$\pm 0.1 \mathrm{~Hz}$ (45 to 65 Hz) 0.01 In to $0.05 \mathrm{In}, \mathrm{PF} 1$: $\pm(1 \% \mathrm{RDG}+1 \mathrm{DGT})$ From 0.05In to Imax PF 0.5L, PF1, PF0.8C: $\pm(0.5 \%$ RDG +1 DGT)
Power Factor	$\begin{aligned} & \pm[0.001+0.5 \%(1.000-\text { "PF } \\ & \text { RDG")] } \end{aligned}$
Reactive power	0.1 In to Imax, sen ϕ $0.5 \mathrm{~L} / \mathrm{C}: \pm(1 \% \mathrm{RDG}+1 \mathrm{DGT})$ 0.05 In to 0.1 In , sen ϕ 0.5L/C: $\pm(1.5 \% R D G+1$ DGT) 0.05 In to Imax, sen 1 : $\pm(1 \% R D G+1$ DGT) 0.02 In to $0.05 \mathrm{In}, \operatorname{sen} \phi 1$: $\pm(1.5 \% \mathrm{RDG}+1 \mathrm{DGT})$
Active energy	Class 0.5 according to EN62053-22, ANSI C12.20 Class C according to EN50470-3.
Reactive energy	Class 1 according to EN62053-23, ANSI C12.1.
Start up current AV5, AV6	5 mA
Start up current AV4, AV7	1 mA

Energy additional errors Influence quantities	According to EN62053-22, ANSI C12.20, Class B or C according to EN50470-3, EN62053-23, ANSI C12.1
Total Harmonic Distortion (THD)	$\pm 1 \%$ FS (FS: 100\%) AV4: Imin: 5mARMS; Imax: 15Ap; Umin: 30VRMS; Umax: 585Vp AV5: Imin: 5mARMS; Imax 15Ap; Umin: 30VRMS; Umax: 585Vp AV6: Imin: 5mARMS; Imax 15Ap; Umin: 30VRMS; Umax: 585Vp AV7: Imin: 5mARMS; Imax 15Ap; Umin: 30VRMS; Umax: 585Vp
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Sampling rate	3200 samples/s @ 50Hz, 3840 samples/s @ 60Hz
Measurements Method Coupling type	See "List of the variables that can be connected to:" TRMS measurements of distorted wave forms. By means of CT's
Crest factor	AV5, AV6: ≤ 3 (15A max. peak) AV4, AV7: ≤ 3 (3A max. peak)
Current Overloads Continuous (AV5 and AV6) Continuous (AV4 and AV7) For 500ms (AV5 and AV6) For 500 ms (AV4 and AV7)	$\begin{aligned} & \text { 6A, @ } 50 \mathrm{~Hz} \\ & \text { 2A, @ } 50 \mathrm{~Hz} \\ & \text { 120A, @ } 50 \mathrm{~Hz} \\ & 40 \mathrm{~A}, @ 50 \mathrm{~Hz} \end{aligned}$
Voltage Overloads Continuous For 500ms	$\begin{aligned} & \text { 1.2 Un } \\ & 2 \text { Un } \end{aligned}$
Input impedance 400VL-L (AV4 and AV5) 208VL-L (AV6 and AV7) 5(10)A (AV5 and AV6) 1(2)A (AV4 and AV7)	$\begin{aligned} & >1.6 \mathrm{M} \Omega \\ & >1.6 \mathrm{M} \Omega \\ & <0.2 \mathrm{VA} \\ & <0.2 \mathrm{VA} \end{aligned}$
Frequency	40 to 440 Hz

