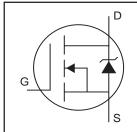
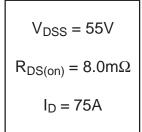
International Rectifier

AUTOMOTIVE MOSFET

IRL3705ZPbF IRL3705ZSPbF IRL3705ZLPbF


HEXFET® Power MOSFET


Features

- Logic Level
- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

TO-220AB IRL3705Z D²Pak IRL3705ZS

TO-262 IRL3705ZL

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	86	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	61	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	75	
I _{DM}	Pulsed Drain Current ①	340	
P _D @T _C = 25°C	Power Dissipation	130	W
	Linear Derating Factor	0.88	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy®	120	mJ
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ®	180	
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy ®	-	mJ
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw ⑦	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.14	°C/W
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface ⑦	0.50		
$R_{\theta JA}$	Junction-to-Ambient ⑦		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ®		40	

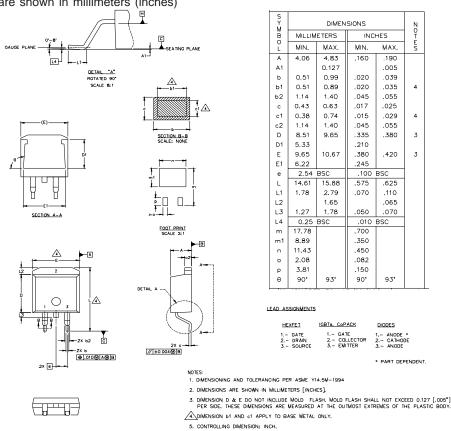
IRL3705Z/S/LPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

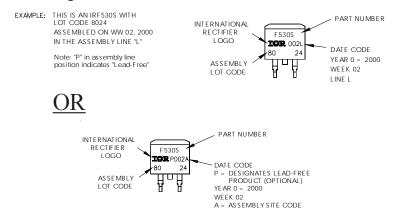
	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.055		V/°C	Reference to 25°C, I _D = 1mA
			6.5	8.0		V _{GS} = 10V, I _D = 52A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance			11	mΩ	$V_{GS} = 5.0V, I_D = 43A$ ③
				12	1	$V_{GS} = 4.5V, I_D = 30A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	150			V	$V_{DS} = 25V, I_{D} = 52A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 55V$, $V_{GS} = 0V$
				250	I	$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125$ °C
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-200	1	$V_{GS} = -16V$
Q_g	Total Gate Charge		40	60		I _D = 43A
Q_{gs}	Gate-to-Source Charge		12		nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		21			V _{GS} = 5.0V ③
$t_{d(on)}$	Turn-On Delay Time	_	17			$V_{DD} = 28V$
t _r	Rise Time		240		ns	I _D = 43A
$t_{d(off)}$	Turn-Off Delay Time		26			$R_G = 4.3 \Omega$
t _f	Fall Time	_	83			V _{GS} = 5.0V ③
L_D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5	—		from package
						and center of die contact
C _{iss}	Input Capacitance		2880			$V_{GS} = 0V$
Coss	Output Capacitance		420			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		220		pF	f = 1.0MHz
Coss	Output Capacitance		1500			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
C _{oss}	Output Capacitance		330			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		510			$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V $\textcircled{4}$

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current			75		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			340		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 52A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		16	24	ns	$T_J = 25$ °C, $I_F = 43$ A, $V_{DD} = 28$ V	
Q _{rr}	Reverse Recovery Charge		7.4	11	nC	di/dt = 100A/µs ③	
t _{on}	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				


IRL3705Z/S/LPbF

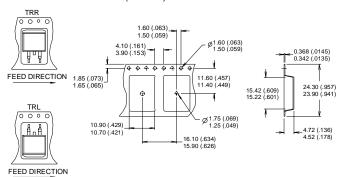
International

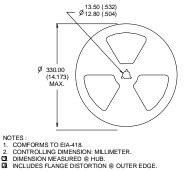

Rectifier

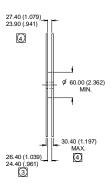
D²Pak Package Outline

Dimensions are shown in millimeters (inches)

D²Pak Part Marking Information


IRL3705Z/S/LPbF


International


TOR Rectifier

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 0.09mH ⑥ $R_G = 25\Omega$, $I_{AS} = 52A$, $V_{GS} = 10V$. Part not recommended for use above this value.

- Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- This is only applied to TO-220AB pakcage.
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- $\ \ \, \mathfrak{D} \ \, \mathsf{R}_{\theta}$ is measured at T_{J} of approximately 90°C.

TO-220AB package is not recommended for Surface Mount Application.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market.

