

National Semiconductor

LM2672 SIMPLE SWITCHER[®] Power Converter High Efficiency 1A Step-Down Voltage Regulator with Features

General Description

The LM2672 series of regulators are monolithic integrated circuits built with a LMDMOS process. These regulators provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load current with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5.0V, 12V, and an adjustable output version.

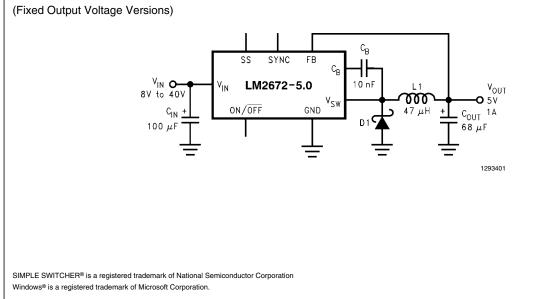
Requiring a minimum number of external components, these regulators are simple to use and include patented internal frequency compensation (Patent Nos. 5,382,918 and 5,514,947), fixed frequency oscillator, external shutdown, soft-start, and frequency synchronization.

The LM2672 series operates at a switching frequency of 260 kHz, thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its very high efficiency (>90%), the copper traces on the printed circuit board are the only heat sinking needed.

A family of standard inductors for use with the LM2672 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in the datasheet are selector guides for diodes and capacitors designed to work in switch-mode power supplies.

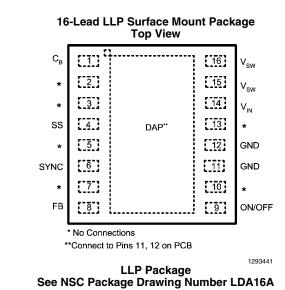
Other features include a guaranteed $\pm 1.5\%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10\%$ on the oscillator frequency. External shutdown is included, featuring typically 50 µA stand-by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

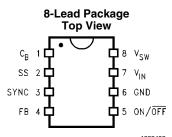
To simplify the LM2672 buck regulator design procedure, there exists computer design software, *LM267X Made Simple* version 6.0.


Features

- Efficiency up to 96%
- Available in SO-8, 8-pin DIP and LLP packages
- Computer Design Software LM267X Made Simple version 6.0
- Simple and easy to design with
- Requires only 5 external components
- Uses readily available standard inductors
- 3.3V, 5.0V, 12V, and adjustable output versions
- Adjustable version output voltage range: 1.21V to 37V
- ±1.5% max output voltage tolerance over line and load conditions
- Guaranteed 1A output load current
- 0.25Ω DMOS Output Switch
- Wide input voltage range: 8V to 40V
- 260 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- Soft-start and frequency synchronization
- Thermal shutdown and current limit protection

Typical Applications


- Simple High Efficiency (>90%) Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators


Typical Application

© 2007 National Semiconductor Corporation 12934

Connection Diagrams

Output Voltage	Order Information	Package Marking	Supplied as:	
6 Lead LLP				
12	LM2672LD-12	S0001B	1000 Units on Tape and Re	
12	LM2672LDX-12	LM2672LDX-12 S0001B 4500 Units on Tape and		
3.3	LM2672LD-3.3	S0002B	1000 Units on Tape and Ree	
3.3	LM2672LDX-3.3	S0002B	4500 Units on Tape and Ree	
5.0	LM2672LD-5.0	S0003B	1000 Units on Tape and Ree	
5.0	LM2672LDX-5.0	S0003B	4500 Units on Tape and Ree	
ADJ	LM2672LD-ADJ	S0004B	1000 Units on Tape and Ree	
ADJ	LM2672LDX-ADJ	S0004B	4500 Units on Tape and Ree	
60-8				
12	LM2672M-12	2672M-12	Shipped in Anti-Static Rails	
12	LM2672MX-12	2672M-12	2500 Units on Tape and Reel	
3.3	LM2672M-3.3	2672M-3.3	Shipped in Anti-Static Rails	
3.3	LM2672MX-3.3	2672M-3.3	2500 Units on Tape and Reel	
5.0	LM2672M-5.0	2672M-5.0	Shipped in Anti-Static Rails	
5.0	LM2672MX-5.0	2672M-5.0	2500 Units on Tape and Reel	
ADJ	LM2672M-ADJ	2672M-ADJ	Shipped in Anti-Static Rails	
ADJ	LM2672MX-ADJ	2672M-ADJ	2500 Units on Tape and Reel	
DIP			ł	
12	LM2672N-12	LM2672N-12	Shipped in Anti-Static Rails	
3.3	LM2672N-3.3	LM2672N-3.3	Shipped in Anti-Static Rails	
5.0	LM2672N-5.0	LM2672N-5.0	Shipped in Anti-Static Rails	
ADJ	LM2672N-ADJ	LM2672N-ADJ	Shipped in Anti-Static Rails	