Output specifications

Relay outputs (M O R2)	
Physical outputs	2 (max. one module per instrument)
Purpose	For either alarm output or pulse output
Type	Relay, SPDT type AC 1-5A @ 250VAC; AC 15-1.5A @ 250VAC DC 12-5A @ 24VDC; DC
Configuration	By means of the front keypad
Function	The outputs can work as alarm outputs but also as pulse outputs, remote controlled outputs, or in any other combination.
Alarms	Up alarm and down alarm linked to the virtual alarms, other details see Virtual alarms
Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: "0 s".
Pulse	
Signal retransmission	```Total: +kWh, -kWh, +kvarh, -kvarh. Partial: +kWh, -kWh, +kvarh, -kvarh.```
Pulse type	The above listed variables can be connected to any output.
Pulse duration	Programmable from 0.001 to $10.00 \mathrm{kWh} / \mathrm{kvarh}$ per pulse. $\geq 100 \mathrm{~ms}<120 \mathrm{msec}$ (ON), $\geq 120 \mathrm{~ms}$ (OFF), according to EN62052-31
Remote controlled outputs	The activation of the outputs is managed through the serial communication port
Insulation	See "Insulation between inputs and outputs" table
Static outputs (M O O2)	Opto-Mos type
Physical outputs	2 (max. one module per instrument)
Purpose	For either pulse output or alarm output
Signal	Von:2.5VAC/DC/max.100mA Voff: 260VAC/DC max.
Configuration	By means of the front keypad
Function	The outputs can work as alarm outputs but also as pulse outputs, remote controlled outputs, or in any other combination.
Alarms	Up alarm and down alarm linked to the virtual alarms, other details see Virtual alarms

Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: "0 s".
Pulse	
Signal retransmission	Total: +kWh, -kWh, +kvarh, -kvarh.
	Partial: +kWh, -kWh, +kvarh, -kvarh.
Pulse type	The above listed variables can be connected to any output.
Pulse duration	Programmable from 0.001 to $10.00 \mathrm{kWh} / \mathrm{kvarh}$ per pulse.
	$\geq 100 \mathrm{~ms}<120 \mathrm{msec}$ (ON), $\geq 120 \mathrm{~ms}$ (OFF), according to EN62052-31
Remote controlled outputs	The activation of the outputs is managed through the serial communication port
Insulation	See "Insulation between inputs and outputs" table
20 mA analogue outputs(M O A2)	
Number of outputs	2 (max. one module per instrument)
Accuracy (@ $25^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}, \mathrm{R} \cdot \mathrm{H} . \leq 60 \%$)	$\pm 0.2 \%$ FS
Range	0 to 20 mA
Configuration	By means of the front keypad
Signal retransmission	The signal output can be connected to any instantaneous variable available in the table "List of the variables that can be connected to".
Scaling factor	Programmable within the whole range of retransmission; it allows the retransmission management of all values from 0 to 20 mADC .
Response time	$\leq 400 \mathrm{~ms}$ typical (filter excluded)
Ripple	$\leq 1 \%$ (according to IEC 60688-1, EN 60688-1)
Total temperature drift	$\leq 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Load	$\leq 600 \Omega$
Insulation	See "Insulation between inputs and outputs" table
10VDC analogue outputs (M O V2)	
Number of outputs	2 (max. one module per instrument)
Accuracy	
(@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	$\pm 0.2 \%$ FS
Range	0 to 10 VDC
Configuration	By means of the front keypad

Output specifications (cont.)

