Low Voltage 256／512／1K／4K／8K x 9 Syn－ chronous FIFOs

Features

■ High－speed，low－power，first－in，first－out（FIFO）memories
－ 256×9（CY7C4201V）
口 512×9（CY7C4211V）
口 $1 \mathrm{~K} \times 9$（CY7C4221V）
口 $4 \mathrm{~K} \times 9$（CY7C4241V）
口 8K x 9 （CY7C4251V）
■ High－speed 66－MHz operation（15－ns read／write cycle time）
－Low power（ $\mathrm{I}_{\mathrm{CC}}=20 \mathrm{~mA}$ ）
■ 3．3V operation for low power consumption and easy integration into low－voltage systems
$\square 5 \mathrm{~V}$－tolerant inputs $\mathrm{V}_{\mathrm{IH} \text { max }}=5 \mathrm{~V}$
－Fully asynchronous and simultaneous read and write operation
■ Empty，Full，and Programmable Almost Empty and Almost Full status flags
－TTL compatible
■ Output Enable（ $\overline{\mathrm{OE}})$ pin
－Independent read and write enable pins
－Center power and ground pins for reduced noise
－Width expansion capability
■ Space saving 32 －pin $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ TQFP
－32－pin PLCC
■ Available in Pb－Free Packages

Functional Description

The CY7C42X1V are high－speed，low－power，FIFO memories with clocked read and write interfaces．All are nine bits wide． Programmable features include Almost Full／Almost Empty flags． These FIFOs provide solutions for a wide variety of data buffering needs，including high－speed data acquisition，multipro－ cessor interfaces，and communications buffering．

These FIFOs have 9－bit input and output ports that are controlled by separate clock and enable signals．The input port is controlled by a Free－Running Clock（WCLK）and two Write Enable pins （WEN1，WEN2／LD）．
When $\overline{\mathrm{WEN}} 1$ is LOW and WEN2／LD is HIGH，data is written into the FIFO on the rising edge of the WCLK signal．While WEN1， WEN2／LD is held active，data is continually written into the FIFO on each WCLK cycle．The output port is controlled in a similar manner by a Free－Running Read Clock（RCLK）and two Read Enable Pins（REN1，REN2）．In addition，the CY7C42X1V has an Output Enable Pin（ $\overline{\mathrm{OE}}$ ）．The Read（RCLK）and Write（WCLK） clocks may be tied together for single－clock operation or the two clocks may be run independently for asynchronous read／write applications．Clock frequencies up to 66 MHz are achievable．
Depth expansion is possible using one enable input for system control，while the other enable is controlled by expansion logic to direct the flow of data．

Logic Block Diagram

Contents

Features 1
Functional Description 1
Logic Block Diagram 1
Contents 2
Pin Configuration 3
Selection Guide 3
Pin Definitions 3
Functional Description 4
Architecture 4
Resetting the FIFO 4
FIFO Operation 4
Programming 5
Programmable Flag ($\overline{\mathrm{PAE}}, \overline{\mathrm{PAF}})$ Operation 6
Width Expansion Configuration 7
Flag Operation 7
Full Flag 7
Empty Flag 7
Maximum Ratings 8
Operating Range 8
Electrical Characteristics Over the Operating Range 8
Capacitance 8
Switching Characteristics Over the Operating Range 9
Switching Waveforms 10
Ordering Information 16
256 x 9 Low Voltage Synchronous FIFO 16
512×9 Low Voltage Synchronous FIFO 16
1K x 9 Low Voltage Synchronous FIFO 16
4K x 9 Low Voltage Synchronous FIFO 16
8K x 9 Low Voltage Synchronous FIFO 16
Package Diagrams 17
Document History Page 19
Worldwide Sales and Design Support 19
Products 19
PSoC Solutions 19

Pin Configuration

Figure 1. 32-Pin PLCC

Figure 2. 32-Pin TQFP

Selection Guide

Description	CY7C42X1V-15	CY7C42X1V-25	CY7C42X1V-35	Unit
Maximum Frequency	66.7	40	28.6	MHz
Maximum Access Time	11	15	20	ns
Minimum Cycle Time	15	25	35	ns
Minimum Data or Enable Set-up	4	6	7	ns
Minimum Data or Enable Hold	1	1	2	ns
Maximum Flag Delay	10	15	20	ns
Active Power Supply Current	Commercial	20	20	20

