

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers

AD8601/AD8602/AD8604

FEATURES

Low Offset Voltage: 500 µV Max Single-Supply Operation: 2.7 V to 5.5 V Low Supply Current: 750 µA/Amplifier Wide Bandwidth: 8 MHz Slew Rate: 5 V/µs Low Distortion No Phase Reversal Low Input Currents Unity Gain Stable

APPLICATIONS

Current Sensing Barcode Scanners PA Controls Battery-Powered Instrumentation Multipole Filters Sensors ASIC Input or Output Amplifiers Audio

GENERAL DESCRIPTION

The AD8601, AD8602, and AD8604 are single, dual, and quad rail-to-rail input and output single-supply amplifiers featuring very low offset voltage and wide signal bandwidth. These amplifiers use a new, patented trimming technique that achieves superior performance without laser trimming. All are fully specified to operate on a 3 V to 5 V single supply.

The combination of low offsets, very low input bias currents, and high speed make these amplifiers useful in a wide variety of applications. Filters, integrators, diode amplifiers, shunt current sensors, and high impedance sensors all benefit from the combination of performance features. Audio and other ac applications benefit from the wide bandwidth and low distortion. For the most cost-sensitive applications, the D grades offer this ac performance with lower dc precision at a lower price point.

Applications for these amplifiers include audio amplification for portable devices, portable phone headsets, bar code scanners, portable instruments, cellular PA controls, and multipole filters.

The ability to swing rail-to-rail at both the input and output enables designers to buffer CMOS ADCs, DACs, ASICs, and other wide output swing devices in single-supply systems.

FUNCTIONAL BLOCK DIAGRAM

The AD8601, AD8602, and AD8604 are specified over the extended industrial $(-40^{\circ}\text{C to } +125^{\circ}\text{C})$ temperature range. The AD8601, single, is available in the tiny 5-lead SOT-23 package. The AD8602, dual, is available in 8-lead MSOP and narrow SOIC surface-mount packages. The AD8604, quad, is available in 14-lead TSSOP and narrow SOIC packages.

SOT, MSOP, and TSSOP versions are available in tape and reel only.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD8601/AD8602/AD8604-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS ($V_s = 3 V$, $V_{CM} = V_s/2$, $T_A = 25^{\circ}$ C, unless otherwise noted.)

			A Grade		D Grade				
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
INPUT CHARACTERISTICS									
Offset Voltage (AD8601/AD8602)	V _{OS}	$0 \text{ V} \le \text{V}_{\text{CM}} \le 1.3 \text{ V}$		80	500		1,100	6,000	μV
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			700			7,000	μV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			1,100			7,000	μV
		$0 \text{ V} \le \text{V}_{\text{CM}} \le 3 \text{ V}^*$		350	750		1,300	6,000	μV
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			1,800			7,000	μV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			2,100			7,000	μV
Offset Voltage (AD8604)	Vos	$V_{CM} = 0 V \text{ to } 1.3 V$		80	600		1,100	6,000	μV
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			800			7,000	μV
		$-40^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le +125^{\circ}\mathrm{C}$			1,600			7,000	μV
		$V_{CM} = 0 V \text{ to } 3.0 V^*$		350	800		1,300	6,000	μV
		$-40^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le +85^{\circ}\mathrm{C}$			2,200			7,000	μV
	_	$-40^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le +125^{\circ}\mathrm{C}$			2,400			7,000	μV
Input Bias Current	IB			0.2	60		0.2	200	pA
		$-40^{\circ}C \le T_A \le +85^{\circ}C$		25	100		25	200	pA
I 0° 0		$-40^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le +125^{\circ}\mathrm{C}$		150	1,000		150	1,000	pA
Input Offset Current	I _{OS}	4000 (T. (10500		0.1	30		0.1	100	pA
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$			50			100	pA
Innut Voltage Dange		$=40^{\circ}C \le 1_{A} \le +125^{\circ}C$	0		200	0		200	pA V
Common Mode Priorition Patio	CMDD	V = 0 V to 2 V	68	02	5	52	65	5	AD AD
Large Signal Voltage Cain		$V_{CM} = 0.5 V \text{ to } 2.5 V$	00	65		52	05		ub
Large Signal Voltage Gain	AVO	$R_{0} = 2 k_{0} V_{0} = 0 V$	30	100		20	60		V/mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	$M_{\rm L} = 2 \text{KS2} \text{, V}_{\rm CM} = 0 \text{V}$	50	2		20	2		μV/°C
									•
Output Voltage High	V	I = 1.0 mA	2.02	2.05		2 02	2.05		V
Output Voltage High	* OH	$-40^{\circ}C \le T_{1} \le \pm 125^{\circ}C$	2.92	2.95		2.92	2.95		V
Output Voltage Low	Vor	$I_{\rm r} = 1.0 \text{mA}$	2.00	20	35	2.00	20	35	mV
output voltage zow	, OL	$-40^{\circ}C < T_{\Lambda} < +125^{\circ}C$		20	50		20	50	mV
Output Current	Iout			± 30	50		± 30	50	mA
Closed-Loop Output Impedance	ZOUT	$f = 1 MHz, A_v = 1$		12			12		Ω
Power Supply Rejection Ratio	PSRR	$V_{0} = 2.7 V to 5.5 V$	67	80		56	72		dB
Supply Current/Amplifier	L	$V_{S} = 2.7 \times 10^{-5.5} \text{ V}$	07	680	1 000	50	680	1 000	
Supply Sulfent/Implifer	-54	$-40^{\circ}C \le T_A \le +125^{\circ}C$		000	1,300		000	1,300	μA
DYNAMIC PERFORMANCE									
Slew Rate	SR	$R_r = 2 kO$		52			52		V/us
Settling Time	te	$T_0 0.01\%$		<0.5			<0.5		
Gain Bandwidth Product	GBP	10 0.01/0		8.2			8.2		MHz
Phase Margin	Φο			50			50		Degrees
NOISE PERFORMANCE									
Voltage Noise Density	e.	f = 1 kHz		33			33		nV/√Hz
	e _n	f = 10 kHz		18			18		nV/√Hz
Current Noise Density	i _n			0.05			0.05		pA/√Hz