Signal retransmission	The signal output can be connected to any	Connections	$3 \text { wires. Max. distance }$ $15 \mathrm{~m}$
	instantaneous variable	Protocol	MODBUS RTU /JBUS
	available in the table "List	Data (bidirectional)	
	of the variables that can be connected to".	Dynamic (reading only)	System and phase variables: see table "List of
Scaling factor	Programmable within the whole range of retransmission; it allows	Static (reading and writing only)	variables..." All the configuration parameters
	the retransmission management of all values from 0 to 10VDC.	Data format	1 start bit, 8 data bit, no/even/odd parity,1 stop bit
Response time	$\leq 400 \mathrm{~ms}$ typical (filter excluded)	Baud-rate	Selectable: 9.6k, 19.2k, $38.4 \mathrm{k}, 115.2 \mathrm{k}$ bit/s
Ripple	$\leq 1 \%$ (according to IEC 60688-1, EN 60688-1)	Note	With the rotary switch (on the back of the basic unit)
Total temperature drift Load	$\begin{aligned} & \leq 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \geq 10 \mathrm{k} \Omega \end{aligned}$		in lock position the
Insulation	See "Insulation between inputs and outputs" table		programming parameters and the reset command by
RS485/RS422 port (on request) Type			means of the serial communication is not
	Multidrop, bidirectional (static and dynamic variables)		allowed anymore. In this case just the data reading is allowed.
Connections	2-wire Max. distance 1000m, termination directly on the module	Insulation	See "Insulation between inputs and outputs" table
		Ethernet/Internet port (on request)	
Addresses	247 , selectable by means of the front key-pad	Protocols IP configuration	Modbus TCP/IP Static IP / Netmask /
Protocol	MODBUS/JBUS (RTU)		Default gateway
Data (bidirectional) Dynamic (reading only)	System and phase variables: see table "List of variables..."	Port	Selectable (default 502)
		Client connections	Max 5 simultaneously
		Connections	RJ45 10/100 BaseTX Max. distance 100 m
Static (reading and writing only)	All the configuration parameters.	Data (bidirectional)	
Data format	1 start bit, 8 data bit, no/even/odd parity, 1 stop		variables: see table "List of variables..."
Baud-rate	Selectable: 9.6k, 19.2k, $38.4 \mathrm{k}, 115.2 \mathrm{k}$ bit/s	Static (reading and writing only)	All the configuration parameters.
Driver input capability	$1 / 5$ unit load. Maximum 160 transceivers on the same bus.	Note	With the rotary switch (on the back of the basic unit) in lock position the
Note	With the rotary switch (on the back of the basic unit)		modification of the programming parameters
	in lock position the		and the reset command by
	modification of the		means of the serial
	programming parameters		communication is not
	and the reset command by		allowed anymore. In this
	communication is not		case just the data reading is allowed.
	allowed anymore. In this case just the data reading	Insulation	See "Insulation between inputs and outputs" table
Insulation	is allowed. See "Insulation between inputs and outputs" table	BACnet-IP (on request)	
RS232 port (on request) Type	Bidirectional (static and dynamic variables)	Protocols	BACnet-IP (for measurement reading purpose) and Modbus TCP/IP (for measurement

Output specifications (cont.)

	reading purpose and for programming parameter purpose)	Static (reading and writing only)	All the configuration parameters (Modbus only).
IP configuration	Static IP / Netmask / Default gateway	Note	With the rotary switch (on the back of the basic unit)
BACnet-IP Port	Fixed: BACOh		in lock position the
Modbus Port	Selectable (default 502)		modification of the
Client connections	Modbus only: max 5 simultaneously		programming parameters and the reset command by
Connections	RJ45 10/100 BaseTX Max. distance 100 m		means of the serial communication is not
Data Dynamic (reading only)			allowed anymore. In this
	System and phase variables (BACnet-IP and		case just the data reading is allowed.
	Modbus): see table "List of variables..."	Insulation	See "Insulation between inputs and outputs" table

Energy meters

Meters Total Partial	$4(9+1$ digit)
Pulse output	$4(9+1$ digit)
Energy meter recording	Connectable to total and/or partial meters
	Storage of total and partial energy meters.
	Energy meter storage
	format (EEPROM)
	Min. $-9,999,999,999.9$
	kWh/kvarh
	Max. 9,999,999,999.9
	kWh/kvarh.

Energy Meters Total energy meters	$+k W h,+k v a r h,-k W h$,
Partial energy meters	$-k v a r h$
	$+k W h,+k v a r h,-k W h$,
	$-k v a r h$

Harmonic distortion analysis

Analysis principle	FFT	System	The harmonic distortion can be measured in 3-wire or 4-wire systems. Tw: 0.02 sec@50Hz without filter
Harmonic measurement Current Voltage	Up to the 32nd harmonic Up to the 32nd harmonic		
Type of harmonics	THD (VL1 and VL1-N) The same for the other phases: L2, L3. THD (AL1) The same for the other phases: L2, L3.		

