PD-95830 RevD

International

Integrated Power Hybrid IC for Appliance Motor Drive Applications.

Description

IRAMS10UP60B *MOTION*[™] Series 10A, 600V

with Internal Shunt Resistor

International Rectifier's IRAMS10UP60B is an Integrated Power Module developed and optimized for electronic motor control in appliance applications such as washing machines and refrigerators. Plug N Drive technology offers an extremely compact, high performance AC motor-driver in a single isolated package for a very simple design. An internal shunt is also included and offers easy current feedback and overcurrent monitor for precise and safe operation. A built-in temperature monitor and over-current protection, along with the short-circuit rated IGBTs and integrated under-voltage lockout function, deliver high level of protection and fail-safe operation. The integration of the bootstrap diodes for the high-side driver section, and the single polarity power supply required to drive the internal circuitry, simplify the utilization of the module and deliver further cost reduction advantages. UL Certified.

Features

- Internal Shunt Resistor
- Integrated Gate Drivers and Bootstrap Diodes
- Temperature Monitor
- Fully Isolated Package
- Low V_{CE(on)} Non Punch Through IGBT Technology
- Undervoltage lockout for all channels
- Matched propagation delay for all channels
- Schmitt-triggered input logic
- Cross-conduction prevention logic
- Lower di/dt gate driver for better noise immunity
- Motor Power range 0.4~0.75kW / 85~253 Vac
- Isolation 2000V_{RMS}/1min
- UL certificate number: E252584

Note 1: Sinusoidal Modulation at V⁺=400V, T_J=150°C, F_{PWM} =20kHz, Modulation Depth=0.8, PF=0.6, See Figure 3. Note 2: t_P<100ms; T_C=25°C; F_{PWM} =20kHz. Limited by I_{BUS-ITRIP}, see Table "Inverter Section Electrical Characteristics"

www.irf.com

Rev.021805 1

Symbol	Parameter	Min	Max	Units	Conditions	
I _{BDF}	Bootstrap Diode Peak Forward Current		4.5	Α	t_{P} = 10ms, T _J = 150°C, T _C =100°C	
P _{BR Peak}	Bootstrap Resistor Peak Power (Single Pulse)		80	W	t _P =100μs, T _C =100°C ESR / ERJ series	
V _{S1,2,3}	High side floating supply offset voltage	V _{B1,2,3} - 25	V _{B1,2,3} +0.3	V		
V _{B1,2,3}	High side floating supply voltage	-0.3	600	V		
V _{CC}	Low Side and logic fixed supply voltage	-0.3	20	V		
V_{IN} , V_{EN} , V_{ITRIP}	Input voltage LIN, HIN, EN, I_{Trip}	-0.3	Lower of (V _{SS} +15V) or V _{CC} +0.3V	v		

Absolute Maximum Ratings (Continued)

Inverter Section Electrical Characteristics @T_J= 25°C

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600			V	V _{IN} =5V, I _C =250μA
$\Delta V_{(BR)CES}$ / ΔT	Temperature Coefficient of Breakdown Voltage		0.57		V/°C	V _{IN} =5V, I _C =1.0mA (25°C - 150°C)
Varian	Collector-to-Emitter Saturation		1.70	2.00	V	I_{C} =5A, V_{CC} =15V
♥ CE(ON)	Voltage		2.00	2.40	v	I _C =5A, V _{CC} =15V, T _J =150°C
T	Zero Gate Voltage Collector		5	80		V _{IN} =5V, V ⁺ =600V
¹ CES	Current		10		μΛ	V _{IN} =5V, V ⁺ =600V, T _J =150°C
	Diode Forward Voltage Drop		1.80	2.35	v	I _C =5A
¥ FM			1.30	1.70		I _C =5A, T _J =150°C
V	Bootstrap Diode Forward Voltage			1.25	V	I _F =1A
♥ BDFM	Drop			1.10	v	I _F =1A, T _J =150°C
R _{BR}	Bootstrap Resistor Value		2		Ω	T _J =25°C
$\Delta R_{BR}/R_{BR}$	Bootstrap Resistor Tolerance			±5	%	T _J =25°C
I _{BUS_TRIP}	Current Protection Threshold (positive going)	13.1		16.4	А	T₃=-40°C to 125°C See fig. 2