TABLE 1. Package Marking and Ordering Information

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	45V
ON/OFF Pin Voltage	$-0.1V \le V_{SH} \le 6V$
Switch Voltage to Ground	-1V
Boost Pin Voltage	V _{SW} + 8V
Feedback Pin Voltage	$-0.3V \le V_{FB} \le 14V$
ESD Susceptibility	
Human Body Model (Note 2)	2 kV
Power Dissipation	Internally Limited

-65°C to +150°C Storage Temperature Range Lead Temperature M Package Vapor Phase (60s) +215°C Infrared (15s) +220°C N Package (Soldering, 10s) +260°C LLP Package (see AN-1187) Maximum Junction Temperature +150°C

Operating Ratings

Supply Voltage	6.5V to 40V
Temperature Range	–40°C ≤ T _J ≤ +125°C

Electrical Characteristics

LM2672-3.3 Specifications with standard type face are for $T_J = 25^{\circ}C$, and those in **bold type face** apply over **full Operating Temperature Range.**

Symbol	Parameter	Conditions	Typical (Note 4)	Min (Note 5)	Max (Note 5)	Units
SYSTEM	PARAMETERS Te	st Circuit <i>Figure 2</i> (Note 3)			•	
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A	3.3	3.251/ 3.201	3.350/ 3.399	V
V _{OUT}	Output Voltage	V_{IN} = 6.5V to 40V, I_{LOAD} = 20 mA to 500 mA	3.3	3.251/ 3.201	3.350/ 3.399	V
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 1A$	86			%
LM2	672-5.0					
Symbol	Parameter	Conditions	Typical (Note 4)	Min (Note 5)	Max (Note 5)	Units
SYSTEM	PARAMETERS Te	st Circuit Figure 2 (Note 3)				-
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A	5.0	4.925/ 4.850	5.075/ 5.150	V
V _{OUT}	Output Voltage	V_{IN} = 6.5V to 40V, I_{LOAD} = 20 mA to 500 mA	5.0	4.925/ 4.850	5.075/ 5.150	V
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 1A$	90			%
LM2	672-12					
Symbol	Parameter	Conditions	Typical	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM	PARAMETERS Te	st Circuit Figure 2 (Note 3)				-
V _{OUT}	Output Voltage	V_{IN} = 15V to 40V, I_{LOAD} = 20 mA to 1A	12	11.82/ 11.64	12.18/ 12.36	V
η	Efficiency	$V_{IN} = 24V, I_{LOAD} = 1A$	94			%
LM2	672-ADJ					
Symbol	Parameter	Conditions	Тур	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
		3				
SYSTEM	PARAMETERS Tes	st Circuit <i>Figure 3</i> (Note 3)			1	
	PARAMETERS Tes	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A	1.210	1.192/ 1.174	1.228/ 1.246	V
	r	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A V_{OUT} Programmed for 5V	1.210	1.192/ 1.174	1.228/ 1.246	V
V _{FB}	Feedback Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A V_{OUT} Programmed for 5V (see Circuit of <i>Figure 3</i>)	1.210	1.192/ 1.174	1.228/ 1.246	V
	r	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A V_{OUT} Programmed for 5V	1.210	1.192/ 1.174 1.192/ 1.174	1.228/ 1.246 1.228/ 1.246	V

