FEATURES

Dual Supply $\pm 5 \mathrm{~V}$
High-Speed Fully Buffered Inputs and Outputs
600 MHz Bandwidth (-3 dB) 200 mV p-p
500 MHz Bandwidth (-3 dB) 2 V p-p
1600 V/ $\mu \mathrm{s}$ Slew Rate, $\mathrm{G}=+1$
1350 V/ $\mu \mathrm{s}$ Slew Rate, $\mathbf{G}=+2$
Fast Settling Time: 4 ns
Low Supply Current: < 30 mA
Excellent Video Specifications ($\mathrm{R}_{\mathrm{L}}=150 \Omega$):
Gain Flatness of 0.1 dB to 50 MHz
0.01\% Differential Gain Error
0.01° Differential Phase Error
"All Hostile" Crosstalk
-80 dB @ 10 MHz
-50 dB @ 100 MHz
High "OFF" Isolation of 90 dB @ 10 MHz
Low Cost
Fast Output Disable Feature
APPLICATIONS
RGB Buffer in LCD and Plasma Displays
RGB Driver
Video Routers

PRODUCT DESCRIPTION

The AD8074/AD8075 are high-speed triple video buffers with $\mathrm{G}=+1$ and +2 respectively. They have a -3 dB full signal bandwidth in excess of 450 MHz , along with slew rates in excess of $1400 \mathrm{~V} / \mu \mathrm{s}$. With better than -80 dB of all hostile crosstalk and 90 dB isolation, they are useful in many high-speed applications. The differential gain and differential phase error are 0.01% and 0.01°. Gain flatness of 0.1 dB up to 50 MHz makes the AD8074/AD8075 ideal for RGB buffering or driving. They consume less than 30 mA on a $\pm 5 \mathrm{~V}$ supply.
Both devices offer a high-speed disable feature that allows the outputs to be put into a high impedance state. This allows the building of larger input arrays while minimizing "OFF" channel output loading. The AD8074/AD8075 are offered in a 16-lead TSSOP package.