mverte	inverter Section Switching Characteristics @ 1j = 25 C									
Symbol	Parameter	Min	Тур	Max	Units	Conditions				
E _{ON}	Turn-On Switching Loss		200	235		I _C =5A, V ⁺ =400V				
E _{OFF}	Turn-Off Switching Loss		75	100		V _{cc} =15V, L=2mH				
E _{TOT}	Total Switching Loss		275	335	μ.	Energy losses include "tail" and				
E _{REC}	Diode Reverse Recovery energy		15	25						
t _{RR}	Diode Reverse Recovery time		70	100	ns	See CT1				
E _{ON}	Turn-On Switching Loss		300	360		I _c =5A, V ⁺ =400V				
E _{OFF}	Turn-off Switching Loss		135	165		V _{CC} =15V, L=2mH, T _J =150°C Energy losses include "tail" and diode reverse recovery				
E _{TOT}	Total Switching Loss		435	525	- μ					
E _{REC}	Diode Reverse Recovery energy		30	40						
t _{RR}	Diode Reverse Recovery time		100	145	ns	See CT1				
Q _G	Turn-On IGBT Gate Charge		29	44	nC	I_{C} =15A, V ⁺ =400V, V _{GE} =15V				
RBSOA	Reverse Bias Safe Operating Area	FL	jll squa	RE		$T_{J}=150^{\circ}C, I_{C}=5A, V_{P}=600V$ $V^{+}= 450V$ $V_{CC}=+15V$ to 0V See CT3				
SCSOA	Short Circuit Safe Operating Area	10			μs	$T_{J}=150^{\circ}C, V_{P}=600V, \\ V^{+}= 360V, \\ V_{CC}=+15V \text{ to } 0V \qquad \text{See CT2}$				
I _{CSC}	Short Circuit Collector Current		47		А	$ \begin{array}{l} T_{J}{=}150^{\circ}C, \ V_{P}{=}600V, \ t_{SC}{<}10\mu s \\ V^{+}{=}\ 360V, \ V_{GE}{=}15V \\ V_{CC}{=}{+}15V \ to \ 0V \qquad See \ CT2 \end{array} $				

Inverter Section Switching Characteristics @ T_J= 25°C

Recommended Operating Conditions Driver Function

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommende conditions. All voltages are absolute referenced to COM/I_{TRIP} . The V_S offset is tested with all supplies biased at 15V differential (Note 3)

Symbol	Definition	Min	Max	Units
V _{B1,2,3}	High side floating supply voltage	V _S +12	V _s +20	V
V _{S1,2,3}	High side floating supply offset voltage	Note 4	450	v
V _{CC}	Low side and logic fixed supply voltage	12	20	V
V _{ITRIP}	I _{TRIP} input voltage	V _{SS}	V _{SS} +5	
V _{IN}	Logic input voltage LIN, HIN	V _{SS}	V _{SS} +5	V
V _{EN}	Logic input voltage EN	V _{SS}	V _{SS} +5	V

Note 3: For more details, see IR21363 data sheet

Note 4: Logic operational for V_s from COM-5V to COM+600V. Logic state held for V_s from COM-5V to COM- V_{BS} . (please refer to DT97-3 for more details)

Static Electrical Characteristics Driver Function

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$)=15V, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM/ I_{TRIP} and are applicable to all six channels. (Note 3)

Symbol	Definition	Min	Тур	Мах	Units
V_{INH} , V_{ENH}	Logic "0" input voltage	3.0			V
V_{INL} , V_{ENL}	Logic "1" input voltage			0.8	V
V _{CCUV+} , V _{BSUV+}	$V_{C\!C}$ and $V_{B\!S}$ supply undervoltage Positive going threshold	10.6	11.1	11.6	V
V _{CCUV-} , V _{BSUV-}	V_{CC} and V_{BS} supply undervoltage Negative going threshold	10.4	10.9	11.4	V
V _{CCUVH} , V _{BSUVH}	V_{CC} and V_{BS} supply undervoltage lock-out hysteresis		0.2		V
V _{IN,Clamp}	Input Clamp Voltage (HIN, LIN, I_{TRIP}) I_{IN} =10µA	4.9	5.2	5.5	V
I _{QBS}	Quiescent V_{BS} supply current $V_{IN}=0V$			165	μA
I _{QCC}	Quiescent V_{CC} supply current $V_{IN}=0V$			3.35	mA
I _{LK}	Offset Supply Leakage Current			60	μA
I _{IN+} , I _{EN+}	Input bias current V_{IN} =5V		200	300	μA
I _{IN-} , I _{EN-}	Input bias current V_{IN} =0V		100	220	μA
I _{TRIP+}	I_{TRIP} bias current V_{ITRIP} =5V		30	100	μA
I _{TRIP-}	I_{TRIP} bias current $V_{ITRIP}=0V$		0	1	μA
V(I _{TRIP})	I _{TRIP} threshold Voltage	440	490	540	mV
V(I _{TRIP} , HYS)	I _{TRIP} Input Hysteresis		70		mV
R _{ON/FLT}	Fault Output ON Resistance		50	100	ohm