%

Efficiency

η

90

(see Circuit of Figure 3)

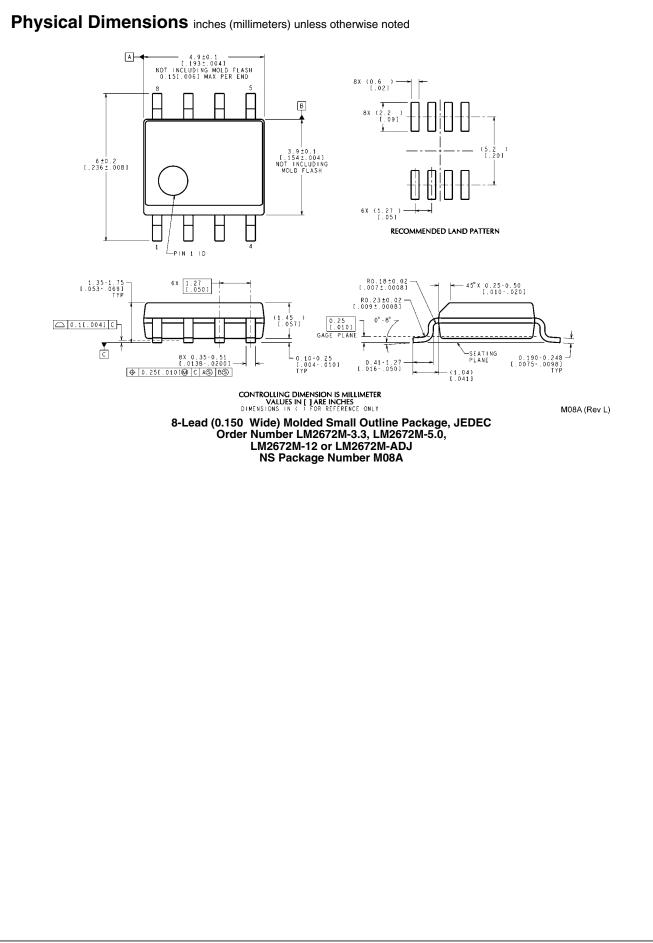
 $V_{IN} = 12V, I_{LOAD} = 1A$

All Output Voltage Versions

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those in **bold type face** apply over **full Operating Temperature Range**. Unless otherwise specified, $V_{IN} = 12$ V for the 3.3V, 5V, and Adjustable versions and $V_{IN} = 24$ V for the 12V version, and $I_{LOAD} = 100$ mA.