Table I. Truth Table

$\overline{\mathbf{O E}}$	OUT0, 1, 2
0	IN0, IN1, IN2
1	High Z

REV. A

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth (Small Signal) -3 dB Bandwidth (Large Signal) 0.1 dB Bandwidth Slew Rate Settling Time to 0.1%	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=200 \mathrm{mV} \mathrm{p}-\mathrm{p}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IN}}=200 \mathrm{mV}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{~V}_{\mathrm{IN}}=200 \mathrm{mV} \mathrm{p}-\mathrm{p}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IN}}=200 \mathrm{mV} \mathrm{p}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & 2 \mathrm{~V} \text { Step, } \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega / 150 \Omega \\ & 2 \mathrm{~V} \text { Step, } \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega / 150 \Omega \end{aligned}$	$\begin{aligned} & 330 / 310 \\ & 250 / 230 \\ & 330 / 300 \\ & 250 / 230 \end{aligned}$	$\begin{aligned} & 600 / 550 \\ & 400 / 400 \\ & 500 / 500 \\ & 350 / 350 \\ & 70 / 65 \\ & 70 / 65 \\ & 1600 / 1350 \\ & 4 / 7.5 \end{aligned}$		MHz MHz MHz MHz MHz MHz V/ $\mu \mathrm{s}$ ns
NOISE/DISTORTION PERFORMANCE Differential Gain Differential Phase All Hostile Crosstalk OFF Isolation Voltage Noise	$\begin{aligned} & \mathrm{V}=3.58 \mathrm{MHz}, 150 \Omega \\ & \mathrm{~V}=3.58 \mathrm{MHz}, 150 \Omega \\ & \mathrm{~V}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}=100 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{~V}=10 \mathrm{kHz} \text { to } 100 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & -80 /-74 \\ & -50 /-44 \\ & 90 \\ & 19.5 / 22 \end{aligned}$		\% Degrees dB dB dB $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
DC PERFORMANCE Voltage Gain Error Input Offset Voltage Input Offset Drift Input Bias Current	No Load $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$		$\begin{aligned} & \pm 0.1 / \pm 0.2 \\ & 2.5 \\ & 3 \\ & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & \pm 0.15 / \pm 0.65 \\ & 27 / 40 \\ & 9.5 / 10 \end{aligned}$	$\begin{aligned} & \% \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~A} \end{aligned}$
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Voltage Range	Channel Enabled Channel Disabled		$\begin{aligned} & 10 \\ & 1.5 \\ & 1.5 \\ & \pm 2.8 / \pm 1.4 \end{aligned}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{~V} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage Swing Short Circuit Current (Protected) Output Resistance Output Capacitance	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$ Enabled Disabled Disabled	$\begin{aligned} & +\mathrm{V}_{\mathrm{S}}-1.95 \\ & -\mathrm{V}_{\mathrm{S}}+2.1 \\ & +\mathrm{V}_{\mathrm{S}}-2.35 \\ & -\mathrm{V}_{\mathrm{S}}+2.30 \end{aligned}$ 3.5	$\begin{aligned} & +\mathrm{V}_{\mathrm{S}}-1.8 \\ & -\mathrm{V}_{\mathrm{S}}+1.8 \\ & +\mathrm{V}_{\mathrm{S}}-2.2 \\ & -\mathrm{V}_{\mathrm{S}}+2.2 \\ & 70 \\ & 0.5 \\ & 7.5 \\ & 2.2 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \Omega \\ & \mathrm{M} \Omega \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY Operating Range Power Supply Rejection Ratio Quiescent Current	+ PSRR: $+\mathrm{V}_{\mathrm{S}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-5 \mathrm{~V}$ - PSRR: $-\mathrm{V}_{\mathrm{S}}=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V},+\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ All Channels "ON" All Channels "OFF" $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & \pm 4.5 \\ & 60 \\ & 56 \end{aligned}$	$\begin{aligned} & 74 \\ & 64 \\ & 21.5 / 24 \\ & 3 / 4 \\ & 23 / 26 \end{aligned}$	$\begin{aligned} & \pm 5.5 \\ & \\ & 30 \\ & 5.5 \end{aligned}$	V dB dB mA mA mA
DIGITAL INPUT Logic "1" Voltage Logic "0" Voltage Logic " 1 " Input Current Logic "0" Input Current	$\begin{aligned} & \overline{\mathrm{OE}} \text { Input } \\ & \overline{\mathrm{OE}} \text { Input } \\ & \overline{\mathrm{OE}}=4 \mathrm{~V} \\ & \overline{\mathrm{OE}}=0.4 \mathrm{~V} \end{aligned}$	2.0	$\begin{aligned} & 100 \\ & 1 \end{aligned}$	0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
OPERATING TEMPERATURE RANGE Temperature Range θ_{JA} θ_{JC}	Operating (Still Air) Operating (Still Air) Operating	-40	$\begin{aligned} & 150.4 \\ & 27.6 \end{aligned}$	+85	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

[^0]

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$
Supply Voltage 12.0 V
Internal Power Dissipation
AD8074/AD8075 16-Lead TSSOP (RU)
Input Voltage
IN0, IN1, IN2 $\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
$\overline{\mathrm{OE}}$. $\mathrm{DGND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering 10 sec) $300^{\circ} \mathrm{C}$
NOTES
resses above those listed under Absolute Maximum Ratings may cause perma-解 section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Specification is for device in free air $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$.
6-lead $\mathrm{P}_{\mathrm{D}}<\left(150^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$.

ORDERING GUIDE			
Model	Temperature Range	Package Description	Package Option
AD8074ARU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic TSSOP	RU-16 AD8075ARU
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic TSSOP Evaluation Board AD8074-EVAL	Evaluation Board	

PIN CONFIGURATION

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8074/AD8075 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD8074/ AD 8075 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately $150^{\circ} \mathrm{C}$. Temporarily exceeding this limit may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of $175^{\circ} \mathrm{C}$ for an extended period can result in device failure.

While the AD8074/AD8075 is internally short circuit protected, this may not be sufficient to guarantee that the maximum junction temperature $\left(150^{\circ} \mathrm{C}\right)$ is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the maximum power derating curves shown in Figure 1.

Figure 1. Maximum Power Dissipation vs. Temperature

[^0]: Specifications subject to change without notice.