*For V_{CM} between 1.3 V and 1.8 V, V_{OS} may exceed specified value.

Specifications subject to change without notice.

AD8601/AD8602/AD8604

ELECTRICAL CHARACTERISTICS ($V_s = 5.0 \text{ V}, V_{CM} = V_s/2, T_A = 25^{\circ}C$, unless otherwise noted.)

			A Grade		D Grade				
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
INPUT CHARACTERISTICS									
Offset Voltage (AD8601/AD8602)	Vos	$0 \text{ V} \le \text{V}_{\text{CM}} \le 5 \text{ V}$		80	500		1,300	6,000	μV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			1,300			7,000	μV
Offset Voltage (AD8604)	Vos	$V_{CM} = 0 V \text{ to } 5 V$		80	600		1,300	6,000	μV
	T	$-40^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le +125^{\circ}\mathrm{C}$		0.0	1,700		0.0	7,000	μV
Input Blas Current	IB	$-40^{\circ}C < T_{\star} < +85^{\circ}C$		0.2	00 100		0.2	200	pA pA
		$-40^{\circ}C \le T_{A} \le +05^{\circ}C$ $-40^{\circ}C \le T_{A} \le +125^{\circ}C$			1.000			1,000	pA pA
Input Offset Current	Ios			0.1	30		0.1	100	pA
*		$-40^{\circ}C \le T_A \le +85^{\circ}C$		6	50		6	100	pA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$		25	500		25	500	pА
Input Voltage Range			0		5	0		5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } 5 V$	74	89		56	67		dB
Large Signal Voltage Gain	A _{VO}	$V_0 = 0.5 V$ to 4.5 V,	30	80		20	60		V/mV
Offset Voltage Drift	$\Delta V_{\rm ex}/\Delta T$	$R_{\rm L} = 2 R\Omega, V_{\rm CM} = 0 V$		2			2		uV/⁰C
				2			4		μν/ C
OUTPUT CHARACTERISTICS		T 10 A	4 0.05	1.075		1 0 0 5	4 0 5 5		* 7
Output voltage High	V _{OH}	$I_L = 1.0 \text{ mA}$ $I_L = 10 \text{ mA}$	4.925	4.975		4.925	4.975		V V
		$-40^{\circ}C < T_{\Lambda} < +125^{\circ}C$	4.6	4.77		4.6	4.77		v
Output Voltage Low	VOL	$I_{\rm L} = 1.0 \text{ mA}$	110	15	30	110	15	30	mV
	01	$I_L = 10 \text{ mA}$		125	175		125	175	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			250			250	mV
Output Current	I _{OUT}			±50			±50		mA
Closed-Loop Output Impedance	Z _{OUT}	$f = 1 MHz, A_V = 1$		10			10		Ω
POWER SUPPLY									
Power Supply Rejection Ratio	PSRR	$V_{\rm S} = 2.7 \text{ V}$ to 5.5 V	67	80		56	72		dB
Supply Current/Amplifier	I _{SY}	$V_0 = 0 V$		750	1,200		750	1,200	μA
		$-40^{\circ}\text{C} \le 1_{\text{A}} \le +125^{\circ}\text{C}$			1,500			1,500	μΑ
DYNAMIC PERFORMANCE									
Slew Rate	SR	$R_L = 2 k\Omega$		6			6		V/µs
Settling Time	t _S	10 0.01%		<1.0			<1.0		μs 1-t t_
Full Power Bandwidth	GBD	< 1% Distortion		200 8 /			200 8 A		KHZ MH7
Phase Margin	Φο			55			55		Degrees
	-								
NOISE PERFORMANCE Voltage Noise Density		f = 1 kHz		33			33		$nV/\sqrt{H_7}$
voltage relief Density	e _n	f = 10 kHz		18			18		nV/\sqrt{Hz}
Current Noise Density	i _n	f = 1 kHz		0.05			0.05		pA/√Hz

Specifications subject to change without notice.

