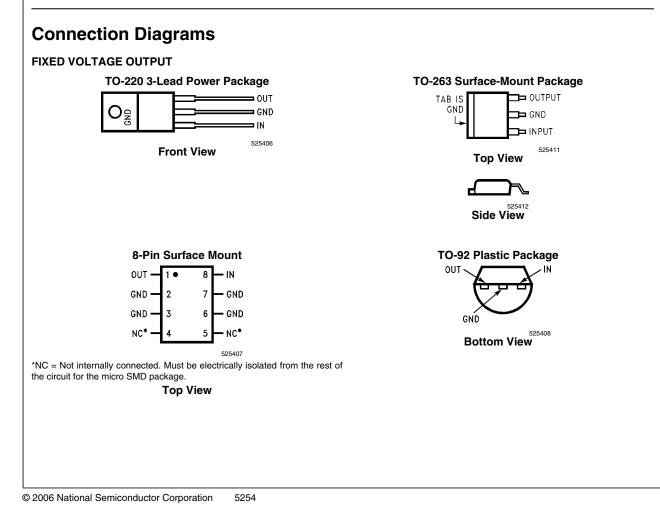
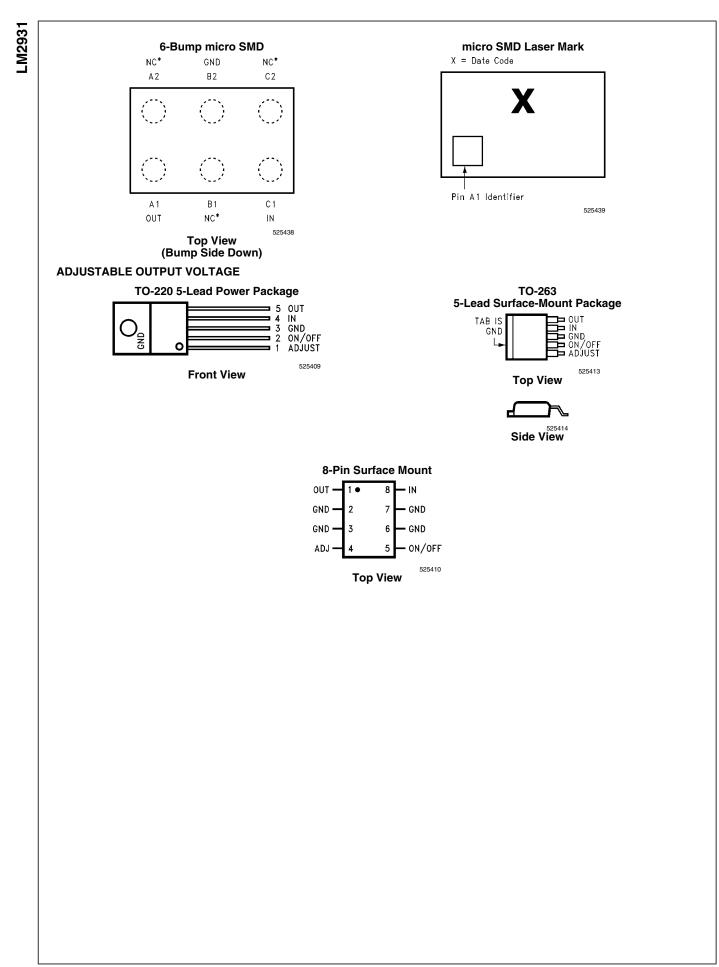


LM2931 Series Low Dropout Regulators

General Description

The LM2931 positive voltage regulator features a very low quiescent current of 1mA or less when supplying 10mA loads. This unique characteristic and the extremely low input-output differential required for proper regulation (0.2V for output currents of 10mA) make the LM2931 the ideal regulator for standby power systems. Applications include memory standby circuits, CMOS and other low power processor power supplies as well as systems demanding as much as 100mA of output current.


