

LMV551/LMV552/LMV554 3 MHz, Micropower RRO Amplifiers

General Description

Typical Application

The LMV551/LMV552/LMV554 are high performance, low power operational amplifiers implemented with National's advanced VIP50 process. They feature 3 MHz of bandwidth while consuming only 37 µA of current per amplifier, which is an exceptional bandwidth to power ratio in this op amp class. These amplifiers are unity gain stable and provide an excellent solution for low power applications requiring a wide bandwidth.

The LMV551/LMV552/LMV554 have a rail-to-rail output stage and an input common mode range that extends below ground. The LMV551/LMV552/LMV554 have an operating supply voltage range from 2.7V to 5.5V. These amplifiers can operate over a wide temperature range (-40°C to 125°C) making them a great choice for automotive applications, sensor applications as well as portable instrumentation applications. The LMV551 is offered in the ultra tiny 5-Pin SC70 and 5-Pin SOT-23 package. The LMV552 is offered in an 8-Pin MSOP package. The LMV554 is offered in the 14-Pin TSSOP.

Features

(Typical 5V supply, unless otherwise noted.)

- Guaranteed 3V and 5.0V performance High unity gain bandwidth 3 MHz . Supply current (per amplifier) 37 µA
- CMRR 93 dB PSRR 90 dB Slew rate 1 V/µs
- Output swing with 100 k Ω load
 - 70 mV from rail Total harmonic distortion 0.003% @ 1 kHz, 2 kΩ
- Temperature range

Applications

- Active filter
- Portable equipment
- Automotive
- Battery powered systems
- Sensors and Instrumentation

Open Loop Gain and Phase vs. Frequency

-40°C to 125°C

201526 © 2008 National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Human Body Model	
LMV551/LMV552/LMV554	2 KV
Machine Model	
LMV551	100V
LMV552/LMV554	250V
V_{IN} Differential (@ V ⁺ = 5V)	±2.5V
Supply Voltage (V+ - V-)	6V
Voltage at Input/Output pins	V+ +0.3V, V− –0.3V
Storage Temperature Range	–65°C to 150°C

Junction Temperature (Note 3)150°CSoldering InformationInfrared or Convection (20 sec)235°CWave Soldering Lead Temp. (10 sec)260°C

Operating Ratings (Note 1)

Temperature Range (Note 3)	-40°C to 125°C
Supply Voltage (V+ – V-)	2.7V to 5.5V
Package Thermal Resistance (θ_{JA} (Note 3))	
5-Pin SC70	456°C/W
5-Pin SOT-23	234°C/W
8-Pin MSOP	235°C/W
14-Pin TSSOP	160°C/W

3V Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = 3V$, $V^- = 0V$, $V_{CM} = V^+/2 = V_O$. Boldface limits apply at the temperature extremes. (Note 4)

Symbol	Parameter	Condi	tions	Min	Тур	Max	Units
				(Note 6)	(Note 5)	(Note 6)	
V _{OS}	Input Offset Voltage				1	3 4.5	mV
TC V _{OS}	Input Offset Average Drift				3.3		µV/°C
I _B	Input Bias Current	(Note 7)			20	38	nA
I _{os}	Input Offset Current				1	20	nA
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} 2.0V$		74 72	92		dB
PSRR	Power Supply Rejection Ratio	$3.0 \le V^+ \le 5V$, $V_{CM} = 0.5V$	LMV551/LMV552	80 78			
		CIVI	LMV554	78 76	92		15
		$2.7 \le V^+ \le 5.5V$, $V_{\rm out} = 0.5V$	LMV551/LMV552	80 78			- dB
		V _{CM} - 0.5V	LMV554	78 76	92		
CMVR	Input Common-Mode Voltage Range	CMRR ≥ 68 dB CMRR ≥ 60 dB		0 0		2.1 2.1	V
A _{VOL}	Large Signal Voltage Gain	$0.4 \le V_0 \le 2.6,$ $R_L = 100 \text{ k}\Omega \text{ to V+/2}$	LMV551/LMV552	81 78	90		dB
			LMV554	79 77			
		$0.4 \le V_0 \le 2.6$, $R_L = 10 \text{ k}\Omega$ to V+/2		71 68	80		
V _O Output Swing High		$R_L = 100 \text{ k}\Omega \text{ to V}^+/2$			40	48 58	
c		$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$			85	100 120	mV from
	Output Swing Low	$R_L = 100 \text{ k}\Omega \text{ to V}^+/2$			50	65 77	rail
		$R_L = 10 \text{ k}\Omega \text{ to V+/2}$			95	110 130	
I _{SC}	Output Short Circuit Current	Sourcing (Note 9) Sinking (Note 9)			10		mA
					25		IIIA