Dynamic Electrical Characteristics

Driver only timing unless otherwise specified.)

Symbol	Parameter	Min	Тур	Мах	Units	Conditions
T _{ON}	Input to Output propagation turn- on delay time (see fig.11)		590		ns	$V_{-}V_{-} = 15V_{-} = 100_{-} V^{+} = 400V_{-}$
T _{OFF}	Input to Output propagation turn- off delay time (see fig. 11)		700		ns	V _{CC} -V _{BS} -15V, 1 _C -10A, V -400V
T _{FLIN}	Input Filter time (HIN, LIN)	100	200		ns	V _{IN} =0 & V _{IN} =5V
T _{BLT-Trip}	I_{TRIP} Blancking Time	100	150		ns	V _{IN} =0 & V _{IN} =5V
D _T	Dead Time ($V_{BS}=V_{DD}=15V$)	220	290	360	ns	$V_{BS}=V_{CC}=15V$
M _T	Matching Propagation Delay Time (On & Off)		40	75	ns	$V_{CC} = V_{BS} = 15V$, external dead time> 400ns
T _{ITrip}	I _{Trip} to six switch to turn-off propagation delay (see fig. 2)			1.75	μs	$V_{CC} = V_{BS} = 15V, I_C = 10A, V^+ = 400V$
T _{FLT-CLR}	Post I_{Trip} to six switch to turn-off		7.7		mc	T _C = 25°C
	clear time (see fig. 2)		6.7		ms	$T_{\rm C} = 100^{\circ}{\rm C}$

www.irf.com

International **IOR** Rectifier

Thermal and Mechanical Characteristics

Symbol	Parameter	Min	Тур	Мах	Units	Conditions
R _{th(J-C)}	Thermal resistance, per IGBT		4.2	4.7		Flat, greased surface. Heatsink
R _{th(J-C)}	Thermal resistance, per Diode		5.5	6.5	°C/W	compound thermal conductivity
R _{th(C-S)}	Thermal resistance, C-S		0.1			1W/mK
C _D	Creepage Distance	3.2			mm	See outline Drawings

Internal Current Sensing Resistor - Shunt Characteristics

Symbol	Parameter	Min	Тур	Мах	Units	Conditions
R _{Shunt}	Resistance	33.0	33.3	33.7	mΩ	T _C = 25°C
T _{Coeff}	Temperature Coefficient	0		200	ppm/°C	•
P _{Shunt}	Power Dissipation			2.2	W	-40°C< T _C <100°C
T _{Range}	Temperature Range	-40		125	°C	

Internal NTC - Thermistor Characteristics

Parameter	Definition	Min	Тур	Мах	Units	Conditions
R ₂₅	Resistance	97	100	103	kΩ	T _C = 25°C
R ₁₂₅	Resistance	2.25	2.52	2.80	kΩ	T _C = 125°C
В	B-constant (25-50°C)	4165	4250	4335	k	$R_2 = R_1 e^{[B(1/T2 - 1/T1)]}$
Temperature Range		-40		125	°C	
Typ. Dissipation constant			1		mW/°C	T _C = 25°C

Input-Output Logic Level Table

FLT- EN	I _{TRIP}	HIN1,2,3	LIN1,2,3	U,V,W
1	0	0	1	V ⁺
1	0	1	0	0
1	0	1	1	Off
1	1	Х	Х	Off
0	Х	Х	Х	Off

www.irf.com