Display, LED's and commands

Display refresh time	$\leq 100 \mathrm{~ms}$	Energy consumption kWh pulsating	Red LED (only kW
Display	4 lines, 4-DGT, 1 lines, 10-DGT		$0.001 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is
Type	LCD, single colour backlight		$\begin{aligned} & \leq 7 \\ & 0.01 \mathrm{kWh} / \mathrm{kvarh} \text { by pulse if } \end{aligned}$
Digit dimensions	4-DGT: h 9.5 mm ; 10-DGT: h 6.0 mm		the Ct ratio by VT ratio is $\geq 7.1 \leq 70.0$
Instantaneous variables read-out	4-DGT		$0.1 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if
Energies variables read-out	Imported Total/Partial: $9+1$ DGT or 10DGT; Exported Total/Partial: $9+1$ DGT or 10DGT (with "- " sign).		the Ct ratio by VT ratio is $\geq 70.1 \leq 700.0$ $1 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is $\geq 700.1 \leq 7000$
Run Hours counter	8+2 DGT (99.999.999 hours and 59 minutes max)		$10 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is
Overload status	EEEE indication when the value being measured is exceeding the "Continuous inputs overload" (maximum measurement capacity)		$\geq 7001 \leq 70.00 \mathrm{k}$ $100 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is $>70.01 \mathrm{k}$ Max frequency: 16 Hz , according to EN50470-1
Max. and Min. indication	Max. instantaneous variables: 9999; energies: 999999999.9 or 9999999 999. Min. instantaneous variables:	Back position LEDs On the base On the communication modules	Green as power-on Two LEDs: one for TX (green) and one for RX (amber).
	0.000; energies 0.0	Key-pad	For variable selection, programming of the instrument working parameters, "dmd", "max", total energy and partial energy Reset
Front position LEDs Virtual alarms	4 red LED available in case of virtual alarm (AL1-AL2-AL3-AL4). Note: the real alarm is just the activation of the proper static or relay output if the proper module is available.		

Main functions

Password	Numeric code of max. 4 digits; 2 protection levels of the programming data:
1st level	Password "0", no protection;
2nd level	Password from 1 to 9999, all data are protected
System selection	
System 3-Ph.n unbalanced load	3-phase (4-wire)
System 3-Ph. unbalanced load	3-phase (3-wire), three currents and 3-phase to phase voltage measurements, or in case of Aaron connection two currents (with special wiring on screw terminals) and 3-phase to phase voltage measurements.
System 3-Ph. 1 balanced load	3 -phase ($3-$ wire), one current and 3 -phase to phase voltage

	measurements
	3 -phase (4-wire), one current and 3 -phase to neutral voltage measurements.
System 3-Ph. 2 balanced load	3 -phase (2-wire), one current and 1-phase (L1) to neutral voltage measurement.
System 2-Ph	2-phase (3-wire)
System 1-Ph	1-phase (2-wire)
Transformer ratio	
VT (PT)	1.0 to 999.9 /
	1000 to 9999.
CT	1.0 to 999.9 / 1000 to 9999
	(up to 10kA in case of CT
	with 1A secondary current
	and up to 50 kA in case of
	CT with 5A secondary

Main functions (cont.)

On-time delay Min. response time	0 to 9999s $\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: " 0 s".
Reset	By means of the front keypad. It is possible to reset the following data: - all the max and dmd values. - total energies: kWh, kvarh; - partial energies: kWh, kvarh
Harmonic analysis	Up to the $32^{\text {nd }}$ harmonics on current and voltage
Clock	
Functions	Universal clock and calendar.
Time format	Hour: minutes: seconds with selectable 24 hours or AM/PM format.
Date format	Day-month-year with selectable DD-MM-YY or MM-DD-YY format.
Battery life	10 years
Easy connection function	For all the display selections, both energy and power measurements are independent from the current direction. The displayed energy is always "imported" with the only exception of "D", "F" and "G" types (see "display pages" table). For those latter selections the energies can be either "imported" or "exported" depending on the current direction.