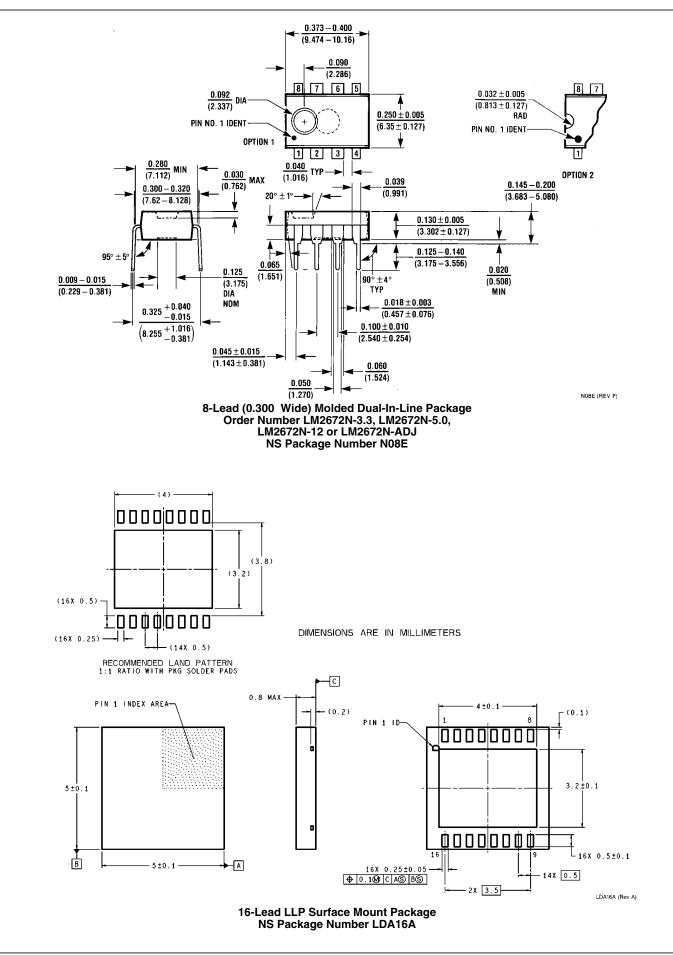
Parameters	Conditions	Тур	Min	Max	Units
PARAMETERS	•	•			•
Quiescent Current	V _{FEEDBACK} = 8V For 3.3V, 5.0V, and ADJ Versions	2.5		3.6	mA
	V _{FEEDBACK} = 15V For 12V Versions	2.5			mA
Standby Quiescent Current	ON/OFF Pin = 0V	50		100/ 150	μA
Current Limit		1.55	1.25/ 1.2	2.1/ 2.2	A
I _{CL} Current Limit I _L Output Leakage Current	$V_{IN} = 40V, ON/\overline{OFF}$ Pin = 0V $V_{SWITCH} = 0V$	1		25	μA
	$V_{SWITCH} = -1V, ON/\overline{OFF}$ Pin = 0V	6		15	mA
Switch On-Resistance	I _{SWITCH} = 1A	0.25		0.30/ 0.50	Ω
Oscillator Frequency	Measured at Switch Pin	260	225	275	kHz
Maximum Duty Cycle		95			%
Minimum Duty Cycle		0			%
Feedback Bias Current	V _{FEEDBACK} = 1.3V ADJ Version Only	85			nA
ON/OFF Pin Voltage Thesholds		1.4	0.8	2.0	V
ON/OFF Pin Current	ON/OFF Pin = 0V	20	7	37	μA
Synchronization Frequency	V _{SYNC} = 3.5V, 50% duty cycle	400			kHz
Synchronization Threshold Voltage		1.4			v
Soft-Start Voltage		0.63	0.53	0.73	V
Soft-Start Current		4.5	1.5	6.9	μA
Thermal Resistance	N Package, Junction to Ambient (Note 6) M Package, Junction to Ambient (Note 6)	95 105			°C/W
	PARAMETERS Quiescent Current Standby Quiescent Current Current Limit Output Leakage Current Switch On-Resistance Oscillator Frequency Maximum Duty Cycle Minimum Duty Cycle Feedback Bias Current ON/OFF Pin Voltage Thesholds ON/OFF Pin Current Synchronization Frequency Synchronization Threshold Voltage Soft-Start Voltage Soft-Start Current	PARAMETERSQuiescent Current $V_{FEEDBACK} = 8V$ For 3.3V, 5.0V, and ADJ Versions $V_{FEEDBACK} = 15V$ For 12V VersionsStandby Quiescent Current ON/OFF Pin = 0VCurrent Limit ON/OFF Pin = 0V $V_{IN} = 40V, ON/OFF$ Pin = 0VVgwitch = 0VVswitch On-Resistance $I_{SWITCH} = 1V$, ON/OFF Pin = 0VSwitch On-Resistance $I_{SWITCH} = 1A$ Oscillator FrequencyMeasured at Switch PinMaximum Duty Cycle $V_{FEEDBACK} = 1.3V$ CurrentADJ Version OnlyON/OFF Pin ON/OFF Pin = 0VSynchronization Frequency $V_{SYNC} = 3.5V, 50\%$ duty cycleSynchronization Threshold Voltage $V_{SYNC} = 3.5V, 50\%$ duty cycle	PARAMETERSQuiescent Current $V_{FEEDBACK} = 8V$ For 3.3V, 5.0V, and ADJ Versions2.5 $V_{FEEDBACK} = 15V$ For 12V Versions2.5Standby Quiescent Current ON/\overline{OFF} Pin = 0V50Current Limit1.55Output Leakage Current $V_{IN} = 40V$, ON/\overline{OFF} Pin = 0V1 $V_{SWITCH} = 0V$ $V_{SWITCH} = -1V$, ON/\overline{OFF} Pin = 0V6Switch On-Resistance $I_{SWITCH} = -1V$, ON/\overline{OFF} Pin = 0V6Switch