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
I _S	Supply Current per Amplifier			34	42 52	μΑ
SR	Slew Rate	A _V = +1, 10% to 90% (Note 8)		1		V/µs
Φm	Phase Margin	$R_{L} = 10$ kΩ, $C_{L} = 20$ pF		75		Deg
GBW	Gain Bandwidth Product			3		MHz
e _n	Input-Referred Voltage Noise	f = 100 kHz		70		
		f = 1 kHz		70		nV/√HZ
i _n	Input-Referred Current Noise	f = 100 kHz		0.1		A 1/11-
		f = 1 kHz		0.15		IPA/√HZ
THD	Total Harmonic Distortion	$f = 1 \text{ kHz}, A_{V} = 2, R_{I} = 2 \text{ k}\Omega$		0.003		%

5V Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V^+/2 = V_0$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Typ		Units
V _{OS}	Input Offset Voltage			1	(Note 6) 3.0 4.5	mV
TC V _{OS}	Input Offset Average Drift			3.3		µV/°C
I _B	Input Bias Current	(Note 7)		20	38	nA
I _{os}	Input Offset Current			1	20	nA
CMRR	Common Mode Rejection Ratio	$0 \le V_{CM} \le 4.0V$	76 74	93		dB
PSRR	Power Supply Rejection Ratio	$3V \le V^+ \le 5V$ to $V_{CM} = 0.5V$	78 75	90		
		$2.7V \le V^+ \le 5.5V$ to $V_{CM} = 0.5V$	78 75	90		dB
CMVR	Input Common-Mode Voltage Range	CMRR ≥ 68 dB CMRR ≥ 60 dB	0 0		4.1 4.1	v
A _{VOL}	Large Signal Voltage Gain	$0.4 \le V_0 \le 4.6, R_L = 100 \text{ k}\Omega \text{ to } V^+/2$	78 75	90		dB
		$0.4 \le V_{O} \le 4.6$, $R_{L} = 10 \text{ k}\Omega$ to V+/2	75 72	80		
Vo	Output Swing High	$R_L = 100 \text{ k}\Omega \text{ to V}^+/2$		70	92 122	
		$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$		125	155 210	mV from
	Output Swing Low	$R_L = 100 \text{ k}\Omega \text{ to V}+/2$		60	70 82	rail
		$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		110	130 155	
I _{SC}	Output Short Circuit Current	Sourcing (Note 9)		10		
		Sinking (Note 9)		25		MA
I _S	Supply Current Per Amplifier			37	46 54	μA
SR	Slew Rate	A _V = +1, V _O = 1 V _{PP} 10% to 90% (Note 8)		1		V/µs
Φm	Phase Margin	$R_{L} = 10 \text{ k}\Omega, C_{L} = 20 \text{ pF}$		75		Deg
GBW	Gain Bandwidth Product			3		MHz

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
e _n	Input-Referred Voltage Noise	f = 100 kHz		70		NU/11-
		f = 1 kHz		70		nv/√Hz
i _n	Input-Referred Current Noise	f = 100 kHz		0.1		
		f = 1 kHz		0.15		pA/√Hz
THD	Total Harmonic Distortion	$f = 1 \text{ kHz}, \text{ A}_{V} = 2, \text{ R}_{L} = 2 \text{ k}\Omega$		0.003		%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics Tables.

Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

Note 3: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_{D} = (T_{J(MAX)} - T_{A})/|\theta_{JA}|$. All numbers apply for packages soldered directly onto a PC board.

Note 4: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$.

Note 5: Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

Note 6: Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlations using statistical quality control (SQC) method.

Note 7: Positive current corresponds to current flowing into the device.

Note 8: Slew rate is the average of the rising and falling slew rates.

Note 9: The part is not short circuit protected and is not recommended for operation with heavy resistive loads.

Connection Diagrams

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing	
	LMV551MG	404	1k Units Tape and Reel		
5-PIN 5070	LMV551MGX	A94	3k Units Tape and Reel	MAAUSA	
	LMV551MF	LMV551MF 1k Units Tape and		MEOFA	
5-Pin SOT-23	LMV551MFX		3k Units Tape and Reel	IVIF05A	
	LMV552MM	4110.4	1k Units Tape and Reel		
8-PIN MSOP	LMV552MMX	АПЗА	3.5k Units Tape and Reel	MUAU8A	
	LMV554MT		94 Units/Rail	MTC14	
14-11113301	LMV554MTX		2.5k Units Tape and Reel	101014	

LMV551/LMV552/LMV554