General specifications

Operating temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to
	$\left.131^{\circ} \mathrm{F}\right)(\mathrm{R} . \mathrm{H}$. from 0 to 90%
non-condensing @ $\left.40^{\circ} \mathrm{C}\right)$	
according to EN62053-21,	
	EN50470-1 and EN62053-
	23

Dielectric strength	4kVAC RMS for 1 minute
Noise rejection CMRR	$100 \mathrm{~dB}, 48$ to 62 Hz
EMC	According to EN62052-11
Electrostatic discharges	15 kV air discharge
Immunity to irradiated	Test with current: $10 \mathrm{~V} / \mathrm{m}$ from 80 to 2000 MHz
Electromagnetic fields	Test without any current: $30 \mathrm{~V} / \mathrm{m}$ from 80 to 2000 MHz
Burst	On current and voltage measuring inputs circuit: 4 kV
Immunity to conducted disturbances	$10 \mathrm{~V} / \mathrm{m}$ from 150 KHz to 80 MHz
Surge	On current and voltage measuring inputs circuit: 4 kV ; on "L" auxiliary power

General specifications (cont.)

Radio frequency suppression	supply input: 1 kV According to CISPR 22
Standard compliance	
Safety	IEC60664, IEC61010-1 EN60664, EN61010-1 EN62052-11.
Metrology	EN62053-21, EN62053-23, EN50470-3. MID "annex MI-003"
Pulse output	DIN43864, IEC62053-31
Approvals	CE, cULus "Listed"
Connections Cable cross-section area	Screw-type max. $2.5 \mathrm{~mm}^{2}$. min./max. screws tightening torque: $0.4 \mathrm{Nm} /$ 0.8 Nm . Suggested screws tightening torque: 0.5 Nm

Power supply specifications

H: 90 to $260 \mathrm{VAC} / \mathrm{DC} ;$
L: 18 to $60 \mathrm{VAC} / D \mathrm{C}(48$ to
$62 \mathrm{~Hz})$

Power consumption
AC: 6 VA ;
DC: 3.5 W 62 Hz)

Insulation between inputs and outputs

	Measuring Inputs	Relay outputs	Static Outputs	Communication port	Analogue Outputs	Auxiliary power supply
Measuring Inputs	-	4 kV	4 kV	4 kV	4 kV	
Relay outputs	4 kV	2 kV	NA	4 kV	4 kV	
Static Outputs	4 kV	NA	2 kV	4 kV		
Communication port	4 kV					
Analogue Outputs	4 kV					
Aux. power supply	4 kV	4 kV	4 kV	4 kV	4	4 kV

NOTE: in the table "NA" means combination of modules not allowed.
NOTE: all the models have, mandatory, to be connected to external current transformers because the isolation among the current inputs is just functional (100VAC).

List of the variables that can be connected to:

- Communication port (all listed variables)
- Analogue outputs (all variables with the only exclusion of "energies" and "run hour counter"
- Pulse outputs (only "energies")
- Alarm outputs ("energies", "hour counter" and "max" excluded)