AD8601/AD8602/AD8604

ABSOLUTE MAXIMUM RATINGS*

Input Voltage GND to V	s
Differential Input Voltage ±6 V	V
Storage Temperature Range	
R, RM, RT, RU Packages $\dots -65^{\circ}$ C to $+150^{\circ}$ C	С
Operating Temperature Range	
AD8601/AD8602/AD860440°C to +125°C	С
Junction Temperature Range	
R, RM, RT, RU Packages65°C to +150°C	С
Lead Temperature Range (Soldering, 60 sec) 300°C	С
ESD 2 kV HBM	Л

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Type	θ _{IA} *	θις	Unit
5-Lead SOT-23 (RT)	230	92	°C/W
8-Lead SOIC (R)	158	43	°C/W
8-Lead MSOP (RM)	210	45	°C/W
14-Lead SOIC (R)	120	36	°C/W
14-Lead TSSOP (RU)	180	35	°C/W

 ${}^{*}\theta_{JA}$ is specified for worst-case conditions, i.e., θ_{JA} is specified for device in socket for PDIP packages; θ_{JA} is specified for device soldered onto a circuit board for surface-mount packages.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8601ART-R2	-40°C to +125°C	5-Lead SOT-23	RT-5	AAA
AD8601ART-REEL	-40°C to +125°C	5-Lead SOT-23	RT-5	AAA
AD8601ART-REEL7	-40°C to +125°C	5-Lead SOT-23	RT-5	AAA
AD8601DRT-R2	–40°C to +125°C	5-Lead SOT-23	RT-5	AAD
AD8601DRT-REEL	-40°C to +125°C	5-Lead SOT-23	RT-5	AAD
AD8601DRT-REEL7	–40°C to +125°C	5-Lead SOT-23	RT-5	AAD
AD8602AR	-40°C to +125°C	8-Lead SOIC	R-8	
AD8602AR-REEL7	–40°C to +125°C	8-Lead SOIC	R-8	
AD8602AR-R2	-40°C to +125°C	8-Lead SOIC	R-8	
AD8602DR	–40°C to +125°C	8-Lead SOIC	R-8	
AD8602DR-REEL	-40°C to +125°C	8-Lead SOIC	R-8	
AD8602DR-REEL7	-40°C to +125°C	8-Lead SOIC	R-8	
AD8602ARM-R2	–40°C to +125°C	8-Lead MSOP	RM-8	ABA
AD8602ARM-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	ABA
AD8602DRM-REEL	–40°C to +125°C	8-Lead MSOP	RM-8	ABD
AD8604AR	–40°C to +125°C	14-Lead SOIC	R-14	
AD8604AR-REEL	–40°C to +125°C	14-Lead SOIC	R-14	
AD8604AR-REEL7	–40°C to +125°C	14-Lead SOIC	R-14	
AD8604DR	–40°C to +125°C	14-Lead SOIC	R-14	
AD8604DR-REEL	-40°C to +125°C	14-Lead SOIC	R-14	
AD8604ARU	–40°C to +125°C	14-Lead TSSOP	RU-14	
AD8604ARU-REEL	-40°C to +125°C	14-Lead TSSOP	RU-14	
AD8604DRU	-40°C to +125°C	14-Lead TSSOP	RU-14	
AD8604DRU-REEL	-40°C to +125°C	14-Lead TSSOP	RU-14	

CAUTION _

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8601/AD8602/AD8604 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD8601/AD8602/AD8604

0.30

0.19

0.05

OUTLINE DIMENSIONS

0.45

14-Lead Thin Shrink Small Outline Package [TSSOP]

5-Lead Small Outline Transistor Package [SOT-23] (RT-5) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-153AB-1

COPLANARITY

0.10

14-Lead Standard Small Outline Package [SOIC]

(R-14)

SFATING

PLANE

COMPLIANT TO JEDEC STANDARDS MS-012AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

COMPLIANT TO JEDEC STANDARDS MO-178AA

8-Lead Mini Small Outline Package [MSOP] (RM-8)

Dimensions shown in millimeters

3.00 BSC Ħ ΠR 3.00 BSC 4.90 BSC Ĥ н H PIN 1 0.65 BSC

8-Lead Standard Small Outline Package [SOIC] (R-8)

Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN