

High-Speed Fully Buffered Inputs and Outputs

600 MHz Bandwidth (-3 dB) 200 mV p-p

Excellent Video Specifications ($R_1 = 150 \Omega$):

Gain Flatness of 0.1 dB to 50 MHz

High "OFF" Isolation of 90 dB @ 10 MHz

RGB Buffer in LCD and Plasma Displays

500 MHz Bandwidth (-3 dB) 2 V p-p

1600 V/ μ s Slew Rate, G = +1 1350 V/ μ s Slew Rate, G = +2

0.01% Differential Gain Error 0.01° Differential Phase Error

Low Supply Current: <30 mA

Fast Settling Time: 4 ns

"All Hostile" Crosstalk

Fast Output Disable Feature

-80 dB @ 10 MHz -50 dB @ 100 MHz

Low Cost

APPLICATIONS

RGB Driver Video Routers

FEATURES

Dual Supply ±5 V

500 MHz, G = +1 and +2 Triple Video Buffers with Disable

AD8074/AD8075

FUNCTIONAL BLOCK DIAGRAM

PRODUCT DESCRIPTION

The AD8074/AD8075 are high-speed triple video buffers with G = +1 and +2 respectively. They have a -3 dB full signal bandwidth in excess of 450 MHz, along with slew rates in excess of 1400 V/µs. With better than -80 dB of all hostile crosstalk and 90 dB isolation, they are useful in many high-speed applications. The differential gain and differential phase error are 0.01% and 0.01°. Gain flatness of 0.1 dB up to 50 MHz makes the AD8074/AD8075 ideal for RGB buffering or driving. They consume less than 30 mA on a ±5 V supply.

Both devices offer a high-speed disable feature that allows the outputs to be put into a high impedance state. This allows the building of larger input arrays while minimizing "OFF" channel output loading. The AD8074/AD8075 are offered in a 16-lead TSSOP package.

Table I. Truth Table

ŌĒ	OUT0, 1, 2			
0	IN0, IN1, IN2			
1	High Z			

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781/329-4700
 www.analog.com

 Fax: 781/326-8703
 © Analog Devices, Inc., 2001

$\label{eq:added_add} AD8074/AD8075 \mbox{--}SPECIFICATIONS~(T_A=25^\circ\text{C},~V_S=\pm5~\text{V},~unless~otherwise~noted.)}$

Parameter	Conditions	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Bandwidth (Small Signal)	$V_{IN} = 200 \text{ mV p-p}, C_L = 5 \text{ pF}$	330/310	600/550		MHz
	$V_{IN} = 200 \text{ mV p-p}, R_L = 150 \Omega$	250/230	400/400		MHz
-3 dB Bandwidth (Large Signal)	$V_{IN} = 2 V p - p, C_L = 5 pF$	330/300	500/500		MHz
	$V_{IN} = 2 V p p, R_{L} = 150 \Omega$	250/230	350/350		MHz
0.1 dB Bandwidth	$V_{IN} = 200 \text{ mV } \text{p-p}, C_L = 5 \text{ pF}$	230/230	70/65		MHz
	$V_{IN} = 200 \text{ mV } \text{p-p}, \text{R}_{L} = 150 \Omega$		70/65		MHz
Slew Rate	$2 \text{ V Step, } R_{\text{L}} = 1 \text{k}\Omega/150 \Omega$		1600/1350		V/µs
Settling Time to 0.1%	$2 \text{ V Step, } R_L = 1 \text{ k}\Omega/150 \Omega$		4/7.5		ns
NOISE/DISTORTION PERFORMANCE	N. 2.50 MH. 150.0		0.01		0/
Differential Gain	$V = 3.58 \text{ MHz}, 150 \Omega$		0.01		%
Differential Phase	$V = 3.58 \text{ MHz}, 150 \Omega$		0.01		Degree
All Hostile Crosstalk	$V = 10 \text{ MHz}, R_L = 1 \text{ k}\Omega$		-80/-74		dB
	$V = 100 \text{ MHz}, R_L = 1 \text{ k}\Omega$		-50/-44		dB
OFF Isolation	$V = 10 \text{ MHz}, R_L = 150 \Omega$		90		dB
Voltage Noise	V = 10 kHz to 100 MHz		19.5/22		nV/√Hz
DC PERFORMANCE					
Voltage Gain Error	No Load		$\pm 0.1/\pm 0.2$	$\pm 0.15/\pm 0.65$	%
Input Offset Voltage			2.5	27/40	mV
	T _{MIN} to T _{MAX}		3		mV
Input Offset Drift			10		µV/°C
Input Bias Current			5	9.5/10	μA
INPUT CHARACTERISTICS					
Input Resistance			10		MΩ
Input Capacitance	Channel Enabled		1.5		pF
r an an r	Channel Disabled		1.5		pF
Input Voltage Range			$\pm 2.8/\pm 1.4$		v
OUTPUT CHARACTERISTICS					
Output Voltage Swing	$R_{\rm L} = 1 \ k\Omega$	$+V_{S} - 1.95$	$+V_{s} - 1.8$		v
output fortuge offing		$-V_{\rm S} + 2.1$			v
	$R_L = 150 \Omega$	$+V_{s} - 2.35$			v
		$-V_{\rm S} + 2.30$			v
Short Circuit Current (Protected)		13 2130	70		mA
Output Resistance	Enabled		0.5		Ω
e alp at resistance	Disabled	3.5	7.5		MΩ
Output Capacitance	Disabled	5.5	2.2		pF
POWER SUPPLY					-
Operating Range		±4.5		±5.5	v
Power Supply Rejection Ratio	+PSRR: $+V_s = +4.5$ V to $+5.5$ V, $-V_s = -5$ V	60	74		dB
rower supply rejection ratio	$-PSRR: -V_{S} = -4.5 V \text{ to } -5.5 V, +V_{S} = +5 V$	56	64		dB
Quiescent Current	All Channels "ON"	50	21.5/24	30	mA
Quescent Ourient	All Channels "OFF"		3/4	5.5	mA
	T_{MIN} to T_{MAX}		23/26	5.5	mA
DICITAL INDUT					
DIGITAL INPUT Logic "1" Voltage	OE Input	2.0			v
Logic "0" Voltage	OE input OE Input	2.0		0.8	V
Logic "1" Input Current	$\overline{OE} = 4 V$		100	0.0	v nA
Logic "1" Input Current	$\frac{OE - 4V}{OE} = 0.4V$		100		μA
	0E = 0.4 V		1		μα
OPERATING TEMPERATURE RANGE					
Temperature Range	Operating (Still Air)	-40		+85	°C
θ_{JA}	Operating (Still Air)		150.4		°C/W
θ_{JC}	Operating		27.6		°C/W

Specifications subject to change without notice.

AD8074/AD8075

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage 12.0 V
Internal Power Dissipation ^{2, 3}
AD8074/AD8075 16-Lead TSSOP (RU) 1 W
Input Voltage
IN0, IN1, IN2 $V_{EE} \le V_{IN} \le V_{CC}$
$\overline{\text{OE}}$ $\text{DGND} \leq V_{\text{IN}} \leq V_{\text{CC}}$
Output Short Circuit Duration Indefinite ³
Storage Temperature Range
Lead Temperature Range (Soldering 10 sec) 300°C
NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Specification is for device in free air ($T_A = 25^{\circ}C$).

³16-lead plastic TSSOP; $\theta_{JA} = 150.4^{\circ}$ C/W. Maximum internal power dissipation (P_D) should be derated for ambient temperature (T_A) such that P_D < $(150^{\circ}$ C - T_A)/ θ_{IA} .

ORDERING (GUIDE
------------	-------

Model	Temperature Range	Package Description	Package Option
AD8074ARU AD8075ARU AD8074-EVAL	-40°C to +85°C -40°C to +85°C	16-Lead Plastic TSSOP 16-Lead Plastic TSSOP Evaluation Board	RU-16 RU-16
AD8075-EVAL		Evaluation Board	

PIN CONFIGURATION

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8074/AD8075 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD8074/ AD8075 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Temporarily exceeding this limit may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure.

While the AD8074/AD8075 is internally short circuit protected, this may not be sufficient to guarantee that the maximum junction temperature (150°C) is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the maximum power derating curves shown in Figure 1.

Figure 1. Maximum Power Dissipation vs. Temperature