No	Variable	$\begin{aligned} & \text { 1-ph. } \\ & \text { sys } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2-ph. } \\ & \text { sys } \\ & \hline \end{aligned}$	3-ph. 3/4-wire balanced sys	3-ph. 2-wire balanced sys	3-ph. 3-wire unbal. sys	3-ph. 4-wire unbal. sys	Notes
1	VL-N sys	O	X	X	X	\#	X	sys= system= \sum (1)
2	VL1	X	X	X	X	\#	X	(1)
3	VL2	0	X	X	X	\#	X	(1)
4	VL3	0	0	X	X	\#	X	(1)
5	VL-L sys	0	X	X	X	X	X	sys= system $=\sum(1)$
6	VL1-2	\#	X	X	X	X	X	(1)
7	VL2-3	\#	0	X	X	X	X	(1)
8	VL3-1	\#	0	X	X	X	X	(1)
9	AL1	X	X	X	X	X	X	(1)
10	AL2	0	X	X	X	X	X	(1)
11	AL3	0	0	X	X	X	X	(1)
12	VA sys	X	X	X	X	\#	X	sys= system $=\sum$ (1)
13	VA L1	X	X	X	X	\#	X	(1)
14	VA L2	0	X	X	X	\#	X	(1)
15	VA L3	0	0	X	X	\#	X	(1)
16	var sys	X	X	X	X	\#	X	sys= system= \sum (1)
17	var L1	X	X	X	X	\#	X	(1)
18	var L2	0	X	X	X	\#	X	(1)
19	var L3	0	0	X	X	\#	X	(1)
20	W sys	X	X	X	X	X	X	sys= system $=\sum(1)$
21	WL1	X	X	X	X	\#	X	(1)
22	WL2	0	X	X	X	\#	X	(1)
23	WL3	0	0	X	X	\#	X	(1)
24	PF sys	X	X	X	X	\#	X	sys= system $=\sum$ (1)
25	PF L1	X	X	X	X	\#	X	(1)
26	PF L2	0	X	X	X	\#	X	(1)
27	PF L3	0	0	X	X	\#	X	(1)
28	Hz	X	X	X	X	X	X	(1)
29	Phase seq.	0	X	X	X	X	X	
30	Asy VLL	0	0	X	X	X	X	Asymmetry
31	Asy VLN	0	0	X	X	O	X	Asymmetry
32	Run Hours	X	X	X	X	X	X	
33	kWh (+)	X	X	X	X	X	X	Total
34	kvarh (+)	X	X	X	X	\#	X	Total
35	kWh (+)	X	X	X	X	X	X	Partial
36	kvarh (+)	X	X	X	X	\#	X	Partial
37	kWh (-)	X	X	X	X	X	X	Total
38	kvarh (-)	X	X	X	X	\#	X	Total
39	kWh (-)	X	X	X	X	X	X	Partial
40	kvarh (-)	X	X	X	X	\#	X	Partial
41	A L1 THD	X	X	X	X	X	X	(1)
42	A L2 THD	0	X	X	X	X	X	(1)
43	A L3 THD	0	0	X	X	X	X	(1)
44	V L1 THD	X	X	X	X	0	X	(1)
45	V L2 THD	0	X	X	X	0	X	(1)
46	V L3 THD	O	O	X	X	0	X	(1)
47	V L1-2 THD	X	X	X	X	X	X	(1)
48	V L2-3 THD	0	X	X	X	X	X	(1)
49	V L3-1 THD	0	0	X	X	X	X	(1)

$(X)=$ available; $\quad(\mathrm{O})=$ not available (variable not available on the display); (\#) Not available (the relevant page is not displayed) (1) Max. value with data storage

List of selectable applications

	Description	Notes
A	Cost allocation	Imported energy metering
B	Cost control	Imported and partial energy metering
C	Complex cost allocation	Imported/exported energy (total and partial)
D	Solar	Imported and exported energy metering with some basic power analyzer function
E	Complex cost and power analysis	Imported/exported energy (total and partial) and power analysis
F	Cost and power quality analysis	Imported energy and power quality analysis
G	Advanced energy and power analysis for power generation	Complete energy metering and power quality analysis

