LMV551/LMV552/LMV554

3 MHz, Micropower RRO Amplifiers

General Description

The LMV551/LMV552/LMV554 are high performance, low power operational amplifiers implemented with National's advanced VIP50 process. They feature 3 MHz of bandwidth while consuming only $37 \mu \mathrm{~A}$ of current per amplifier, which is an exceptional bandwidth to power ratio in this op amp class. These amplifiers are unity gain stable and provide an excellent solution for low power applications requiring a wide bandwidth.
The LMV551/LMV552/LMV554 have a rail-to-rail output stage and an input common mode range that extends below ground. The LMV551/LMV552/LMV554 have an operating supply voltage range from 2.7 V to 5.5 V . These amplifiers can operate over a wide temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ making them a great choice for automotive applications, sensor applications as well as portable instrumentation applications. The LMV551 is offered in the ultra tiny 5 -Pin SC70 and 5-Pin SOT-23 package. The LMV552 is offered in an 8-Pin MSOP package. The LMV554 is offered in the 14-Pin TSSOP.

Typical Application

Features

(Typical 5V supply, unless otherwise noted.)

- Guaranteed 3 V and 5.0 V performance
- High unity gain bandwidth 3 MHz
- Supply current (per amplifier) $37 \mu \mathrm{~A}$
- CMRR 93 dB
- PSRR 90 dB
- Slew rate
$1 \mathrm{~V} / \mathrm{\mu s}$
- Output swing with $100 \mathrm{k} \Omega$ load
- Total harmonic distortion 70 mV from rail
- Temperature range 0.003\% @ 1 kHz, 2 k Ω $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Applications

- Active filter
- Portable equipment
- Automotive
- Battery powered systems
- Sensors and Instrumentation

20152613
Open Loop Gain and Phase vs. Frequency

Absolute Maximum Ratings (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

```
ESD Tolerance (Note 2)
    Human Body Model
        LMV551/LMV552/LMV554 2 KV
    Machine Model
        LMV551 100V
        LMV552/LMV554 250V
VIN
Supply Voltage (V+ - V-)
V++0.3V, V- -0.3V
Voltage at Input/Output pins
Storage Temperature Range
    -65'⿳ to }15\mp@subsup{0}{}{\circ}\textrm{C
```

Junction Temperature (Note 3)
$150^{\circ} \mathrm{C}$
Soldering Information

Infrared or Convection $(20 \mathrm{sec})$	$235^{\circ} \mathrm{C}$
Wave Soldering Lead Temp. $(10 \mathrm{sec})$	$260^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Temperature Range (Note 3)	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Supply Voltage $(\mathrm{V}+-\mathrm{V}-)$	2.7 V to 5.5 V
Package Thermal Resistance $\left(\theta_{\mathrm{JA}}\right.$ (Note 3))	
5-Pin SC70	$456^{\circ} \mathrm{C} / \mathrm{W}$
5-Pin SOT-23	$234^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin MSOP	$235^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin TSSOP	$160^{\circ} \mathrm{C} / \mathrm{W}$

3V Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2=\mathrm{V}_{\mathrm{O}}$. Boldface limits apply at the temperature extremes. (Note 4)

Symbol	Parameter	Conditions	Min (Note 6)	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Max (Note 6)	Units
I_{S}	Supply Current per Amplifier			34	$\begin{aligned} & 42 \\ & 52 \end{aligned}$	$\mu \mathrm{A}$
SR	Slew Rate	$\begin{array}{\|l\|} \hline \mathrm{A}_{\mathrm{V}}=+1, \\ 10 \% \text { to } 90 \% \text { (Note 8) } \\ \hline \end{array}$		1		V/us
$\Phi \mathrm{m}$	Phase Margin	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$		75		Deg
GBW	Gain Bandwidth Product			3		MHz
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=100 \mathrm{kHz}$		70		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		70		
i_{n}	Input-Referred Current Noise	$\mathrm{f}=100 \mathrm{kHz}$		0.1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		0.15		
THD	Total Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=2, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		0.003		\%