Designed originally for automotive applications, the LM2931 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as a load dump (60V) when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both internal circuits and the load. The LM2931 cannot be harmed by temporary mirror-image insertion. Familiar regulator features such as short circuit and thermal overload protection are also provided.


The LM2931 family includes a fixed 5V output (\pm 3.8% tolerance for A grade) or an adjustable output with ON/OFF pin.

Both versions are available in a TO-220 power package, TO-263 surface mount package, and an 8-lead surface mount package. The fixed output version is also available in the TO-92 plastic and 6-Bump micro SMD packages.

Features

- Very low quiescent current
- Output current in excess of 100 mA
- Input-output differential less than 0.6V
- Reverse battery protection
- 60V load dump protection
- -50V reverse transient protection
- Short circuit protection
- Internal thermal overload protection
- Mirror-image insertion protection
- Available in TO-220, TO-92, TO-263, SO-8 or 6-Bump micro SMD packages
- Available as adjustable with TTL compatible switch
- See AN-1112 for micro SMD considerations

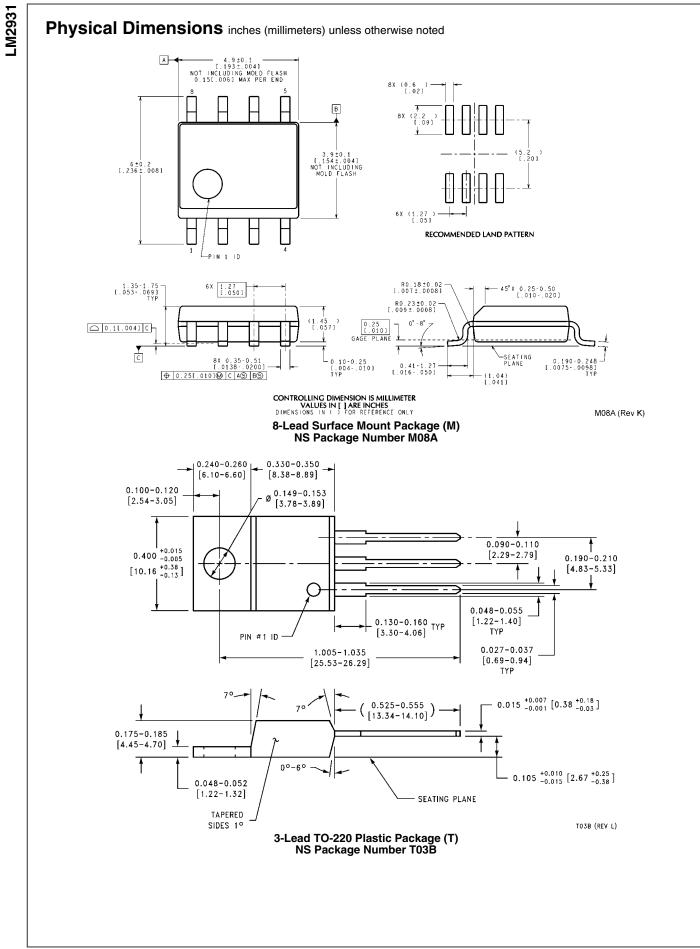
Ordering Information

Output Number	Package	Part Number	Package Marking	Transport Media	NSC Drawing	
5V	3-Pin TO-220	LM2931T-5.0	LM2931T-5.0	Rails	Т03В	
		LM2931AT-5.0	LM2931AT-5.0	Rails		
	3-Pin TO-263	LM2931S-5.0	LM2931S-5.0	Rails	TS3B	
		LM2931AS-5.0	LM2931AS-5.0	Rails	1	
	TO-92	LM2931Z-5.0	LM2931Z-5	1.8k Units per Box	Z03A	
		LM2931AZ-5.0	LM2931AZ	1.8k Units per Box	1	
	8-Pin	LM2931M-5.0	2931M-5.0	Rails	M08A	
	SOIC	LM2931AM-5.0	2931AM-5.0	Rails	1	
	* 6-Bump micro SMD	LM2931IBPX-5.0	-	Tape and Reel	BPA06HTA	
Adjustable,	5-Pin TO-220	LM2931CT	LM2931CT	Rails	T05A	
3V to 24V	5-Pin TO-263	LM2931CS	LM2931CS	Rails	TS5B	
	8-Pin SOIC	LM2931CM	LM2931CM	Rails	M08A	
3.3V	* 6-Bump micro SMD	LM2931IBPX-3.3	-	Tape and Reel	BPA06HTB	