	CY7C4421V	CY7C4201V	CY7C4211V	CY7C4221V	CY7C4231V	CY7C4241V	CY7C4251V
Density	64×9	256×9	512×9	$1 \mathrm{~K} \times 9$	$2 \mathrm{~K} \times 9$	$4 \mathrm{~K} \times 9$	$8 \mathrm{~K} \times 9$

Pin Definitions

Signal Name	Description	1/0	Description
D_{0-8}	Data Inputs	1	Data Inputs for 9-bit bus.
Q_{0-8}	Data Outputs	0	Data Outputs for 9-bit bus.
WEN1	Write Enable 1	1	The only write enable when device is configured to have programmable flags. Data is written on a LOW-to-HIGH transition of WCLK when WEN1 is asserted and FF is HIGH. If the FIFO is configured to have two write enables, data is written on a LOW-to-HIGH transition of WCLK when WEN1 is LOW and WEN2/LD and FF are HIGH.
WEN2/디 Dual Mode Pin	Write Enable 2	1	If HIGH at reset, this pin operates as a second write enable. If LOW at reset, this pin operates as a control to write or read the programmable flag offsets. WEN1 must be LOW and WEN2 must be HIGH to write data into the FIFO. Data will not be written into the FIFO if the $\overline{\mathrm{FF}}$ is LOW. If the FIFO is configured to have programmable flags, WEN2/LD is held LOW to write or read the programmable flag offsets.
	Load	1	
$\overline{\text { REN1, }}$ REN2	Read Enable Inputs	1	Enables the device for Read operation.
WCLK	Write Clock	1	The rising edge clocks data into the FIFO when WEN1 is LOW and WEN2/LD is HIGH and the FIFO is not Full. When LD is asserted, WCLK writes data into the programmable flag-offset register.

Pin Definitions (continued)

Signal Name	Description	I/O	Description
RCLK	Read Clock	I	The rising edge clocks data out of the FIFO when REN1 and REN2 are LOW and the FIFO is not Empty. When WEN2/LD is LOW, RCLK reads data out of the programmable flag offset register.
$\overline{\overline{\mathrm{EF}}}$	Empty Flag	O	When $\overline{\text { EF is LOW, the FIFO is empty. EF is synchronized to RCLK. }}$
$\overline{\mathrm{FF}}$	Full Flag	O	When $\overline{\text { FF is LOW, the FIFO is full. FF is synchronized to WCLK. }}$
$\overline{\mathrm{PAE}}$	Programmable Almost Empty	O	When PAE is LOW, the FIFO is almost empty based on the almost empty offset value programmed into the FIFO.
$\overline{\mathrm{PAF}}$	Programmable Almost Full	O	When PAF is LOW, the FIFO is almost full based on the almost full offset value programmed into the FIFO.
$\overline{\mathrm{RS}}$	Reset	I	Resets device to empty condition. A reset is required before an initial read or write operation after power-up.
$\overline{\mathrm{OE}}$	Output Enable	I	When OE is LOW, the FIFO's data outputs drive the bus to which they are connected. If OE is HIGH, the FIFO's outputs are in High Z (high-impedance) state.

Functional Description

The CY7C42X1V provides four status pins: Empty, Full, Almost Empty, Almost Full. The Almost Empty/Almost Full flags are programmable to single word granularity. The programmable flags default to Empty-7 and Full-7.
The flags are synchronous, i.e., they change state relative to either the Read Clock (RCLK) or the Write Clock (WCLK). When entering or exiting the Empty and Almost Empty states, the flags are updated exclusively by the RCLK. The flags denoting Almost Full and Full states are updated exclusively by WCLK. The synchronous flag architecture guarantees that the flags maintain their status for at least one cycle
All configurations are fabricated using an advanced $0.65 \mu \mathrm{P}$-Well CMOS technology. Input ESD protection is greater than 2001V, and latch-up is prevented by the use of guard rings.