Display pages

	No	Line 1	Line 2	Line 3	Line 4	Line 5	Note	Applications						
Type	No	Variable Type		A	B	C	D	E	F	G				
	0	Total kW (+)	Programmable					X	x	x	X	X	x	X
a	1	Total kW (+)	b, c, d	b, c, d	b, c, d	b, c, d		x	x	x	X	x	x	X
a	2	Total kvarh (+)	b, c, d	b, c, d	b, c, d	b, c, d		x	x	x	x	x	x	X
a	3	Total kWh (-)	b, c, d	b, c, d	b, c, d	b, c, d				x	x	x		x
a	4	Total kvarh (-)	b, c, d	b, c, d	b, c, d	b, c, d				x	x	X		X
a	5	kWh (+) partial	b, c, d	b, c, d	b, c, d	b, c, d			x	x		x	x	x
a	6	kvarh (+) part.	b, c, d	b, c, d	b, c, d	b, c, d			x	x		x	x	X
a	7	kWh (-) partial	b, c, d	b, c, d	b, c, d	b, c, d				x		x		X
a	8	kvarh (-) part.	b, c, d	b, c, d	b, c, d	b, c, d				x		x		X
a	9	$\begin{array}{c\|} \text { Run Hours } \\ (99999999.99) \end{array}$	$\mathrm{b}, \mathrm{c}, \mathrm{d}$	b, c, d	$\mathrm{b}, \mathrm{c}, \mathrm{d}$	$\mathrm{b}, \mathrm{c}, \mathrm{d}$				x	x	x	x	X
b	10	a/Phase seq.	VLN \sum	VL1	VL2	VL3	(1) (2)				x	x	x	x
b	11	a/Phase seq.	VLN \sum	VL1-2	VL2-3	VL3-1	(1) (2)				x	X	X	x
b	12	a/Phase seq.	An	AL1	AL2	AL3	(1) (2)				X	X	x	X
b	13	a/Phase seq.	Hz	"ASY"	VLL sys (\% asy)	VLL sys (\% asy)	(1) (2)				x	x	x	x
c	14	a/Phase seq.	W Σ	WL1	WL2	WL3	(1) (2)				x	x	x	x
C	15	a/Phase seq.	var \sum	var L1	var L2	var L3	(1) (2)					X	X	X
C	16	a/Phase seq.	PF \sum	PF L1	PF L2	PF L3	(1) (2)					x	x	x
c	17	a/Phase seq.	VA Σ	VA L1	VA L2	VA L3	(1) (2)					x	x	x
d	18	a/Phase seq.		THD V1	THD V2	THD V3	(1) (2)						X	X
d	19	a/Phase seq.		THD V12	THD V23	THD V31	(1) (2)						X	X
d	20	a/Phase seq.		THD A1	THD A2	THD A3	(1) (2)						X	X

(1) Also maximum value storage.
(2) Also average (dmd) value storage.

Additional available information on the display

No	Line 1	Line 2	Line 3	Line 4	Line 5	Note	Applications						
							A	B	C	D	E	F	G
1	Lot n. (text) xxxx	Yr. (text) xx	SYS (text)	x (1/2/3)	1...60 (min) "dmd"		x	x	x	x	x	x	x
2	Conn. xxx.x (3ph.n/3ph/3ph./ 3ph.2/1ph/2ph)	CT.rA (text)	1.0 ... 99.99k	PT.rA (text)	1.0... 9999		x	x	x	x	x	x	x
3	LED PULSE (text) kWh	xxxx kWh per pulse					x	x	x	x	x	x	X
4	PULSE out1 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr				x	x	x	x	x	x	X
5	PULSE out2 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr				x	x	x	x	x	x	x
6	Remote out	out1 (text)	on/oFF	Out2 (text)	on/oFF		x	x	x	X	x	X	X
7	Alarm $1 \mathrm{nE} / \mathrm{nd}$	None / out 1 / out 2	Set 1	Set 2	(measurement)					x	X	x	x
8	Alarm $2 \mathrm{nE} / \mathrm{nd}$	None / out 1 / out 2	Set 1	Set 2	(measurement)					x	x	x	x
9	Alarm $3 \mathrm{nE} / \mathrm{nd}$	None / out 1 / out 2	Set 1	Set 2	(measurement)					x	x	x	X
10	Alarm $4 \mathrm{nE} / \mathrm{nd}$	None / out 1 / out 2	Set 1	Set 2	(measurement)					x	x	x	x
11	Analogue 1	Hi:E	$0.0 \ldots 9999$	Hi.A	0.0 ... 100.0\%					X	X	X	X
12	Analogue 2	Hi:E	0.0 ... 9999	Hi.A	0.0 ... 100.0\%					x	x	x	x
13	COM port	None / out 1 / out 2	xxx (address)	bdr (text)	$\begin{gathered} 9.6 / 19.2 / \\ 38.4 / 115.2 \end{gathered}$		X	x	x	x	x	x	X
14	IP address	XXX	XXX	XXX	XXX		x	x	X	X	X	X	X

Back protection rotary switch

	Function	Rotary switch position	Description
	Unlok	1	All programming parameters are freely modifiable by means of the front key-pad and by means of the communication port.
$\left\|\begin{array}{ll} \hline & 0 \\ 0 & 0 \end{array}\right\|$	Lock	7	The key-pad, as far as programming is concerned and the data through the serial communication cannot be changed (no writing into meter allowed). Data reading is allowed.