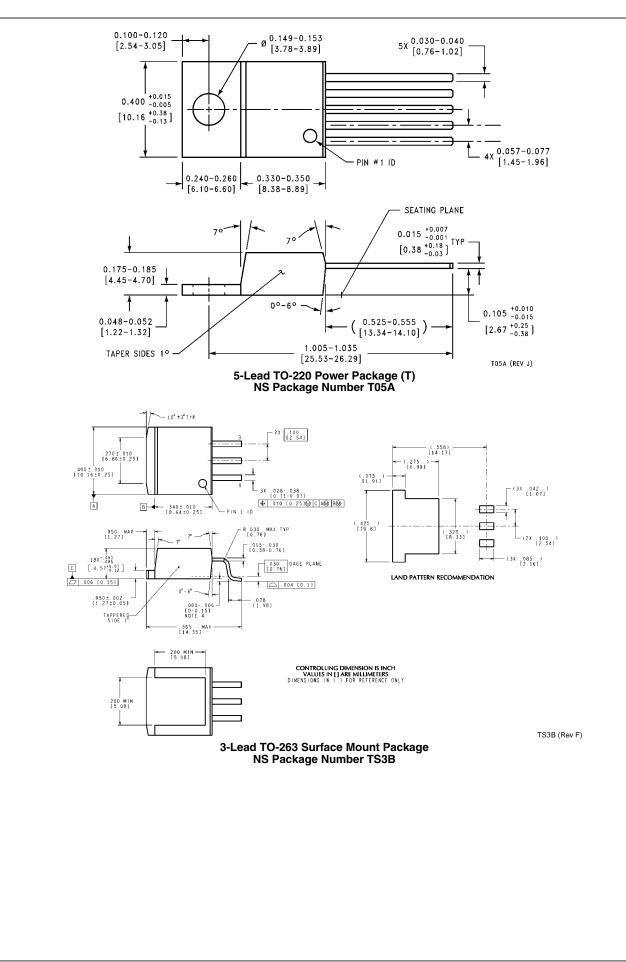
Note: The micro SMD package marking is a single digit manufacturing Date Code Only.

Absolute Maximum Ratings If Military/Aerospace specified devices are please contact the National Semiconductor Distributors for availability and specificatio	required, Sales Office/	LM2931 Internal Power Dissipation (Notes 2, 4) Operating Ambient Temperature	50V Internally Limited
Input Voltage		Range	–40°C to +85°C
Operating Range	26V	Maximum Junction Temperature	125°C
Overvoltage Protection		Storage Temperature Range	–65°C to +150°C
LM2931A, LM2931C (Adjustable)	60V	Lead Temp. (Soldering, 10 seconds) ESD Tolerance (Note 5)	230°C 2000V

Electrical Characteristics for Fixed 3.3V Version


 V_{IN} = 14V, I_{O} = 10mA, T_{J} = 25°C, C_{2} = 100 μF (unless otherwise specified) (Note 2)