Architecture

The CY7C42X1V consists of an array of 64 to 8 K words of nine bits each (implemented by a dual-port array of SRAM cells), a read pointer, a write pointer, control signals (RCLK, WCLK, $\overline{R E N 1}$, REN2, $\bar{W} E N 1$, WEN2, $\overline{R S})$, and flags ($\overline{\mathrm{EF}}, \overline{\mathrm{PAE}}, \overline{\mathrm{PAF}}, \overline{\mathrm{FF}}$.)

Resetting the FIFO

Upon power-up, the FIFO must be reset with a Reset ($\overline{\mathrm{RS}})$ cycle. This causes the FIFO to enter the Empty condition signified by $\overline{\mathrm{EF}}$ being LOW. All data outputs $\left(\mathrm{Q}_{0-8}\right)$ go LOW $\mathrm{t}_{\text {RSF }}$ after the rising edge of $\overline{R S}$. In order for the FIFO to reset to its default state, a falling edge must occur on RS and the user must not read or write while RS is LOW. All flags are guaranteed to be valid $t_{\text {RSF }}$ after $\overline{\mathrm{RS}}$ is taken LOW.

FIFO Operation

When the $\overline{\mathrm{WEN}} 1$ signal is active LOW and WEN2 is active HIGH, data present on the D_{0-8} pins is written into the FIFO on each rising edge of the WCLK signal. Similarly, when the REN1 and REN2 signals are active LOW, data in the FIFO memory will be presented on the Q_{0-8} outputs. New data will be presented on each rising edge of RCLK while REN1 and REN2 are active. REN1 and REN2 must set up t $_{\text {ENS }}$ before RCLK for it to be a valid read function. WEN1 and WEN2 must occur $t_{\text {ENS }}$ before WCLK for it to be a valid write function.
An Output Enable $(\overline{\mathrm{OE}})$ pin is provided to three-state the Q_{0-8} outputs when $\overline{O E}$ is asserted. When $\overline{O E}$ is enabled (LOW), data in the output register will be available to the Q_{0-8} outputs after t_{OE}
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read on its Q_{0-8} outputs even after additional reads occur.
Write Enable 1 (WEN1). If the FIFO is configured for programmable flags, Write Enable $1(\overline{\mathrm{WEN}} 1)$ is the only write enable control pin. In this configuration, when Write Enable 1 (WEN1) is LOW, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every write clock (WCLK). Data is stored is the RAM array sequentially and independently of any on-going read operation.
Write Enable 2/Load (WEN2/LD). This is a dual-purpose pin. The FIFO is configured at Reset to have programmable flags or to have two write enables, which allows for depth expansion. If Write Enable 2/Load (WEN2/LD) is set active HIGH at Reset ($\overline{\mathrm{RS}}=\mathrm{LOW}$), this pin operates as a second write enable pin.
If the FIFO is configured to have two write enables, when Write Enable (WEN1) is LOW and Write Enable 2/Load (WEN2/LD) is HIGH, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every write clock (WCLK.) Data is stored in the RAM array sequentially and independently of any on-going read operation.

Programming

When WEN2/ $\overline{\mathrm{LD}}$ is held LOW during Reset, this pin is the load (LD) enable for flag offset programming. In this configuration, WEN2/LD can be used to access the four 8-bit offset registers contained in the CY7C42X1V for writing or reading data to these registers.
When the device is configured for programmable flags and both WEN2/LD and WEN1 are LOW, the first LOW-to-HIGH transition of WCLK writes data from the data inputs to the empty offset Least Significant Bit (LSB) register. The second, third, and fourth LOW-to-HIGH transitions of WCLK store data in the empty offset Most Significant Bit (MSB) register, full offset LSB register, and full offset MSB register, respectively, when WEN2/LD and WEN1 are LOW. The fifth LOW-to-HIGH transition of WCLK while

WEN2/LD and $\overline{\text { WEN1 }}$ are LOW writes data to the empty LSB register again. Figure 3 shows the register sizes and default values for the various device types.
It is not necessary to write to all the offset registers at one time. A subset of the offset registers can be written; then by bringing the WEN2/LD input HIGH, the FIFO is returned to normal read and write operation. The next time WEN2/ $\overline{\mathrm{LD}}$ is brought LOW, a write operation stores data in the next offset register in sequence.
The contents of the offset registers can be read to the data outputs when WEN2/LD is LOW and both REN1 and REN2 are LOW. LOW-to-HIGH transitions of RCLK read register contents to the data outputs. Writes and reads should not be performed simultaneously on the offset registers.

Figure 3. Offset Register Location and Default Values

Programmable Flag (PAE, PAF) Operation

Whether the flag offset registers are programmed as described in Table 1 or the default values are used, the programmable Almost Empty Flag (PAE) and programmable Almost Full Flag (PAF) states are determined by their corresponding offset registers and the difference between the read and write pointers.
Table 1. Writing the Offset Registers

LD	WEN	WCLK $^{[1]}$	Selection
0	0	\longleftarrow	Empty Offset (LSB) Empty Offset (MSB) Full Offset (LSB) Full Offset (MSB)
0	1	\longleftarrow	No Operation
1	0	\longleftarrow	Write Into FIFO
1	1	\longleftarrow	No Operation

The number formed by the empty offset least significant bit register and empty offset most significant register is referred to as n and determines the operation of PAE. PAE is synchronized to the LOW-to-HIGH transition of RCLK by one flip-flop and is
Table 2. Status Flags

LOW when the FIFO contains n or fewer unread words. PAE is set HIGH by the LOW-to-HIGH transition of RCLK when the FIFO contains $(n+1)$ or greater unread words.
The number formed by the full offset least significant bit register and full offset most significant bit register is referred to as m and determines the operation of $\overline{P A F}$. PAE is synchronized to the LOW-to-HIGH transition of WCLK by one flip-flop and is set LOW when the number of unread words in the FIFO is greater than or equal to CY7C4421V ($64-\mathrm{m}$), CY7C4201V ($256-\mathrm{m}$), CY7C4211V (512-m), CY7C4221V (1K - m), CY7C4231V (2K $-\mathrm{m})$, CY7C4241V ($4 \mathrm{~K}-\mathrm{m}$), and CY7C4251V $(8 \mathrm{~K}-\mathrm{m}) . \overline{\mathrm{PAF}}$ is set HIGH by the LOW-to-HIGH transition of WCLK when the number of available memory locations is greater than m .

Number of Words in FIFO			$\overline{\mathrm{FF}}$	$\overline{\text { PAF }}$	$\overline{\text { PAE }}$	$\overline{\mathrm{EF}}$
CY7C4421V	CY7C4201V	CY7C4211V				
0	0	0	H	H	L	L
1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	H	H	L	H
(n+1) to 32	$(\mathrm{n}+1)$ to 128	$(\mathrm{n}+1)$ to 256	H	H	H	H
33 to (64-(m+1))	129 to (256-(m+1))	257 to (512-(m+1))	H	H	H	H
(64-m) ${ }^{[3]}$ to 63	$(256-\mathrm{m})^{[3]}$ to 255	$(512-\mathrm{m})^{[3]}$ to 511	H	L	H	H
64	256	512	L	L	H	H

Number of Words in FIFO				$\overline{\mathrm{FF}}$	$\overline{\text { PAF }}$	$\overline{\text { PAE }}$	$\overline{\mathrm{EF}}$
CY7C4221V	CY7C4231V	CY7C4241V	CY7C4251V				
0	0	0	0	H	H	L	L
1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	H	H	L	H
($\mathrm{n}+1$) to 512	$(\mathrm{n}+1)$ to 1024	$(\mathrm{n}+1)$ to 2048	$(\mathrm{n}+1)$ to 4096	H	H	H	H
513 to (1024-(m+1))	1025 to (2048-(m+1))	2049 to (4096-(m+1))	4097 to (8192-(m+1))	H	H	H	H
$(1024-\mathrm{m})^{[3]}$ to 1023	(2048-m) ${ }^{[3]}$ to 2047	(4096-m) ${ }^{[3]}$ to 4095	$(8192-\mathrm{m})^{[3]}$ to 8191	H	L	H	H
1024	2048	4096	8192	L	L	H	H

[^0]
Width Expansion Configuration

Word width may be increased simply by connecting the corresponding input control signals of multiple devices. A composite flag should be created for each of the end-point status flags ($\overline{\mathrm{EF}}$ and FF). The partial status flags (PAE and PAF) can be detected from any one device. Figure demonstrates a 18-bit word width by using two CY7C42X1Vs. Any word width can be attained by adding additional CY7C42X1Vs.
When the CY7C42X1V is in a Width Expansion Configuration, the Read Enable (REN2) control input can be grounded (see Figure). In this configuration, the Write Enable 2/Load (WEN2/LD) pin is set to LOW at Reset so that the pin operates as a control to load and read the programmable flag offsets.