Accuracy (According to EN50470-3 and EN62053-23)

Accuracy limits (Active energy)
Start-up current: 5mA (AV5-6), 1mA (AV4-7)
kvarh, accuracy (RDG) depending on the current

Accuracy limits (Reactive energy)
Start-up current: 5mA (AV5-6), 1mA (AV4-7)

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{1 N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right) \cdot\left(A_{1}\right)_{i}$
Instantaneous power factor
$\cos \varphi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n}} \cdot \sum_{1}^{n}\left(A_{1}\right)_{i}^{2}$
Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$\operatorname{var}_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

System variables
Equivalent three-phase voltage
$V_{\Sigma}=\frac{V_{1}+V_{2}+V_{3}}{3} \cdot \sqrt{3}$
Voltage asymmetry
$A S Y_{L L}=\frac{\left(V_{L L \max }-V_{L L \min }\right)}{V_{L L} \sum}$
$A S Y_{L N}=\frac{\left(V_{L N \max }-V_{L N \min }\right)}{V_{L N} \sum}$
Three-phase reactive power
$\operatorname{var}_{\Sigma}=\left(\right.$ var $\left._{1}+\operatorname{var}_{2}+\operatorname{var}_{3}\right)$
Three-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
Three-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}^{2}+\operatorname{var}_{\Sigma}^{2}}$
Total harmonic distortion
$T H D_{N}=100 \frac{\sqrt{\sum_{n=2}^{N}\left|X_{n}\right|^{2}}}{\left|X_{1}\right|}$

Three-phase power factor
$\cos \varphi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$

Energy metering
$k \operatorname{var} h i=\int_{t 1}^{12} Q i(t) d t \cong \Delta t \sum_{n 1}^{n 2} Q n j$
$k W h i=\int_{t 1}^{t 2} P i(t) d t \cong \Delta t \sum_{n 1}^{n 2} P n j$
Where:
$\mathrm{i}=$ considered phase (L1, L2 or L3) $\mathbf{P}=$ active power; $\mathbf{Q}=$ reactive power; $\mathbf{t}_{1}, \mathbf{t}_{2}=$ starting and ending time points of consumption recording; $\mathbf{n}=$ time unit; $\Delta \mathbf{t}=$ time interval between two successive power consumptions; $\mathbf{n}_{1}, \mathbf{n}_{2}=$ starting and ending discrete time points of consumption recording

Wiring diagrams

System type selection: 3-Ph. 2

System type selection: 3-Ph.n

System type selection: 3-Ph

System type selection: 3-Ph (cont.)

Wiring diagrams

System type selection: 3-Ph. 1

System type selection: 2-Ph

System type selection: 1-Ph

System type selection: 1-Ph (cont.)

Power Supply
90 to 260VAC/DC (H option) Fig. 16

18 to 60VAC/DC (L option)
Fig. 17

$\mathrm{F}=250 \mathrm{~V}[7] 3,15 \mathrm{~A}$

Static, relay and analogue outputs wiring diagrams

Analogue 10V DC

RS485 and RS232 wiring diagrams

NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between ($\mathrm{B}+$) and (T). \boldsymbol{A} : the communication RS232 and RS485 ports can't be connected and used simultaneously.

1. Key-pad

To program the configuration parameters and scroll the variables on the display.
2. Display

LCD-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

3. kWh LED

Red LED blinking proportional to the energy being measured
4. Alarm LED's

Red LED's light-on when virtual alarms are activated.
5. Main bar-graph

To display the power consumption versus the installed power.

Dimensions and Panel cut-out