Parameter	Conditions	LM2931-3.3		Units
		Тур	Limit (Note 3)	
Output Voltage		3.3	3.465 3.135	V _{MAX} V _{MIN}
	$4V \le V_{IN} \le 26V$, $I_O = 100 \text{ mA}$ -40°C $\le T_J \le 125$ °C		3.630 2.970	V _{MAX} V _{MIN}
Line Regulation	$4V \le V_{IN} \le 26V$	4	33	mV _{MAX}
Load Regulation	$5mA \le I_O \le 100mA$	10	50	mV _{MAX}
Output Impedance	100mA _{DC} and 10mA _{rms} , 100Hz - 10kHz	200		mΩ
Quiescent Current	$I_0 \le 10$ mA, $4V \le V_{IN} \le 26V$ - $40^{\circ}C \le T_J \le 125^{\circ}C$ $I_0 = 100$ mA, $V_{IN} = 14V$, $T_J = 25^{\circ}C$	0.4	1.0	mA _{MAX}
Output Noise Voltage	10Hz -100kHz, C _{OUT} = 100µF	330		μV _{rms}
Long Term Stability		13		mV/1000 h
Ripple Rejection	f _o = 120Hz	80		dB
Dropout Voltage	I _O = 10mA I _O = 100mA	0.05 0.30	0.2 0.6	V _{MAX}
Maximum Operational Input Voltage		33	26	V _{MIN}
Maximum Line Transient	$R_L = 500Ω$, $V_O ≤ 5.5V$, T = 1ms, τ ≤ 100ms	70	50	V _{MIN}
Reverse Polarity Input Voltage, DC	$V_{O} \ge -0.3V, R_{L} = 500\Omega$	-30	-15	V _{MIN}
Reverse Polarity Input Voltage, Transient	T = 1ms, τ ≤ 100ms, R _L = 500Ω	-80	-50	V _{MIN}


Note 5: Human body model, 100 pF discharged through 1.5 k Ω .

Electrical Characteristics for Adjustable Version $V_{IN} = 14V, V_{OUT} = 3V, I_{O} = 10 \text{ mA}, T_{J} = 25^{\circ}\text{C}, \text{ R1} = 27k, \text{ C2} = 100 \ \mu\text{F} \text{ (unless otherwise specified) (Note 2)}$

Parameter	Conditions	Тур	Limit	Units Limit
Reference Voltage		1.20	1.26	V _{MAX}
			1.14	V _{MIN}
	$I_0 \le 100 \text{ mA}, -40^{\circ}\text{C} \le T_j \le 125^{\circ}\text{C}, \text{R1} = 27\text{k}$		1.32	V _{MAX}
	Measured from V _{OUT} to Adjust Pin		1.08	V _{MIN}
Output Voltage Range			24	V _{MAX}
			3	V _{MIN}
Line Regulation	$V_{OUT} + 0.6V \le V_{IN} \le 26V$	0.2	1.5	mV/V _{MAX}
Load Regulation	5 mA ≤ I _O ≤ 100 mA	0.3	1	% _{MAX}
Output Impedance	100 mA _{DC} and 10 mA _{rms} , 100 Hz–10 kHz	40		mΩ/V
Quiescent Current	I _O = 10 mA	0.4	1	mA _{MAX}
	I _O = 100 mA	15		mA
	During Shutdown $R_L = 500\Omega$	0.8	1	mA _{MAX}
Output Noise Voltage	10 Hz–100 kHz	100		μV _{rms} /V
Long Term Stability		0.4		%/1000 hr
Ripple Rejection	f _O = 120 Hz	0.02		%/V
Dropout Voltage	l _O ≤ 10 mA	0.05	0.2	V _{MAX}
	I _O = 100 mA	0.3	0.6	V _{MAX}
Maximum Operational Input Voltage		33	26	V _{MIN}
Maximum Line Transient	I _O = 10 mA, Reference Voltage ≤ 1.5V	70	60	V _{MIN}
	T = 1 ms, τ ≤ 100 ms			
Reverse Polarity Input	$V_{O} \ge -0.3V, R_{L} = 500\Omega$			
Voltage, DC		-30	-15	V _{MIN}
Reverse Polarity Input	T = 1 ms, τ ≤ 100 ms, R_L = 500Ω			
Voltage, Transient		-80	-50	V _{MIN}
On/Off Threshold Voltage	V _O =3V			
On		2.0	1.2	V _{MAX}
Off		2.2	3.25	V _{MIN}
On/Off Threshold Current		20	50	μΑ _{ΜΑΧ}