Flag Operation

The CY7C42X1 devices provide four flag pins to indicate the condition of the FIFO contents. Empty, Full, PAE, and PAF are synchronous.

Full Flag

The Full Flag ($\overline{\mathrm{FF}}$) will go LOW when device is full. Write operations are inhibited whenever $\overline{\mathrm{FF}}$ is LOW regardless of the state of $\overline{\mathrm{WEN}} 1$ and WEN2/LD. $\overline{\mathrm{FF}}$ is synchronized to WCLK, i.e., it is exclusively updated by each rising edge of WCLK.

Empty Flag

The Empty Flag ($\overline{\mathrm{EF}}$) will go LOW when the device is empty. Read operations are inhibited whenever $\overline{\mathrm{EF}}$ is LOW, regardless of the state of $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$. $\overline{\mathrm{EF}}$ is synchronized to RCLK, i.e., it is exclusively updated by each rising edge of RCLK.

Figure 4. Block Diagram of $64 \times 9,256 \times 9,512 \times 9,1024 \times 9,2048 \times 9,4096 \times 9,8192 \times 9$ Low-Voltage Synchronous FIFO Memory Used in a Width-Expansion Configuration

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential \qquad -0.5 V to +5.0 V DC Voltage Applied to Outputs in High-Z State \qquad -0.5 V to +5.0 V
DC Input Voltage \qquad -0.5 V to +5.0 V

Output Current into Outputs (LOW)............................. 20 mA
Static Discharge Voltage... > 2001V (per MIL-STD-883, Method 3015) Latch up Current
> 200 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 300 \mathrm{mV}$
Industrial	-40° to $+85^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 300 \mathrm{mV}$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	7C42X1V-15		7C42X1V-25		7C42X1V-35		Unit
			Min	Max	Min	Max	Min	Max	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min.} . \\ & \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.0	5.0	2.0	5.0	2.0	5.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
IIX	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max.	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\begin{array}{\|l\|l} \mathrm{l}_{\mathrm{OZL}} \\ \mathrm{l}_{\mathrm{OZH}} \end{array}$	Output OFF, High Z Current	$\begin{aligned} & \overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}} \end{aligned}$	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{ICC}^{[4]}$	Active Power Supply Current	Com'l		20		20		20	mA
$\mathrm{I}_{\mathrm{SB}}{ }^{[5]}$	Average Standby Current	Com'l		6		6		6	mA

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

Figure 5. AC Test Loads and Waveforms ${ }^{[7,8]}$

Equivalent to: THÉVENIN EQUIVALENT
OUTPUTo_

Notes

4. Outputs open. Tested at Frequency $=20 \mathrm{MHz}$
5. All inputs $=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$, except WCLK and RCLK, which are switching at 20 MHz .
6. Tested initially and after any design or process changes that may affect these parameters.
7. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ for all AC parameters except for $\mathrm{t}_{\mathrm{OHz}}$.
8. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{OHz}}$.

Switching Characteristics Over the Operating Range

Parameter	Description	7C42X1V-15		7C42X1V-25		7C42X1V-35		Unit
		Min	Max	Min	Max	Min	Max	
t_{s}	Clock Cycle Frequency		66.7		40		28.6	MHz
t_{A}	Data Access Time	2	11	2	15	2	20	ns
tclk	Clock Cycle Time	15		25		35		ns
$\mathrm{t}_{\text {CLKH }}$	Clock HIGH Time	6		10		14		ns
$\mathrm{t}_{\text {CLKL }}$	Clock LOW Time	6		10		14		ns
t_{DS}	Data Set-Up Time	4		6		7		ns
t_{DH}	Data Hold Time	1		2		2		ns
tens	Enable Set-Up Time	4		6		7		ns
$\mathrm{t}_{\text {ENH }}$	Enable Hold Time	1		2		2		ns
$\mathrm{t}_{\text {RS }}$	Reset Pulse Width ${ }^{[9]}$	15		25		35		ns
trss	Reset Set-Up Time	10		15		20		ns
$\mathrm{t}_{\text {RSR }}$	Reset Recovery Time	10		15		20		ns
$\mathrm{t}_{\text {RSF }}$	Reset to Flag and Output Time		18		25		35	ns
tolz	Output Enable to Output in Low Z ${ }^{[10]}$	0		0		0		ns
$\mathrm{t}_{\text {OE }}$	Output Enable to Output Valid	3	8	3	12	3	15	ns
$\mathrm{t}_{\mathrm{OHZ}}$	Output Enable to Output in High Z ${ }^{[10]}$	3	8	3	12	3	15	ns
$\mathrm{t}_{\text {WFF }}$	Write Clock to Full Flag		11		15		20	ns
$\mathrm{t}_{\text {REF }}$	Read Clock to Empty Flag		11		15		20	ns
$\mathrm{t}_{\text {PAF }}$	Clock to Programmable Almost-Full Flag		16		22		25	ns
$\mathrm{t}_{\text {PAE }}$	Clock to Programmable Almost-Full Flag		16		22		25	ns
$\mathrm{t}_{\text {SKEW1 }}$	Skew Time between Read Clock and Write Clock for Empty Flag and Full Flag	6		10		12		ns
$\mathrm{t}_{\text {SKEW2 }}$	Skew Time between Read Clock and Write Clock for Almost-Empty Flag and Almost-Full Flag	15		18		20		ns

Notes

9. Pulse widths less than minimum values are not allowed.
10. Values guaranteed by design, not currently tested.

Switching Waveforms
Figure 6. Write Cycle Timing

$\overline{\operatorname{REN} 1}, \overline{\mathrm{REN} 2}$

Figure 7. Read Cycle Timing

Notes

11. $\mathrm{t}_{\text {SKEW } 1}$ is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1, then FF may not change state until the next WCLK rising edge
12. $\mathrm{t}_{\text {SKEW }}$ is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{E F}$ will go HIGH during the current clock cycle. It the time between the rising edge of WCLK and the rising edge of RCLK is less than t SKEW , then EF may not change state until the next RCLK rising edge.

Switching Waveforms (continued)
Figure 8. Reset Timing ${ }^{[13]}$

Notes

13. The clocks (RCLK, WCLK) can be free-running during reset.
14. After reset, the outputs will be LOW if OE $=0$ and three-state if $\mathrm{OE}=1$
15. Holding WEN2/LD HIGH during reset will make the pin act as a second enable pin. Holding WEN2/LD LOW during reset will make the pin act as a load enable for the programmable flag offset registers.

Switching Waveforms (continued)
Figure 9. First Data Word Latency after Reset with Simultaneous Read and Write

[^1]Switching Waveforms (continued)
Figure 10. Empty Flag Timing

Switching Waveforms (continued)
Figure 11. Full Flag Timing

Figure 12. Programmable Almost Empty Flag Timing

Notes

18. $\mathrm{t}_{\text {SKEW }^{2}}$ is the minimum time between a rising WCLK and a rising RCLK edge for $\overline{\text { PAE }}$ to change state during that clock cycle. If the time between the edge of WCLK and the rising RCLK is less than tSKEW2, then PAE may not change state until the next RCLK.
19. PAE offset $=n$.
20. If a read is performed on this rising edge of the read clock, there will be Empty $+(n-1)$ words in the FIFO when PAE goes LOW.

Switching Waveforms (continued)
Figure 13. Programmable Almost Full Flag Timing

Figure 14. Write Programmable Registers

Notes

21. If a write is performed on this rising edge of the write clock, there will be Full - $(m-1)$ words of the FIFO when $\overline{\text { PAF }}$ goes LOW.
22. PAF offset $=\mathrm{m}$
23. 64-m words for CY7C4421V, $256-m$ words in FIFO for CY7C4201V, 512-m words for CY7C4211V, 1024-m words for CY7C4221V, 2048-m words for CY7C4231V, 4096-m words for CY7C4241V, 8192-m words for CY7C4251V.
24. $\mathrm{t}_{\text {SKEW2 }}$ is the minimum time between a rising RCLK edge and a rising WCLK edge for $\overline{\text { PAF }}$ to change during that clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than $\mathrm{t}_{\text {SKEW2 }}$, then PAF may not change state until the next WCLK.