On-Resistance $I_{SWITCH} = 1A$ 0.25Oscillator FrequencyMeasured at Switch Pin260Maximum Duty Cycle095Minimum Duty Cycle0Feedback Bias Current $V_{FEEDBACK} = 1.3V$ ADJ Version Only85ON/\overline{OFF} Pin01.4Voltage Thesholds020Synchronization Frequency $V_{SYNC} = 3.5V$, 50% duty cycle400Synchronization Threshold Voltage1.4Soft-Start Voltage0.636.3	PARAMETERSQuiescent Current $V_{FEEDBACK} = 8V$ For 3.3V, 5.0V, and ADJ Versions2.5V_FEEDBACK = 15V For 12V Versions2.5Standby Quiescent CurrentON/OFF Pin = 0V50Current Limit1.551.25/1.2Output Leakage Current $V_{IN} = 40V, ON/OFF$ Pin = 0V1V_SWITCH = 0V V_SWITCH = 0V1V_SWITCH = -1V, ON/OFF Pin = 0V6Switch On-Resistance $I_{SWITCH} = -1V, ON/OFF$ Pin = 0V6Oscillator FrequencyMeasured at Switch Pin260225Maximum Duty Cycle0950Minimum Duty Cycle01.40.8ON/OFF Pin0.V/OFF Pin = 0V207ON/OFF Pin CurrentON/OFF Pin = 0V207Synchronization FrequencyV _{SYNC} = 3.5V, 50% duty cycle400Synchronization Threshold Voltage1.40.630.53Soft-Start Voltage0.630.530.53	PARAMETERS V _{FEEDBACK} = 8V For 3.3V, 5.0V, and ADJ Versions 2.5 3.6 Quiescent Current $V_{FEEDBACK} = 15V$ For 12V Versions 2.5 100/150 Standby Quiescent Current ON/OFF Pin = 0V 50 100/150 Current Limit 1.55 1.25/1.2 2.1/2.2 Output Leakage Current $V_{IN} = 40V, ON/OFF Pin = 0V$ 1 25 VSWITCH = 0V 1 25 0.30/0.50 Oscillator Frequency Measured at Switch Pin 260 225 275 Maximum Duty Cycle 95 0 0 0 0 Feedback Bias V _{FEEDBACK} = 1.3V 85 0 0 0 ON/OFF Pin<0V

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.


Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin.

Note 3: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator performance. When the LM2672 is used as shown in *Figure 2* and *Figure 3* test circuits, system performance will be as specified by the system parameters section of the Electrical Characteristics.

Note 4: Typical numbers are at 25°C and represent the most likely norm.


Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Note 6: Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. See Application Information section in the application note accompanying this datasheet and the thermal model in *LM267X Made Simple* version 6.0 software. The value θ_{J-A} for the LLP (LD) package is specifically dependent on PCB trace area, trace material, and the number of layers and thermal vias. For improved thermal resistance and power dissipation for the LLP package, refer to Application Note AN-1187.

LM2672

LM2672