5V Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2=\mathrm{V}_{\mathrm{O}}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Min } \\ (\text { Note 6) } \end{gathered}$	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{gathered} \text { Max } \\ \text { (Note 6) } \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			1	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	mV
TC V ${ }_{\text {OS }}$	Input Offset Average Drift			3.3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 7)		20	38	nA
$\mathrm{I}_{\text {OS }}$	Input Offset Current			1	20	nA
CMRR	Common Mode Rejection Ratio	$0 \leq \mathrm{V}_{\mathrm{CM}} \leq 4.0 \mathrm{~V}$	$\begin{aligned} & 76 \\ & 74 \end{aligned}$	93		dB
PSRR	Power Supply Rejection Ratio	$3 \mathrm{~V} \leq \mathrm{V}+\leq 5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	$\begin{aligned} & 78 \\ & 75 \end{aligned}$	90		dB
		$2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	$\begin{aligned} & 78 \\ & 75 \end{aligned}$	90		
CMVR	Input Common-Mode Voltage Range	$\begin{aligned} & C M R R \geq 68 \mathrm{~dB} \\ & \mathrm{CMRR} \geq 60 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 4.1 \\ & 4.1 \end{aligned}$	V
$\mathrm{A}_{\text {VOL }}$	Large Signal Voltage Gain	$0.4 \leq \mathrm{V}_{\mathrm{O}} \leq 4.6, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}+/ 2$	$\begin{aligned} & 78 \\ & 75 \end{aligned}$	90		dB
		$0.4 \leq \mathrm{V}_{\mathrm{O}} \leq 4.6, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}+/ 2$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	80		
V_{O}	Output Swing High	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}+/ 2$		70	$\begin{gathered} 92 \\ 122 \end{gathered}$	mV from rail
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}+/ 2$		125	$\begin{aligned} & 155 \\ & 210 \end{aligned}$	
	Output Swing Low	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}+/ 2$		60	$\begin{aligned} & \hline 70 \\ & 82 \end{aligned}$	
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}+/ 2$		110	$\begin{aligned} & 130 \\ & 155 \end{aligned}$	
I_{Sc}	Output Short Circuit Current	Sourcing (Note 9)		10		mA
		Sinking (Note 9)		25		
$\mathrm{I}_{\text {S }}$	Supply Current Per Amplifier			37	$\begin{aligned} & \hline 46 \\ & 54 \end{aligned}$	$\mu \mathrm{A}$
SR	Slew Rate	$\begin{aligned} & A_{V}=+1, V_{O}=1 V_{P P} \\ & 10 \% \text { to } 90 \% \text { (Note } 8 \text {) } \end{aligned}$		1		V/ $/ \mathrm{s}$
Фm	Phase Margin	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$		75		Deg
GBW	Gain Bandwidth Product			3		MHz

Symbol	Parameter	Conditions	$\begin{array}{c\|} \hline \text { Min } \\ (\text { Note 6) } \end{array}$	Typ (Note 5)	Max (Note 6)	Units
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=100 \mathrm{kHz}$		70		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		70		
i_{n}	Input-Referred Current Noise	$\mathrm{f}=100 \mathrm{kHz}$		0.1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		0.15		
THD	Total Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=2, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		0.003		\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics Tables.

Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).
Note 3: The maximum power dissipation is a function of $T_{J(M A X)}, \theta_{J A}$. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly onto a PC board.
Note 4: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_{J}=T_{A}$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_{J}>$ T_{A}.
Note 5: Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.
Note 6: Limits are 100% production tested at $25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed through correlations using statistical quality control (SQC) method.
Note 7: Positive current corresponds to current flowing into the device.
Note 8: Slew rate is the average of the rising and falling slew rates.
Note 9: The part is not short circuit protected and is not recommended for operation with heavy resistive loads.

Connection Diagrams

20152611
Top View

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
5-Pin SC70	LMV551MG	A94	1k Units Tape and Reel	MAA05A
	LMV551MGX		3k Units Tape and Reel	
5-Pin SOT-23	LMV551MF	AF3A	1k Units Tape and Reel	MF05A
	LMV551MFX		3k Units Tape and Reel	
8-Pin MSOP	LMV552MM	AH3A	1k Units Tape and Reel	MUA08A
	LMV552MMX		3.5k Units Tape and Reel	
14-Pin TSSOP	LMV554MT	LMV554MT	94 Units/Rail	MTC14
	LMV554MTX		2.5k Units Tape and Reel	

Physical Dimensions inches (millimeters) unless otherwise noted

LAND PATTERN RECOMMENDATION

LAND PATtERN RECOMMENDATION

CONTROLLING DIMENSION IS INCH
VALUES IN [$]$ ARE MILLIMETERS
DIMENS ONS IN
FOR REEERENCE ONIY
MF05A (Rev D)
5-Pin SOT-23
NS Package Number MF05A