Switching Waveforms (continued)
Figure 15. Read Programmable Registers

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
256×9 Low Voltage Synchronous FIFO				
15	CY7C4201V-15AXC	A32	32-Pin Pb-Free Thin Quad Flatpack	
512×9 Low Voltage Synchronous FIFO				
15	CY7C4211V-15AI	A32	32-Pin Thin Quad Flatpack	Industrial
	CY7C4211V-15AXI	A32	32-Pin Pb-Free Thin Quad Flatpack	
1K x 9 Low Voltage Synchronous FIFO				
15	CY7C4221V-15AC	A32	32-Pin Thin Quad Flatpack	Commercial
4K x 9 Low Voltage Synchronous FIFO				
15	CY7C4241V-15AXC	A32	32-Pin Pb-Free Thin Quad Flatpack	Commercial
8K x 9 Low Voltage Synchronous FIFO				
15	CY7C4251V-15AXC	A32	32-Pin Pb-Free Thin Quad Flatpack	Commercial
25	CY7C4251V-25AXC	A32	32-Pin Pb-Free Thin Quad Flatpack	Commercial

Package Diagrams

Figure 16. 32-Pin TQFP (7X7X1.0 mm)

CY7C4201V/4211V/4221V CY7C4241V/4251V

Figure 17. 32-Pin PLCC (.453X.553) in

Document History Page

Document Title: CY7C4201V/4211V/4221V/CY7C4241V/4251V Low Voltage 256/512/1K/4K/8K x 9 Synchronous FIFOs
 Document Number: 38-06010

REV.	ECN NO.	Submission Date	Orig. of Change	Description of Change
${ }^{* *}$	106471	$09 / 10 / 01$	SZV	Change from Spec number: 38-00622 to 38-06010
${ }^{*}$ A	127857	$08 / 25 / 03$	FSG	Fixed empty flag timing diagram Fixed switching waveform diagram typo
${ }^{*}$ B	384573	See ECN	ESH	Added Pb-Free logo to top of front page Inserted industrial temperature range into operating range Added parts CY7C4251V-25AXC, CY7C4251V-15AXC, CY7C4241V-15AXC, CY7C4241V-15JXC, CY7C4241V-25XC, CY7C4231V-25AXC, CY7C4221V-15AI, CY7C4211V-15AXI, CY7C4201V-15AXC to ordering infor- mation.
${ }^{*}$ C	2896039	$03 / 19 / 2010$	RAME	Added Contents Updated package diagrams Removed inactive parts from Ordering information table Removed references to CY7C4421V and CY7C4231V parts Updated links in Sales, Solutions and Legal Information

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive
Clocks \& Buffers
Interface
Lighting \& Power Control

Memory
Optical \& Image Sensing
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/go/automotive
cypress.com/go/clocks
cypress.com/go/interface
cypress.com/go/powerpsoc
cypress.com/go/plc
cypress.com/go/memory
cypress.com/go/image
cypress.com/go/psoc
cypress.com/go/touch
cypress.com/go/USB
cypress.com/go/wireless
© Cypress Semiconductor Corporation, 2001-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Notes

 1. The same selection sequence applies to reading from the registers. $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$ are enabled and a read is performed on the LOW-to-HIGH transition of RCLK.
 2. $n=$ Empty Offset ($n=7$ default value)
 3. $m=$ Full Offset ($m=7$ default value).
[^1]: Notes
 16. When $t_{\text {SKEW } 1} \geq$ minimum specification, $t_{\text {FRL }}$ (maximum $)=t_{\text {CLK }}+t_{\text {SKEW1 }}$. When $t_{\text {SKEW } 1}<$ minimum specification, $t_{\text {FRL }}(m a x i m u m)=$ either $2^{*} t_{C L K}+t_{\text {SKEW }}$ or $t_{C L K}$ $+t_{\text {SKEW1 }}$. The Latency Timing applies only at the Empty Boundary (EF = LOW).
 17. The first word is available the cycle after $\overline{\mathrm{EF}}$ goes HIGH, always.

